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Abstract: Machine learning algorithms have gained traction in a variety of fields throughout
the last decade. This final degree project focuses on a bank problem and on a high-energy physics
problem: searching for a rare Λ0

b decay. Two different machine learning methods are used: Neural
Networks and Boosted Trees, implemented in three different Phython libraries: TensorFlow and
Keras, PyTorch and XGBoost. Using the AUC-ROC curve, the models between the three libraries
are compared, and finally, models try to predict whether the Λ0

b decay happens for a given data.
Results for the bank problem shows nearly the same performance for TensorFlow and PyTorch,
while XGBoost seems significantly better. For the high-energy problem XGBoost seems better,
followed by TensorFlow and last PyTorch. However, predictions made on new data shows similar
performance for XGBoost and PyTorch.
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I. INTRODUCTION

Machine learning is growing in importance in many
sectors due to the enormous volume of data that re-
searchers and enterprises have to deal with. It allows
a user with a computer to estimate the tendency of a
particular topic with a percentage of reliability. It is fo-
cused on building programmes that can learn from data
and make decisions or identify patterns using automated
optimization methods.

At CERN (Conseil Européen pour la Recherche
Nucléaire), researchers need to handle enormous volumes
of data produced by the detectors and analyse them to
study the process of their interest, hence machine learn-
ing algorithms are applied. Some research groups are
trying to implement a functional and reliable model in
Python, a programming language.

The goal of this project is to study two different ma-
chine learning algorithms: Neural Networks and Boosted
Trees, on two different problems (bank and pyshics),
and their implementation on three different Python li-
braries: Tensorflow and Keras, PyTorch, and XGBoost.
The bank problem is about whether a person subscribes
to a term deposit. The high energy physics’ problem is
about whether the rare Λ0

b to proton, kaon, positron and
electron decay is produced, in LHCb data. In the final
section, it is discussed which model is more reliable for
each dataset and which has the easiest implementation.

II. SUPERVISED MACHINE LEARNING

Before discussing what machine learning is and what
it entails, it is necessary to distinguish between Machine
Learning (ML) and Artificial Intelligence (AI). AI is the
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science of constructing a machine that can mimic hu-
man behavior, such as doing specified tasks or thinking.
ML refers to the algorithms that underpin AI, which are
concerned with how the computer learns from data and
adapts to new; as a result, ML is a specific subset of AI.

Depending on the ingested data, there are three ma-
jor types of ML algorithms: Supervised Learning (SL),
where data is labeled by the input and output; Unsu-
pervised Learning (UL), where data is unlabeled and the
task is to find a pattern in the data; and Reinforcement
Learning, where the machine (or model) learns by trial
and error.

This project focuses on SL, namely Neural Networks
and Decision Trees, two widely used algorithms. Which
is the best is up for argument, with certain references
favouring one over the other, and the answer — I would
argue — is contingent on the dealed problem.

All algorithms on SL start from the same principles:
a mathematical function that establishes a relationship
between the output (yi, the predicted element) and the
input (xi, the feeded data); the task to be achieved:
Classification (discrete answer) or Regression (continous
value); the objective function: composed by the loss func-
tion (or accuracy), which is a measure of how well the
model predicts the training data; and the regularization
term which controls the model’s complexity. The follow-
ing steps are defining the model, training it, and testing
it by making predictions and evaluating the accuracy.

As an illustration of what the previous paragraph
means: a linear model such as ŷi =

∑
j θjxij , with θi

denoting the parameters the model adjusts as a result
of its training. The objective function can be defined as
Obj(θ) = L(θ) + Ω(θ) where L represents the loss func-
tion, and Ω the regularization term. An example of a loss
function is the mean squared error: L(θ) =

∑
i(yi − ŷi)

2,
the smaller loss the better model. One common regular-
ization term is the Ridge Regression: λ

∑
i θ

2
i , where λ is

the parameter that determines how much the complexity
of the model should be penalised [1].
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The way the model is trained for the classification
problem is what makes the difference between the two
algorithms applied in this project: Neural Networks and
Decision Trees.

A. Neural Networks

Neural Networks (NN) are a biological neural network-
inspired algorithm, used for SL and UL problems, made
up of a network of neurons-like processing units, called
nodes, which are interconnected by layers. The input lay-
ers gather input patterns, followed by the hidden layers,
and finally the output layers (see Figure 1). The connec-
tions between nodes are known as weights, whose values
are optimised during the training process and through
the hidden layers. Larger weights means that a vari-
able is more relevant to the ouput among others. This
output is fed into a function called ”activation,” which
determines whether the data is passed to the next layer,
and if it is, the node is called ”activated.” The purpose of
training is to narrow the gap between the predictions and
true values by adjusting the weight parameters (initially
determined randomly) following a function called ”opti-
miser” and finding the loss funtion’s minimum. Weights
are repeatedly updated until they converge. [2].

Input Layer

Hidden Layer

Output Layer

Figure 1: Illustration of a simple neural network, with
only one hidden layer. Image by author.

B. Decision Trees

Decision Trees are a SL algorithm, used for classifica-
tion and regression problems, that assigns a target value
for each data sample using a binary tree graph (each
node has two children), where the tree leaves show the
target values. The sample is propagated via nodes until
it reaches the leaf, with each node deciding which descen-
dent node it should move to. A decision is made based
on the characteristics of the selected sample, and usu-
ally just one criteria is examined (one feature is used in
the node to make a decision). The process of discover-
ing the best rules at each internal tree node according to
the chosen metric is known as decision tree learning [3].
But this is just the basis of many algorithms like Ran-
dom Forests, Bagging, and Boosted Decision Trees. This
report focuses on the last one, Boosted Decision Trees.

Boosted Decision Trees gathers many Decision Trees

(see Figure 2). This algorithm applies the Boosting to the
Decision Trees classifier, which follows the idea of making
a ”strong learning algorithm” from a ”weak learning algo-
rithm” [4]. In this context, a ”weak learning algorithm”
is just a Decision Tree. Iteratively, a tree is created con-
sidering the error of previous trees, by giving a weight
to their accuracy. Missclassified data is given a higher
weight, so the following trees will focus on improving it,
without forgetting the goal – to reduce the loss function.
There are many boosting algorithms, which differ in the
way the ”weak learners” are added, here, XGBoost (eX-
treme Gradient Boosting) is used.

Data

Tree 1 Tree 2 Tree N

Prediction

Figure 2: Illustration of a boosted tree. Note that trees
may be different. Image by author.

C. Classification Problem and AUC-ROC curve

A classification problem is a discrete output that the
model must provide. However, their calculations are not
discrete: the model generates the predictions as a prob-
ability for each required-predicted class, based on how
certain it is that the response is correct. Therefore, there
must be a point at which the model determines whether
it is a class or not: this is known as a threshold.

The simplest approach to determining how well a
model performs is using the AUC-ROC curve (ROC: Re-
ceiver Characteristic Operator, AUC: Area Under the
Curve). The ROC curve shows the performance of a
classification model at all thresholds, hence it displays
the True Positive Rate (TPR) in front of the False Posi-
tive Rate (FPR), which are defined as:

TPR =
TP

TP + FN
; FPR =

FP

FP + TN

where the acronyms read as True Positive (TP), False
Negative (FN), False Postive (FP) and True Negative
(TN).

At different classification thresholds, the curve displays
TPR in front of FPR, from 0 to 1. The higher the area of
a ROC curve, the better the model’s performance, con-
sequently the AUC is also calculated when making ROC
plots.

Final Degree Project 2 Barcelona, June 2022



Machine Learning Applied to High Energy Physics Vanessa Costa Ledesma

III. METHODOLOGY

The aim of this project is to examine two datasets and
three machine-learning libraries in Python: TensorFlow,
Pytorch, and XGBoost.

TensorFlow’s and Pytorch’s models were extracted
from each library’s documentation. As these libraries
are Neural Networks algorithms, the models used are as
similar as the libraries permit: both have only two lay-
ers, defined by the ReLu activation function (defined as
max(0,x)), the same loss function, Cross Entropy [5] and
the same optimiser, Adam [6].

XGBoost’s model is a pre-build classifier
which presents quite good performance, the
xgb.classifier, the default parameters are used.
The main parameters are: type of booster (can be
linear functions), the maximium level of the tree (which
increases complexity), maximum leaves, numbers of
parallel trees, among many others [1].

AUC-ROC curve is easy to implement on Python
using the Scikit-Learn library, since it has a function
for this purpose, the roc auc score [5], which only
requires the true values and predictions’ probability as
input.

A. Bank Afiliation Dataset

The Bank Afiliation datased was extrated from [7].
It contains relevant features to determine whether a
person will subscribe to a term deposit, hence it is made
with some non-number columns like ”job”, ”marital”,
”education”, ”housing”, among others. The last one
is the target ”y”, which means whether a person is
subscribed (1) or not (0). Notice algorithms described
need numeral inputs, therefore some information need
to be converted to numbers. In order to train the model,
this file is splitted in two parts: one that is used to train,
and one that is used to make predictions (the latter is
the AUC-ROC curve). The model employs all of the
training variables except ”y,” which it must learn to
predict.

B. LHCb Λ0
b Decay Dataset

This dataset contains relevant information of the Λ0
b

(quark content udb) decay to proton (p), kaon (K−),
positron (e+), and electron (e−). This decay is produced
by the collision of two high-energy p. Actually, it con-
tains two files: the computation approach using Monte
Carlo (MC) simulations of the signal process, and the
measured signal at the LHCb experiment, which con-
tains real data (real decays of interest and background).
This two files can be read and written with the Python’s
library Uproot [8], using Numpy. The goal is to train
the model to predict whether the decay of interest is
produced. To reach this, the focus is on the following
features:

P Momentum: particles’ momentum.
PT Transverse momentum: particles’ momentum per-

pendicular to the beam direction.
IPχ2 Significance of the smallest distance from the

particles’ direction to the pp collision.
FDχ2 Significance of the flying distance: particles’

distance traveled before decaying from the pp collision.
η Pseudorapidity: particles’ relative angle to the beam

axis.
β Normalised momentum asimetry: defined as follows:

β =
p(e+e−)− p(p)− p(K)

p(e+e−) + p(p) + p(K)

DTFχNDOF2 Decay tree fitter: information about
how well the Λ0

b is reconstructed from the remaining par-
ticles of the collision.
DIRA: Direction angle: angle between the direction

of the Λ0
b reconstructed from the children particles’

quadrimomentum and the direction formed by the origin
and decay vertex of the Λ0

b . Ideally 0.

The data in MC is the signal used to teach the models
that the decay happens. As the mass of the Λ0

b is known
(∼5.6 GeV), the events above this mass in the real data,
can not be part of the decay of Λ0

b , hence this data is used
to train the model that decay does not happen. Again,
this information is slipped in two parts: one for train,
and the other to calculate the AUC-ROC curve for the
models’ evaluation.
In addition, as the goal here is to predict whether the

decay happens, the data around the mass of the Λ0
b is

used to make the predictions. Therefore the model will
be useful to predict the Λ0

b happens on real data (known
as generalise), and how it performs.

IV. RESULTS

In this section, the results of the two studied datasets
are presented. For the Bank Afiliation dataset only
the models between the three machine-learning libraries
in Python are compared using the AUC-ROC curve,
without applying them on new data. For the LHCb
Λ0
b Decay Dataset, the models are compared using

again the AUC-ROC curve, and finally, whether the
Λ0
b decay occurs on new data that has never been seen

before. Given the past examination and discussion of
this dataset [9], one may expect, in an ideal situation,
the models utilised in this report to perform similarly.
This dataset was big enought for the model used in the
reference, and it does have Λ0

b decays, therefore examine
the discussed models’ performance.

A. Bank Afiliation Dataset

Models were trained on 80% of the data and evaluated
on the remaining 20%. Figure 3 shows the AUC-ROC
curve for the three different libraries.
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Figure 3: AUC-ROC curve plot for the bank problem.
Each line corresponds to one of the three different models
applied, see legend.

The AUC score demonstrates that the XGBmodel may
have a better performance, followed by Pytorch and Ten-
sorFlow.

It is interesting to point out that the PyTorch’s and
TensorFlow’s ROC curves intersect at a point: at low
(< 0.1) FPR TensorFlow is better than Pytorch, but at
high (> 0.5) TPR Pytorch is better. This is relevant for
the working point of concern, for example, one model
predicts less but is more confident in its forecasts, while
the other predicts almost all cases.

B. LHCb Λ0
b Decay Dataset

Models were trained on 80% of the data and evaluated
on the remaining 20%. Figure 4 shows the AUC-ROC
curve for the three different libraries.

The AUC score demonstrates that the XGB model has
a better performance, followed by TensorFlow and the
last one, Pytorch.

Models’ efficiency is defined as the quotient of the Real
Positive classfied as positive between all Real Positive,
and the same definition for the Negative, which gives a
number from 0 to 1, and is used as a threshold. In the
appendix table I, the figures used to calculate this values

can be found for each library. Here, the interest lies in
having good background removal efficiency rather than
making good predictions for decay.
To test the models, the data bellow 5.8 GeV of mass

is used to make predictions. Figure 5 shows the distribu-
tion of the invariant mass between 4.2 GeV and 6 GeV
contained on the dataset, before any selection applied
(background), while Figure 6 shows the distribution of
the invariant mass for the events predicted to be signal
made by each library at the corresponding threshold. Be-
tween this two plots, the magnitude of the peaks have to
be highlighted: recall this decay is a very rare decay.
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Figure 4: AUC-ROC curve plot for the high-energy
physics problem. Each line corresponds to one of the
three different models applied, see legend.
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Figure 5: Background distribution between 4.2 GeV and
6 GeV containted on the datased.
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Figure 6: Distribution of the predicted mass, legend indicates the threshold used. More details see appendix.
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V. CONCLUSIONS

Regarding the bank problem, XGBoost is better than
the Neural Networks algorithms, albeit it is not a sur-
prise since this dataset was acquired from a web page
whose example was an XGBoost model. On the other
hand, both neural-inspired algorithms have practically
the same AUC, despite the fact that TensorFlow seems
significantly better at low FPR and PyTorch for high
TPR. Given the problem at hand, whether a person sub-
scribes to a term deposit or not, a model that predicts
almost all cases is preferable, albeit not a 100% confident
model, therefore here, the PyTorch model is significantly
better.

Focusing on the Λ0
b , boosted trees overcome again neu-

ral algorithms, however in AUC terms, XGBoost and
TensorFlow are not that different. In terms of efficiency,
PyTorch outperforms TensorFlow and XGBoost. Ob-
serving Figure 6, it can be perceived that TensorFlow
is not able to remove as much background as XGBoost
and PyTorch. However between the last two, PyTorch
seems a bit better since its peak on 5.6 GeV is signifi-
cantly more notable. Comparing to Figure 5, all three
models considerably remove background. Furthermore,
contrasting with the previous report [9], it can be appre-
ciated that this data contained roughly 20 decays, and in
this project is compatible with this.

Comparing the two problems, bank and physics, using
only the AUC-ROC curve —since the bank problem have
not been test in new data— it seems models perform bet-
ter learning physics connections rather than human be-
havior. It is feasible that more sophisticated models or
complementary information are needed to forecast hu-
man activity. Maybe from a point of view of a machine,
humans’ interaction and nature is more caothic than par-
cicles’ interaction.

It is not surprising that for the models used here, XG-
Boost performs significantly better since the model is pre-
built and optimised, making it extremely simple to use.
Nevertheless, the neural models are more flexible at an

user level, allowing to add as many type-layers as needed.
This flexibility is what makes NN more difficult to im-
plement and optimise, as it requires prior and in-depth
knowledge of the topic, but it is also what allows the user
to create a better model and adapt it to their problem
and data.
The NN models used here have been acquired from

their corresponding examples in the documentation,
which, for sure, have been optimised for the examples
shown there. They are probably not the best for the two
examined datasets, but specially for the Λ0

b decay, the
results have been satisfactory.
Speed calcultion time has not been discussed and stud-

ied in dept here, but in a nutshell, both NN models lasts
roughly two minutes to compile the Λ0

b datased, and XG-
Boost does not last a minute. A Windows interface with
an Intel Core i3 has been used in this project.
A more in-depth study and particular to each library is

needed to undoubtedly conclude whether XGBoost over-
come Neural Networks.
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VI. APPENDIX

This appendix gathers some relevant plots to calcu-
late the effiency for the Λ0

b models. Recall effiency is
calculated from the quocient of the number of the well-
predicted class between the number of the actual class.
Plots in this appendix are made as the AUC-ROC curve,
with the 20% of the split dataset, which contains 589
signal-data, and 588 background-data. The histograms
show the distribution of the predictions’ probabilites clas-
sified as signal (decay happens), and as background (de-
cay does not happen). Higher probabilities mean models
are more confident whether the decay happens, and the
opposite for lower. The ideal model is a classification dis-
tribution with two peaks: one at 1, and one at 0, meaning
its confident about its two classifications. Additionally,
the confusion matrix shows again this distribution but
in a very compact plot includes the magnitudes of the
classified and miss classifed predictions. Notice a ideal
model should have the off-diagonal part darker.

Efficiency Signal Background

PyTorch 0.98 0.54
TensorFlow 0.68 0.99
XGBoost 0.97 0.95

Table I: Efficiency for all three libraries at each classifi-
cation work. The values obtained in this table for Signal
are the used for threshold in the Figure 6.
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Figure 7: PyTorch’s classifications distribution on top,
and confussion matrix on bottom, at threshold 0.5.
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Figure 8: TensorFlow’s classifications distribution on
top, and confussion matrix on bottom, at threshold 0.5.

0.0 0.2 0.4 0.6 0.8 1.0

Probability

0

100

200

300

400

500

600
background

signal

0 1

Actual class

0

1

P
re
d
ic
te
d
cl
as
s

557 25

28 567
200

400

Figure 9: XGBoost’s classifications distribution on top,
and confussion matrix on bottom, at threshold 0.5.
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