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Diffusion in tilted periodic potentials: Enhancement, universality, and scaling
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An exact analytical expression for the effective diffusion coefficient of an overdamped Brownian particle in
a tilted periodic potential is derived for arbitrary potentials and arbitrary strengths of the thermal noise. Near
the critical tilt ~threshold of deterministic running solutions! a scaling behavior for weak thermal noise is
revealed and various universality classes are identified. In comparison with the bare~potential-free! thermal
diffusion, the effective diffusion coefficient in a critically tilted periodic potential may be, in principle, arbi-
trarily enhanced. For a realistic experimental setup, an enhancement by 14 orders of magnitude is predicted so
that thermal diffusion should be observable on a macroscopic scale at room temperature.
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I. INTRODUCTION

Within the realm of thermal equilibrium, the overdamp
force-free thermal diffusion of a single Brownian particle
considered, e.g., by Einstein in Ref.@1#, is always reduced
when an additional periodic potential is switched on@2#, and
it is therefore tempting to conjecture a qualitatively simi
behavior at least for time-independent nonequilibrium s
tems. A first main conclusion of our present explorations
that the opposite is the case: The effective diffusion coe
cient of a Brownian particle in a periodic potential that
driven away from equilibrium by astatic ‘‘tilting force’’ can
become arbitrarily much larger than in the presence of th
mal noise alone. A striking consequence of our finding is
possibility to observe thermal diffusion of macroscopic p
ticles on macroscopic time and length scales at roo
temperature in appropriate tilted periodic structures.

A second main result of our present paper are sca
relations for the diffusion coefficient that become asympto
cally exact in the limit of weak thermal fluctuations an
small deviations from the critical tilt~i.e., the threshold a
which deterministically running solutions set in!. Further-
more, the asymptotic behavior of the diffusion leads to
classification into different universality classes with scali
exponent and scaling function depending on the charact
tics of the potential at the critical tilt. These concepts
scaling and universality—are a recurrent theme in ma
branches of statistical physics, such as, e.g., critical phen
ena, hydrodynamics, or low-dimensional nonlinear dynam
@3#. Most closely related to our present findings are the s
ing and universality phenomena as observed in the conte
so-called deterministic diffusion@4–8#, especially in the
presence of noise@9–11#, and of noisy systems at a saddl
node bifurcation~e.g., relaxation oscillations! @12,13#.

At the basis of all our above mentioned findings is
exact analytical expression for the diffusion coefficient, a
plicable to arbitrary periodic potentials, arbitrary tilts, a
arbitrary strengths of the thermal noise@see Eq.~22! below#.

Besides describing a real Brownian particle, thermal d
fusion in a tilted periodic potential, as we will consider
1063-651X/2002/65~3!/031104~16!/$20.00 65 0311
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here, is of relevance in numerous other contexts~see also
Chap. 11 in Ref.@14#!, such as Josephson junctions@15#, the
motion of fluxons in superconductors@16#, rotating dipoles
in external fields@17#, the rotation of molecules in solid
@18#, superionic conductors@19#, charge density waves@20#,
synchronization phenomena@21# in electrical circuits as de-
scribed by the Adler equation or in phase locked loops@22#,
mode locking in laser gyroscopes@23#, plasma accelerator
@24#, diffusion of atoms and molecules on crystal surfac
@25#, particle separation by electrophoresis@26#, biophysical
processes such as neural activity@27# and intracellular trans-
port @28#, and possibly also for the explanation of the matt
antimatter asymmetry of the universe@29#. Also worth noting
is the fact that the Brownian motion in a ‘‘traveling period
potential’’ ~pump! of the form V0(x2vt) can be readily
mapped onto a static tilted periodic potential@30#. Moreover,
our results near criticality~marginal stability! are universal
for general dynamical systems close to a saddle-node b
cation @12,13#, such as for instance relaxation oscillations

With the present work we continue and explain in mo
detail our brief account in Ref.@31#. The organization of the
paper is as follows: In Sec. II we introduce the model and
basic quantities of interest, namely, the average particle
rent and the effective diffusion coefficient. In Sec. III w
derive as our first main result the relation~15! between the
diffusion coefficient and the first two moments of the fir
passage time distribution. As a consequence, the closed
lytical expression~22! can be inferred. Section IV is devote
to the exploration of universality and scaling properties
the diffusion coefficient near the threshold of determinis
cally running solutions~critically tilted periodic potentials!,
predicting a giant enhancement of the free thermal diffus
under suitable conditions. The latter result is exemplified
Sec. V for the special case of a mechanical Brownian part
that moves in a critically tilted geometrical profile. The sum
mary and discussion of our findings is presented in Sec.

II. MODEL

We consider the following model for the overdamp
Brownian motion of a particle with coordinatex(t):
©2002 The American Physical Society04-1
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h ẋ~ t !52V8„x~ t !…1j~ t !, ~1!

V~x!ªV0~x!2xF, ~2!

whereh is the viscous friction coefficient~static mobility! of
the particle and where the total potentialV(x) consists of a
periodic partV0(x) with periodL,

V0~x1L !5V0~x!, ~3!

and a homogeneous, static ‘‘tilting force’’F. Further, thermal
fluctuations are modeled as usual@32# by Gaussian white
noise with zero average and correlation

^j~ t !j~s!&52hkTd~ t2s!, ~4!

whereT is the temperature,k is the Boltzmann constant, an
^¯& indicates the~nonequilibrium! average over a statistica
ensemble of realizations in Eq.~1!. Finally, as compared to a
full fledged Newtonian equation of motion, an inertia ter
mẍ(t) is missing on the left-hand side of Eq.~1!. In other
words, this inertia term is assumed to have a negligibly sm
effect in comparison with the other forces appearing in E
~1!, hence the name overdamped motion@14,32#.

A first basic quantity of interest is the average parti
current in the long-time limit~i.e., after transients due t
initial conditions have died out!

^ẋ&ª lim
t→`

^x~ t !&
t

. ~5!

The analytical solution for this current goes back to St
tonovich @33# and has subsequently been rederived m
times @see, e.g., Chap. 11 in Ref.@14#; the explicit formula
will be given in Eq.~18! below#. The fact that such an exac
closed solution can be given without any further restrictio
in the model~1! is rather exceptional and has given th
model the status of a ‘‘hydrogen atom’’ in the context
Brownian motion theory.

In our present study, the quantity of central interest will
the effective diffusion coefficient

Dª lim
t→`

^x2~ t !&2^x~ t !&2

2t
. ~6!

Exact analytical results are known in two special cases. F
in the absence of the periodic potentialV0(x) in Eq. ~1! a
straightforward calculation yields the so-called Einstein re
tion

D5kT/h5..D0 if V08~x![0 ~7!

for arbitrary values of the static tiltF @34#. Second, in the
absence of a tiltF, the following analytic prediction for the
diffusion coefficient is due to@2,35#

D5
D0

E
0

L dx

L
eV0~x!/kTE

0

L dy

L
e2V0~y!/kT

if F50. ~8!
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It has been furthermore demonstrated in Ref.@2# that D
<D0 , basically by applying the Cauchy-Schwartz inequal
to the denominator in Eq.~8!.

The evaluation of the diffusion coefficient~6! in the pres-
ence of both an arbitrary tiltF and an arbitrary periodic
potentialV0(x) is not obvious. One of the main objectives
the present work is the derivation of such a general, ex
diffusion formula, analogous to Stratonovich’s result for t
current.

III. EVALUATION OF THE DIFFUSION COEFFICIENT

In order to evaluate the diffusion coefficient~6! we will
take advantage of another quantity that is analytically kno
for the model~1!, namely, the moments of the first passa
time. To define these quantities, we consider the stocha
process~1! with an arbitrary but fixed seedx(0)5x0 and we
denote byt(x0→b) the time until an arbitrary but fixed poin
b is reached for the first time. Then thenth moment of the
first passage time is the statistical average

Tn~x0→b!ª^tn~x0→b!&. ~9!

In what follows, we will temporarily restrict ourselves t
the caseF.0 andb.x0 , since otherwise the averages
Eq. ~9! may diverge. Then, for the one-dimensional dyna
ics ~1!, these moments of the first passage time are given
the well-known closed analytical recursion~see, e.g., Sec. 7
in Ref. @32# and further references therein!

Tn~x0→b!5
n

D0
E

x0

b

dx eV~x!/kTE
2`

x

dy e2V~y!/kT

3Tn21~y→b! ~10!

for n51,2 . . . andwith T0(y→b)[1. Note that the conver-
gence of the integrals in Eq.~10! is guaranteed by our as
sumption thatF.0 andb.x0 . In principle, it is quite plau-
sible that all properties of the stochastic process~1! should
be expressible in terms of the moments~10! and, in this
sense, available in closed analytical form. In practice,
explicit connection between a given quantity of interest a
the moments is, however, not at all obvious.

We now come to the first main point of our paper, name
the derivation of an exact expression for the diffusion co
ficient D in terms of the mean first passage timeT1(x0
→b) and the so-called first passage time dispersion

DT2~x0→b!ª^t2~x0→b!&2^t~x0→b!&2

5T2~x0→b!2@T1~x0→b!#2. ~11!

To this end, we denote bya an arbitrary point betweenx0
andb. Then the timet(x0→b) that the stochastic process
Eq. ~1! needs to travel fromx0 to b can be decomposed int
the time to travel fromx0 to a, plus the time to travel froma
to b. For a white noise driven process~1!, the latter two
times are statistically independent of each other@36#. Fur-
ther, since the process~1! is homogeneous in time, all statis
tical properties oft(x0→b) are exactly the same as those
t(x0→a)1t(a→b) with t(x0→a) and t(a→b) being sta-
4-2
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tistically independent of each other. It then follows read
from the definitions in Eqs.~9! and ~11! that the mean first
passage timeT1(x0→b) and the dispersionDT2(x0→b) are
additive quantities, i.e.,

T1~x0→b!5T1~x0→a!1T1~a→b!, ~12!

DT2~x0→b!5DT2~x0→a!1DT2~a→b!. ~13!

As a second consequence it follows thatt(x0→x01 lL ) is
statistically equivalent to a sum ofl independent, random
variables t(x0→x01L),...,t„x01( l 21)L→x01 lL …, and
due to the periodicity~3!, they are identically distributed
Invoking the central limit theorem, the distribution of th
first passage timest(x0→x01 lL ) thus approaches~for large
l! a Gaussian distribution with mean valuelT1(x0→x01L)
and variancelDT2(x0→x01L).

Next, we introduce a discrete set of ‘‘coarse-grain
states’’ along thex axis $xmªx01mlL%m52`

` with mutual
distancelL, where l is a large butfixed integer @37#. The
processx(t) is said to be in a certain ‘‘state’’ from the instan
of time it hits the associated pointxm until the moment it hits
one of the adjacent neighboring pointsxm61 . It follows that
both the current̂ ẋ& and the diffusion coefficientD are iden-
tical for the original processx(t) and its coarse-graine
counterpart due to the long-time limits in the respective d
nitions ~5! and ~6!. Next, we note that ‘‘backward trans
tions’’ xm°xm21 require climbing up an ‘‘energy ramp’’ o
height lLF by thermal activation and are thus suppressed
a Boltzmann factor~barometric formula! exp$2lLF/kT% com-
pared toxm°xm11 , i.e., ‘‘sliding down the ramp.’’ For suf-
ficiently large l we, therefore, can safely neglect transitio
xm°xm21 . The remaining ‘‘forward transitions’’ betwee
neighboring ‘‘states’’xm andxm11 are identically distributed
random events@38# with a probability distribution that is
identical to the first passage time distribution for the origin
processx(t). In particular, the moments of the first passa
time Tn(xm→xm11) are thus identical for the original pro
cessx(t) and its coarse-grained counterpart. On the ot
hand, we have seen above that for sufficiently largel, all
these moments and hence the entire coarse-grained proc
completely fixed by the mean first passage timeT1(x0→x0
1L) and the dispersionDT2(x0→x01L). As our main con-
clusion we thus find thatif two processes (1) yield the sam
values of T1(x0→x01L) and DT2(x0→x01L) then ^ ẋ&
and D will also be the same in the two cases.

With the above construction at our disposal, we may c
clude @31# that

^ ẋ&5
L

T1~x0→x01L !
, ~14!

D5
L2

2

DT2~x0→x01L !

@T1~x0→x01L !#3 . ~15!

The proof of these relations follows from the considerat
of the special case with a potentialV0(x)[0 in Eq. ~1!,
implying ^ ẋ&5F/h and Eq. ~7!. The evaluation ofT1(x0
→x01L) andDT2(x0→x01L) according to Eqs.~10! and
03110
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~11! is straightforward and one sees that the relatio
~14!, ~15! are indeed fulfilled. But from our conclusion at th
end of the preceding paragraph, it now follows that Eqs.~14!
and~15! are also satisfied for a process~1! with an arbitrary
periodic potentialV0(x). We remark that here and in th
following, the reference point x0 is arbitrary.

By introducing Eqs.~10! and ~11! into Eq. ~15! an ana-
lytical formula for D is recovered within our so far use
restriction thatF.0 ~otherwise several terms in this formu
would diverge!. To remove this restriction we first rewrit
the y integral in Eq.~10! with n51 as

E
2`

x

dy e2V~y!/kT5(
l 50

` E
x2L

x

dy e2V~y2 lL !/kT. ~16!

According to Eqs.~2! and ~3! we have thatV(y2 lL )
5V(y)1 lLF , so that a geometrical series arises in Eq.~16!;
it can be summed to yield

E
2`

x

dy e2V~y!/kT5

E
x2L

x

dy e2V~y!/kT

12e2LF/kT . ~17!

Using Eq.~14! with Eq. ~10! we thus recover Stratonovichi’
formula for the particle current@33#,

^ẋ&5
12e2LF/kT

E
x0

x01L dx

L
I 6~x!

, ~18!

where we have introduced

I 1~x!ª
1

D0
eV~x!/kTE

x2L

x

dy e2V~y!/kT, ~19!

I 2~x!ª
1

D0
e2V~x!/kTE

x

x1L

dy eV~y!/kT, ~20!

and where ‘‘I 6’’ indicates that theindex may be chosen to b
either ‘‘ 1’’ or ‘‘ 2’’. The equivalence of these indices in Eq
~18! follows by interchanging in the denominator the ord
of the two integrations in combination with some addition
steps ~see also Appendix A!. We remark that the well-
established formula~18! can also be used, by reversing step
as a derivation of Eq.~14!. For later use, we also note tha

I 6~x!ªE
0

L dz

D0
exp$6@V~x!2V~x7z!#/kT%. ~21!

By similar manipulations as used in the derivation of E
~18! ~the details of which are given in Appendix A!, we
obtain for the diffusion coefficient~15! a central result of this
paper, namely@31#,

D5D0

E
x0

x01L dx

L
I 6~x!I 1~x!I 2~x!

F E
x0

x01L dx

L
I 6~x!G3 , ~22!
4-3
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with arbitrary reference pointsx0 and arbitrary indices inI 6

both in the numerator and the denominator. So far, we h
restricted ourselves tacitly toF.0. It is not difficult to see
that our results above for both the current and the diffus
coefficient remain valid also forF,0. Moreover, for both of
them, the limitF→0 does not give rise to any problems:
Eq. ~18! one recovers the obvious result^ẋ&50 @28# and by
observing that in Eqs.~19! and ~20! the y integral isx inde-
pendent one readily recovers Eq.~8! from Eq. ~22!.

In other words, the above closed expressions for both
current~18! and the diffusion~22! are exact analytical result
for arbitrary periodic potentialsV0(x) and arbitrary forcesF.
While the current formula has been known for more than
years, the corresponding compact expression for the d
sion coefficient has, to the best of our knowledge, been
rived here for the first time~see also the discussion in Se
VI !.

For V0(x)[0 one recovers from Eq.~22! by means of a
straightforward calculation the Einstein relation~7!. For non-
trivial potentialsV0(x), the above general analytical expre
sion is still rather complicated. One may evaluate it nume
cally for arbitrary potentialsV0(x), and one may try to
simplify it analytically for some special limits. A particularl
interesting such limit will be considered in the next sectio
We remark that an analytical discussion of other limits in E
~22! is also possible, but will not be pursued further here~see
also the remark below on the weak noise limit!.

As far as the numerical evaluation of our formula~22! is
concerned, a representative example for the sine potent

V0~x!5U0 sin~2px/L !, ~23!

is depicted in Fig. 1. The purpose of this figure is threefo
First, it confirms within the numerical accuracy of the sim
lations that our analytical prediction~22! is indeed exact.
Second, it contains a comparison with a formula for the d
fusion coefficient recently proposed by Constantini a
Marchesoni@39# of the form

D5kT
d

dF
^ẋ&, ~24!

with ^ẋ& given by Eq.~18!. This prediction is expected to
capture the correct qualitative behavior ofD under rather
general conditions and can be shown to become asymp
cally exact in any of the three limitsF→0,F→`,
V0(x)/kT→0. As far as the quantitative behavior ofD under
general conditions is concerned, our findings in Fig. 1 sh
that the formula from Eq.~24! is at most a rough
approximation—see also the discussion at the end of the
section. Third, the most interesting feature in Fig. 1 is
resonancelike behavior of the diffusion coefficient arou
that value of the tiltF for which the potential in Eq.~2!
ceases to exhibit local extrema, which apparently gets m
and more pronounced as the thermal noise strengthkT and
thus the bare~force-free! diffusion coefficientD05kT/h in
Eq. ~7! decreases. In the next section we will consider
more analytical detail this special limit of weak noise
combination with a tiltF close to its critical value.
03110
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We finally remark that, for both numerical and analytic
purposes, the reformulation~22! of the original analytical
result in Eqs.~15! and ~10! simplifies matters a lot in the
weak noise limit, since only a very small~and usually quite
evident! region of z values then contributes significantly t
the integrals in Eq.~21!. The most involved case is the nea
critical regime treated in detail below. In any other case,
weak noise limit can be handled rather straightforwardly
standard steepest descent-type methods.

IV. UNIVERSALITY AND SCALING NEAR
THE CRITICAL TILT

We now turn to the case of a critically tilted period
potential, i.e., we chooseF5Fc such thatV(x) in Eq. ~2!
exhibits a strictly monotonic behavior with the exception
exactly one inflection point within each periodL. In other
words, the tilted potential just ceases to display any lo
maxima and minima~saddle-node bifurcation@13#!, corre-
sponding to the threshold beyond which deterministica
running solutions set in. When looking uponx as a phaselike
variable, we may also speak of relaxation oscillations in t
context.

Without loss of generality we assume thatFc.0 ~poten-
tial ‘‘tilted to the right’’ ! and that the inflection point is a
x50 ~modulo L!, i.e., V(x) is strictly monotonically de-
creasing,V8(x),0, unlessx is a multiple of L. Next we
assume that for

F5Fc1e with Fc.0 and e small, ~25!

FIG. 1. Diffusion coefficient~6! versus the tiltF for the over-
damped model~1!–~4! with a sinusoidal periodic potential~23!.
Using dimensionless units, the parameter values areh5U051,L
52p, kT5D050.1. Note that the critical tilt@onset of determinis-
tically running solutions in Eq.~1!# occurs atF5Fc51. Solid line:
analytical prediction~22!. Filled dots: numerical simulations with
an estimated relative uncertainty of 0.01. Dashed line: analyt
approximation~24!, ~18!. Dashed-dotted line, filled squares, an
dotted line: same as solid line, filled dots, and dashed line, res
tively, but now forkT5D050.01.
4-4
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the potentialV(x) can be written in the general form

V~x!52m sgn~x!uxuq2ex52mxuxuq212ex, ~26!

in the vicinity of the critical pointx50. We furthermore
restrict ourselves to the cases

m.0, q.1, ~27!

implying differentiability with

V8~x!52mquxuq212e. ~28!

In the remainder of the interval@2L/2,L/2#, the potential
V(x) may be an arbitrary strictly monotonically decreasi
smooth function, while outside@2L/2,L/2# it is fixed by
Eqs.~2!,~3!. An example withq,1 is given at the end of this
section.

We remark that in the generic case we have

q53, V8~0!5V08~0!2Fc50,

V9~0!5V09~0!50,

V0-~0!526m,0. ~29!

For instance, this is so wheneverV0(x) in Eq. ~2! is an
analytic function ofx. Nevertheless, more generalq values
are also worth studying, as our results below will demo
strate. They can be readily realized experimentally by tai
ing the form of V0(x) accordingly. We finally note@using
Eqs. ~2!,~3!# that V(L/2)2V(2L/2)52FL. Assuming that
Eq. ~26! is a rough approximation forV(x) in the entire
interval @2L/2,L/2# it follows that 22m(L/2)q2eL
'2FL and hence

m'Fc~L/2!12q. ~30!

Our second main assumption throughout this section
that the thermal energykT is small, in the sense that

kT!LFc . ~31!

Our main goal in what follows is to determine the behav
of the diffusion coefficientD for asymptotically smalle and
kT.

It is instructive to extend for a moment the approximati
~26! to the entirex axis and to consider the correspondi
dynamics ~1! for e50 and in the zero temperature lim
j(t)[0, i.e.,

ẋ~ t !5
mq

h
ux~ t !uq21. ~32!

A straightforward calculation then shows that in order
reach the inflection pointx50 from a seedx(0),0, an in-
finite amount of time is needed ifq>2, while a finite time is
sufficient whenq,2 ~but still q.1!. On the other hand, fo
x(0)→2` a finite time suffices to reach a small neighbo
hood ofx50 for q.2, while this traveling time diverges fo
q<2. Analogous results are recovered for the traveling tim
in the regionx.0. As a consequence, fundamentally diffe
03110
-
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r
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ent kinds of behavior of the corresponding mean first pass
times for q.2 and q,2 are expected also for asymptot
cally small but finitekT ~but still e50! @40#: For q.2 the
motion of the particle~1! is dominated by the passag
through the vicinity ofx50, where Eq.~31! is valid, whereas
for q,2 one expects that the passage through this regio
negligible, and outside this region the influence of the no
can be ignored. A similar behavior is still expected for fin
e-values, provided they become sufficiently small askT ap-
proaches zero, while otherwise again fundamentally differ
realms may be encountered. In the following subsection
more rigorous, quantitative version of these heuristic ar
ments will be elaborated.

Regarding the caseq,1 we restrict ourselves to the spe
cific example of a critically tilted piecewise linear potentia
More precisely, we consider the diffusion of particles in
step-type potential, i.e.,V(x) decreases proportional to th
integer part of2x/L, with kT much smaller than the poten
tial step. This problem isa priori not simple at all, and was
in fact the question that motivated the entire present inve
gation. However, with the general framework develop
above now at hand, one readily finds from Eqs.~22! and~15!
the resultD52D0/3 for small kT, i.e., the free diffusion
coefficient is reduced by the factor 2/3.

A. Evaluation of the diffusion coefficient

In this subsection we derive our central results~53!–~55!
for the scaling behavior of the effective diffusion coefficien

We first focus on the evaluation of the integr
*x0

x01Ldx I6(x) appearing in Eqs.~18! and ~22!. To keep

things simple, we temporarily focus on the index ‘‘1’’ and
make the specific choicex052L/2, but it is clear that the
final result will be valid for both indices and anyx0 . Be-
cause of Eq.~31! one can replace the lower integration lim
x2L in Eq. ~19! by 2` to a very good approximation@see
also Eq.~A1! in Appendix A#. Next we evaluate a part of th
integral*2L/2

L/2 dx I1(x), namely@cf. Eq. ~21!#,

E
2L/2

2a

dx I1~x!5E
2L/2

2a

dx
1

D0
E

2`

0

dz e@V~x!2V~x1z!#/kT,

~33!

where we have introduced

aªAS kT

m D 1/q

'
AL

2 S 2kT

LFc
D 1/q

. ~34!

HereA is a dimensionless number, and in the second rela
in Eq. ~34! we have exploited Eq.~30!. In the following, we
will always assume thatA is very large, whilea is so small
that Eq. ~26! can be applied in the regionuxu<a @such a
choice ofA and a is guaranteed to be possible due to E
~31!#. Observing that for smallkT only z values very close to
zero contribute notably in the second integral in Eq.~33!, a
Taylor expansion of the integrand aboutz50 yields after a
straightforward calculation the result
4-5
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E
2L/2

2a

dx I1~x!5E
2L/2

2a

dx
h

uV8~x!u H 11OS kTV9~x!

@V8~x!#2D J
5E

2L/2

2a

dx
h

uV8~x!u $11O~A2q!%. ~35!

In the last identity we have exploited the fact thata in Eq.
~34! belongs to the region where Eq.~26! applies if kT be-
comes sufficiently small, and that within this regionuV8(x)u
will be much smaller than it is outside it. In the same w
one finds that

E
a

L/2

dx I1~x!5E
a

L/2

dx
h

uV8~x!u $11O~A2q!%. ~36!

In the remaining integral

E
2a

a

dx I1~x!5E
2a

a

dx
1

D0
E

2`

0

dz e@V~x!2V~x1z!#/kT,

~37!

again only very smallz values contribute significantly an
one thus may exploit Eq.~26! in the entire integration do
main. After changing integration variables tox̃
ªx(m/kT)1/q, z̄ª2z(m/kT)1/q and then dropping the tildes
one finds that

E
2a

a

dx I1~x!5
h

m2/q@kT#122/q E
2A

A

dx K~x,g!, ~38!

where@cf. Eqs.~19!,~21!#

gªe/@m1/q~kT!121/q#, ~39!

K~x,g!ªE
0

`

dzexp$2xuxuq211~x2z!ux2zuq212gz%

5e2x~ uxuq211g!E
2`

x

dy ey~ uyuq211g!. ~40!

Note thatK(x,g) is a dimensionless function and that bo
its arguments~x and g! are dimensionless as well. We als
remark that if we had worked withI 2(x) instead ofI 1(x)
then the results~35! and ~37! would have been recovere
without any modification, while on the right-hand side of E
~38! the integrandK(2x,g) would have appeared, which o
course gives the same result asK(x,g) after integration
over x.

Upon adding up the three contributions~35!, ~36!, ~38!
one sees that forq.2 the last one dominates for any sma
but fixed choice ofa in Eq. ~34! as kT becomes small. In
particular, the latter contribution~38! converges forkT→0,
which is basically a consequence of the fact that the m
first passage time to infinity is finite forq.2. Recalling that
the final result does not depend on the specific choicex0
52L/2 and the index ‘‘1’’, we can conclude that@31#

E
x0

x01L

dx I6~x!5
hG1~g!

m2/q@kT#122/q for q.2, ~41!
03110
.

n

G1~g!ªE
2`

`

dx K~6x,g!, ~42!

up to a relative error that approaches zero askT decreases
and provided thate also decreases such that the dimensi
less numberg in Eq. ~39! remains constant. Note that Eq
~41! has the form of a scaling law with a completely unive
sal, dimensionless scaling functionG1 for any given value of
the ‘‘critical exponent’’q. The equivalence of both signs i
Eq. ~42! is obvious, but we have kept both of them in ord
to indicate the effect of the two possible signs in Eq.~41!.

In the opposite caseq,2 things are more complicate
since later we will be interested not only in asymptotica
small kT ande with g from Eq. ~39! kept fixed, but also in
the case of negativee values such that the correspondin
negativeg values divergelogarithmically as kT approaches
zero. To this end, we henceforth set

Aª~Lqm/kT!2/q. ~43!

In this way,A@ugu askT→0 anda form ~34! tends to zero
@other choices than in Eq.~43! with the same properties
would also be possible#. It follows that the contributions of
orderA2q in Eqs.~35! and~36! can be neglected for asymp
totically small kT. By closer inspection one further can d
duce that in the remaining integrals~35! and ~36! a g value
that diverges at most logarithmically withkT has an asymp-
totically negligible effect as well, i.e., we can formally s
e50 in those integrals. The remaining integrals in Eqs.~35!
and~36! converge if one formally letsa tend to zero, imply-
ing the asymptotically exact approximation

E
x0

x01L

dx I6~x!5
hĜ1~g!

m2/q@kT#122/q

1E
x0

x01L h dx

Fc2V08~x!
for 1,q,2,

~44!

where

Ĝ1~g!ªE
2A

A

dx K~6x,g!. ~45!

Note the implicitkT dependence ofĜ1 via Eq. ~43!. In spite
of this dependence, one finds that the first term on the rig
hand side of Eq.~44! is negligible in comparison with the
second for asymptotically smallkT with the possible excep
tion of very large, negativeg values. In the latter case, w
may evaluate Eq.~45! by means of a saddle point approx
mation with the resultĜ1(g).S(g), where

S~g!ªU~2g!
2pug/qu~22q!/~q21!

q~q21!
exp$2~q

21!ug/quq/~q21!%. ~46!

The Heaviside step functionU~2g! has been introduced in
order to makeS(g) well defined for arbitraryg. Closer in-
4-6
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spection shows that the differenceĜ1(g)2S(g) is for all
values ofg negligible in comparison with the second term
the right-hand side of Eq.~44!. In other words, we obtain the
result

E
x0

x01L

dx I6~x!5
hS~g!

m2/q@kT#122/q

1E
x0

x01L h dx

Fc2V08~x!
for 1,q,2.

~47!

As already noticed, for positive or moderately negativeg
values the second term on the right-hand side domina
Since the quantity~47! is basically equivalent to the mea
first passage timeT1(x0→x01L) @cf. Eq.~A3!# this approxi-
matekT independence in Eq.~47! is in agreement with our
heuristic discussion above@see also below Eq.~31!#. On the
other hand, for sufficiently large negativeg values, the first
term on the right-hand side in Eq.~47! takes over, reproduc
ing the expected Arrhenius-type behavior~46! for the escape
time over a potential barrier@32#. Finally, we note that also
in the caseq.2 a saddle point approximation for large neg
tive g values in Eq.~42! leads to the very same resultS(g)
as in Eq.~46!.

The above results imply for the current^ẋ& in Eq. ~18!
that

^ ẋ&5
D0

L S Lqm

kT D 2/q 1

G1~g!
for q.2, ~48!

^ ẋ&5
D0

L

Lqm

kT

1

S kT

Lqm D 2/q21

S~g!1E
x0

x01L dx mLq22

Fc2V08~x!

for 1,q,2. ~49!

The ‘‘crossover’’ caseq52 requires a separate treatment th
is relegated to the Appendix B.

For the evaluation of the numerator in Eq.~22! one pro-
ceeds in exactly the same way as for the denominator,
we only report here the final results,

E
x0

x01L

dx I6~x!I 1~x!I 2~x!5
h3G3~g!

m4/q@kT#324/q for q.4/3,

~50!

G3~g!ªE
2`

`

dx K~6x,g!K~x,g!K~2x,g!, ~51!

E
x0

x01L

dx I6~x!I 1~x!I 2~x!5
h3@S~g!#2/2

m4/q@kT#324/q

1E
x0

x01L h3dx

@Fc2V08~x!#3

for 1,q,4/3. ~52!
03110
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As in Eq. ~42!, we have kept in Eq.~51! both signs, though
their equivalence is obvious. Moreover, forq.4/3 a saddle
point approximation for large negativeg values in Eq.~51!
again leads to the same expression@S(g)#2/2 as appearing in
Eq. ~52!. For the ‘‘crossover’’ caseq54/3, see Appendix B.

The implications of the above results for the diffusion
Eq. ~22! are

D5D0S Lqm

kT D 2/q G3~g!

@G1~g!#3 for q.2, ~53!

D5D0S Lqm

kT D 324/q

3
G3~g!

F S kT

Lqm D 2/q21

S~g!1E
x0

x01L dx mLq22

Fc2V08~x!G3

for 4/3,q,2, ~54!

D5D0

S kT

Lqm D 4/q23@S~g!#2

2
1E

x0

x01L dx m3L3q24

@Fc2V08~x!#3

F S kT

Lqm D 2/q21

S~g!1E
x0

x01L dx mLq22

Fc2V08~x!G3

for 1,q,4/3. ~55!

We recall thatG1(g), S(g), andG3(g) from Eqs.~42!, ~46!,
and~51!, respectively, are dimensionless scaling functions
their dimensionless argument~39! that are completely uni-
versal for any givenq value. Similarly, the fractionLqm/kT
as well as all the integrals appearing in Eqs.~49!–~55! are
dimensionless numbers. Under the approximative assu
tion that Eq.~26! is valid in the entire interval@2L/2,L/2#
one obtains for those integrals the result

E
x0

x01L dx mLq22

Fc2V08~x!
5

2q21

q~22q!
, ~56!

E
x0

x01L dx m3L3q24

@Fc2V08~x!#3 5
8q21

q3~423q!
. ~57!

The special ‘‘crossover’’ valuesq52 andq54/3 are ad-
dressed in Appendix B. Basically, theseq-values continu-
ously ~but not smoothly! match together the results~53!–
~55!, involving certain logarithmic corrections similarly as
is the case for crossover exponents in the context of crit
phenomena.

B. Discussion and examples

In this subsection we discuss Eqs.~53!–~55!.
As far as the result~53! for q.2 is concerned, the mos

remarkable feature is the divergence ofD/D0 whenkT tends
to zero for any fixedg value. In other words, werecover a
giant enhancement of thermal diffusion~cf. Fig. 1!. Specifi-
cally, for q53, i.e., the most important case in practice@cf.
Eq. ~29!#, the scaling functionG(g)ªG3(g)/G1

3(g) appear-
4-7
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ing in ~53! is depicted in Fig. 2. From this plot it follows tha
the scaling form~53! is rather well satisfied already for mod
erately smallkT values and that the enhancement of diffusi
is most pronounced forg values in Eq.~39! of the order
unity. A similar behavior is recovered for any otherq.2. In
other words,for q.2 the diffusion coefficient as a functio
of F exhibits a pronounced peak at F5Fc with a height of
the order D0(Lqm/kT)2/q and a widthDF5De of the order
m1/q@kT#121/q @cf. ~39!#. Exploiting thatD0}T @cf. ~7!# we
have, in particular, that

D~gmax!;D0
122/q}T122/q, ~58!

gmax.0. ~59!

Further, we note that for large negativeg values one can
exploit in Eq. ~53! the saddle point approximation~46! for
G1(g) and the corresponding approximation@S(g)#2/2 for
G3(g) as discussed below~52!.

Returning to the height of the peak in the special casq
53 the numerics from Fig. 2 in combination with Eq.~53!
implies that

D.0.0696D0S L3m

kT D 2/3

for q53, F5Fc . ~60!

We remark that in the present special caseq53, the integra-
tions in Eq.~42! can be exchanged and the integral ovex
performed, with the result

G1~g!5E
0

`

dx e~2gx22x6/4!. ~61!

FIG. 2. Bold solid line: Dimensionless scaling functionG(g)
ªG3(g)/G1

3(g) in Eq. ~53! for q53 versus its dimensionless a
gumentg from Eq. ~39! by numerically evaluating Eqs.~42!,~51!.
Full and dashed-dotted lines: Same as the respective lines in F
but now plotted in the form (D/D0)(kT/Lqm)2/q @cf. Eq. ~53!# ver-
susg @cf. Eqs.~25!,~39!# with q53 @cf. Eqs.~23!,~29!#.
03110
Similarly, the integral overx can also be performed in Eq
~51!. Further analytical simplifications are only possible f
g50. In this case, Eq.~61! can be expressed as

G1~0!521/3ApG~1/6!/33/2.2.39, ~62!

where G(z)ª*0
`dt tz21e2t is the Gamma function with

G(1/6).5.57. Due to a remarkable mathematical identity
Sigeti and Horsthemke@12# one further finds for the scaling
function in Eq.~51! the result

G3~0!5@G1~0!#2/6. ~63!

By means of this result one analytically recovers Eq.~60!.
Note also the difference between the relation~63! for g50
and the asymptotic behaviorG3(g)5@G1(g)#2/2 for large
negativeg values as discussed below Eq.~52!.

Next, we turn to the discussion of the result~54! for 4/3
,q,2. The salient difference in comparison with Eq.~53! is
a competition between the two terms in the denominator
the right-hand side of Eq.~54!. For any fixedg value, the
first term is negligible whenkT becomes sufficiently small
ThusD/D0 increases proportional to@kT#4/q23, i.e., we find
again a giant enhancement of thermal diffusion. More sub
is the behavior of Eq.~54! as a function ofg for a small but
fixed kT value. For arbitrary positive as well as for mode
ately negativeg values it is still the second term in the de
nominator that dominates and thus theg dependence ofD is
governed byG3(g). These predictions are confirmed b
comparison with a direct evaluation of the exact formu
~22!, see Fig. 3 for an example. In contrast to the caseq
53 ~cf. Fig. 2! the asymptotic scaling form~54! with S(g)

1,

FIG. 3. Bold solid line: Dimensionless scaling functionG3(g)
in Eq. ~54! for q53/2 versus its dimensionless argumentg from Eq.
~39! by numerically evaluating Eq.~51!. Other lines: The quantity
(D/D0)(kT/Lqm)324/q @2q21/q(22q)#3 @cf. Eqs. ~54!,~56!, and
main text# with D from Eq. ~22! versusg @cf. Eq. ~39!# for a po-
tential V(x) that is given by Eq.~26! for all xP@2L/2,L/2# while
outside@2L/2,L/2# it is fixed by Eqs.~2!,~3!. Parameter values in
dimensionless units:L52,m51,h51,kT5D051023 ~dotted!, kT
5D051025 ~short dashes!, kT5D051027 ~long dashes!.
4-8
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→0 is approached only for rather smallkT values in Fig. 3.
On the other hand, for large negativeg values we can make
use of the saddle point approximation@S(g)#2/2 for G3(g)
as discussed below Eq.~52!. SinceS(g) from Eq. ~46! in-
creases very fast with decreasingg, the right-hand side of
Eq. ~54! increases very fast as long asG3(g) governs theg
dependence. However, again due to this fast increase
first summand in the denominator starts to compete with
second summand and ultimately takes over, leading to a
crease ofD proportional to 1/S(g). Thus a peak appears at
~negative! g value for which both terms in the denominat
are of the same order of magnitude. The detailed quantita
calculation is straightforward and leads to the result

D~gmax!5D0

2

27

Lqm

kT F E
x0

x01L dx mLq22

Fc2V08~x!G21

, ~64!

wheregmax is defined via the transcendental equation

S kT

Lqm D 2/q21

S~gmax!52E
x0

x01L dx mLq22

Fc2V08~x!
. ~65!

For smallkT one thus obtains with Eq.~46! the leading order
solution

gmax.2qF 22q

2q~q21!
lnS Lqm

kT D G121/q

,0. ~66!

The widthDg of the peak is found to be of the order

Dg.S q

2gmax
D 1/~q21!

. ~67!

First of all, we note the logarithmickT dependence in Eq
~66!. In other words, the peak region is self-consistently
scribed by our calculations, see above Eq.~43!. Second, tak-
ing into account Eq.~7! we see that the maximal effectiv
diffusion coefficient in Eq.~64! is in fact independent of kT.
In other words, the maximal enhancement of diffusion
even stronger than forq.2, see Eq.~58!. Under the approxi-
mative assumption that Eq.~26! is valid in the entire interval
@2L/2,L/2# one obtains with Eq.~56! the explicit result@31#

D~gmax!5
222qq~22q!

27

Lqm

h
, ~68!

independent of kT. These asymptotic predictions forkT→0
are nicely confirmed already for moderately smallkT values
by comparison with a direct numerical evaluation of the e
act formula~22! in Fig. 4. Note that while the maximizingg
value in Eq.~66! tends to2` askT→0, the corresponding
tilt e5F2Fc in Eq. ~39! tends to zero. WhilekT may be-
come arbitrarily small, the casekT50 is not included in our
above calculations, basically since this limit is singular
Eq. ~10! and thus in Eq.~22!. The basic physical reason fo
this singularity is the fact that the passage time through
interval @2L/2,L/2# remains finite for any finitekT but be-
comes infinite forkT50.
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Finally, we turn to the discussion of the result~55! for 1
,q,4/3. For positive and moderately negativeg values the
two integrals on the right-hand side of Eq.~55! dominate and
thus the diffusion coefficient is essentially constant. Con
quently, the diffusionD is proportional to the bare valueD0

and in the limitV08(x)→Fc1e, corresponding toq→1, the
correct behavior~7! is also recovered. On the other han
with increasingly negativeg values, the first term in the nu
merator in Eq.~55! takes over, while in the denominator th
integral is still dominating. In other words, we essentia
recover the same behavior as in Eq.~54!. Especially,a peak
of the form~64!–~68! arises for any1,q,2, cf. Fig. 4.

In the caseq.2 the approximation by Constantini an
Marchesoni in Eq.~24! can be evaluated by means of Eq
~18!,~31!,~39!, and~41!, leading to

D5D0S Lqm

kT D 1/q @2G18~g!#

@G1~g!#2 for q.2. ~69!

Comparison with the exact asymptotics~53! shows that this
approximation does not capture the correct scaling functi
and exponents. A similar disagreement is obtained for 1,q
,2. On the other hand, one readily finds that the mainquali-
tative features are correctly reproduced in all cases.

C. Basic physical mechanism

The basic physical mechanism responsible for the
hancement of the thermal diffusion may be understood al
the following heuristic argument. As discussed below E
~32!, for q.2, e50, and smallkT, the noisy dynamics~1! is
dominated by the passage through the ‘‘dynamical bot

FIG. 4. Diffusion coefficient~22! versus the tiltF for a potential
V(x) defined via Eqs. ~25!,~26! with q53/2 for all x
P@2L/2,L/2# while outside@2L/2,L/2# it is fixed by Eqs.~2!,~3!.
Using dimensionless units, the parameter values areh51,L52, m
51, Fc51. The five curves with increasingly sharper peaks cor
spond to the following five values ofkT5D0 : 331022, 1022,
1023, 1024, and 1025. The theoretically predicted peak height fo

asymptotically smallkT from Eq. ~68! is 0.1̄.
4-9
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neck’’ located at the inflection pointx50, cf. Eq.~26!. Since
e50, a very small perturbation due to thermal noise is
ready sufficient to kick the particle across the inflection po
x50. This small variation in comparison with an unpe
turbed particle is subsequently greatly enhanced by the
ther dynamical evolution. The result is a huge dispersion
a statistical ensemble of particles subjected to different r
izations of the noise. It is quite suggestive that the sa
basic mechanism subsists also for nonvanishinge values at
least as long as they are so small that the corresponding
values in Eq.~39! remain finite whenkT approaches zero.

Due to the same mechanism, one expects a very st
change of the particle current^ẋ& upon small changes of th
tilt F near the critical valueFc . In other words, a relation
like in Eq. ~24! is expected to be correct at least qualitative
However, it is clear that this heuristic argument can be
plied only forq.2, because only then the ‘‘bottleneck’’ nea
x50 dominates the dynamics@cf. the discussion below Eq
~32!#. Since we have found an enhanced diffusion also
e50 and 4/3<q<2 we have to conclude that such a simp
argument only captures a part of the essential physics
that a relation of the form~24! cannot be strictly correct@cf.
Fig. 1 and the discussion below Eq.~69!#.

Interestingly enough, a similar heuristic explanation
terms of dynamically enhanced thermal fluctuations see
again applicable for 2.q.1 near the peak in the diffusio
coefficient described by Eqs.~64!–~68!: As discussed above
Eq. ~64!, in this peak region both summands in the denom
nator of Eq.~54! are comparable, reflecting the fact that t
passage time through a very small neighborhood ofx50 is
comparable to the traveling time through the remainder
@2L/2,L/2#. On the other hand, the large negativeg value in
Eq. ~66! and the concomitant Arrhenius-type form of E
~46! indicate that the former time scale is governed by
thermally activated escape process across a potential ba
On this basis, it is quite plausible that the dynamical e
hancement of these thermally induced~rare! escape events
will be maximal when both time scales are comparable.

The discussion below Eq.~32! implies that forq.2 the
mean first passage timeT1(x0→x01L) is dominated by a
small neighborhood of the inflection pointx50, while for
2.q.1 the region outside this small neighborhood is
longer negligible. From our results in Eqs.~50!,~52! we can
conclude that a similar crossover occurs for the first pass
time dispersionDT2(x0→x01L) at q54/3. In view of our
central relations~14! and ~15! the need to distinguish be
tween twoq regimes for the current̂ẋ& in Eqs.~48!,~49! and
threeq regimes for the diffusionD in Eqs.~53!–~55! is then
immediately clear.

We finally note that a suitable comparison between
directed and the diffusive transport is provided by the dim
sionless number@41#

Qª

2D

L^ẋ&
5

DT2~x0→x01L !

@T1~x0→x01L !#2 5 lim
t→`

^x2~ t !&2^x~ t !&2

L^x~ t !&
,

~70!

where the second equality follows from Eqs.~14!,~15! and
the third from Eqs.~5!,~6!. For large positiveg one finds that
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Q becomes very small, while for large negativeg one finds
that Q approaches unity. Forq53 andg50.gmax @cf. Eq.
~59!# the relation ~63! implies Q51/3, whereas for 2.q
.1 and g5gmax @cf. Eq. ~66!# one finds thatQ52/9. In
other words, in the most interesting regime close to the ma
mum of the diffusion coefficient the particle dispersio
^x2(t)&2^x(t)&2 is comparable toL times the mean dis-
placement̂ x(t)& and similarly the first passage time dispe
sion is comparable to the square of the mean first pass
time.

V. MACROSCOPIC THERMAL DIFFUSION

In this section we consider the thermally induced diff
sion of a real mechanical particle of spherical shape t
moves in a liquid under the action of gravitation along t
rigid surface of a critically tilted periodic geometrical profile
see Fig. 5.

The position of the particle is described by its coordina
y along some horizontal axis and its vertical positionz.
Gravitation is pointing in the negativez direction and the
motion is constrained by a rigid surface according toz
>h(y), whereh(y) has the shape of a periodic profile wit
periodL0 that is critically tilted ‘‘to the right,’’ i.e.,

h~y1L0!5h~y!2h0 , ~71!

with h0.0, see Fig. 5. The motion along the third spat
direction~perpendicular to bothy andz! decouples from the
motion in they-z plane and can, therefore, be ignored. Wit
out loss of generality we assume thath(y) has an inflection
point aty50 and thus satisfies for smally a relation analo-
gous to Eq.~26! with e50, i.e.,

h~y!52m0yuyuq21. ~72!

Physically, it is quite plausible that for asymptotical
small kT, the constraintz>h(y) can henceforth be replace
by z5h(y) without changing the dynamics along they di-
rection. A more detailed mathematical justification of th
step is possible but not further elaborated at this place

FIG. 5. A spherical Brownian particle in a liquid, rolling down
critically tilted, periodic surfaceh(y) under the action of gravita-
tion, see also Eq.~71!.
4-10
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every given position@y,h(y)#, the thermal noise acting o
the particle consists of a perpendicular and a tangential c
ponent relative to the geometrical profileh(y). Under the
assumption that the thermal fluctuations can be modeled
Gaussian white noise, these two components are statisti
independent at any given time and position. Furthermore,
perpendicular component has no effect because of the
straint z5h(y). In order to achieve an effective one
dimensional description of the form~1! the appropriate ap
proach is thus to work with the path-lengthx along the
geometrical profile as our generalized coordinate. The infi
tesimal line elementdx is then specified by the obvious re
lation dx25dy21dh2 and the sign convention in the relatio
dx56(dy21dh2)1/2. Without loss of generality we choos
the sign convention such thatdx5dy„11@h8(y)#2

…

1/2 and
the x origin such that

x~y!5E
0

y

dŷ„11@h8~ ŷ!#2
…

1/2. ~73!

The potential energy of the particle with densityr and
radiusr due to the effects of gravitation and the buoyancy
the surrounding liquid with densityr l is given in terms of the
generalized coordinatex by

V~x!5Fgh„y~x!…, Fgª~4p/3!r 3~r2r l !g, ~74!

wherey(x) is the inverse ofx(y) ~which obviously exists!
and whereg is the acceleration due to gravity. Observing th
h8(0)50 in Eq.~73! it follows thatV(x) is a critically tilted
periodic potential that satisfies Eq.~26! for small x with

e50, m5Fgm0 . ~75!

With Eqs.~2!, ~3!, ~71!, ~73!, and~74! it follows that

FcL5V~x!2V~x1L !5Fgh0 , ~76!

L5E
0

L0
dŷ„11@h8~ ŷ!#2

…

1/2. ~77!

We assume that the frictional force acting on the parti
under consideration is of the Stokes formh ẋ(t) with friction
coefficient

h56pneffr , ~78!

whereneff is the effective viscosity of the surrounding liquid
For a spherical particle that does not rotate and that is
rounded by an unbounded reservoir of liquid,neff is given by
the bare viscosity of this liquid. A rigorous quantitativ
theory describing the thermal motion@note thath also ap-
pears in Eq.~4!# of the actual setup we have in mind shou
include the effects of rotational degrees of freedom and
quite intricate boundary effects, both mechanical and hyd
dynamical @42#. Here, we shall adopt the simplifying as
sumption@43# that all these effects are approximately ca
tured by an appropriately renormalized viscosityneff .
Further, we assume that all kinds of fluctuations within t
liquid ~density, temperature, etc.! are approximately capture
03110
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by
lly
e
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f

t

e

r-

e
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-

e

by the thermal noisej(t) in Eq. ~1!. Finally, we assume
incompressibility of the liquid~and the particle! such that the
densitiesr andr l are constant, and we exclude temperatu
gradients.

Finally, we should justify the assumption that the iner
term mẍ(t), missing on the left-hand side of Eq.~1!, is in-
deed negligible, at least in those aspects of the dynamics
are responsible for the asymptotic behavior in Eqs.~53!–
~55!. In practice, this is a very delicate question and a tr
satisfactory answer seems only possible by means of a c
parison with numerical simulations that fully take into a
count these small but finite inertia effects. Intuitively, w
expect that there is a range of small but still macrosco
particle sizes for which the overdamped description~1!
would be admissible. A closely related question concerns
omission of memory effects both in the noise and the dis
pation, which can be justified by closer inspection under
condition that the particle densityr is much larger than the
liquid densityr l .

In the important caseq53, and with

g.981 cm/s2, ~79!

n̂ª1022 g/cm s.nwater, ~80!

r̂ª10 g/cm3 @r iron.7.9 g/cm3#, ~81!

r̂ª0.1 cm, ~82!

ĥ0ª1.5 cm, ~83!

T̂ª293°K @room temperature#, ~84!

the free diffusion coefficient~7! can be written, using Eq
~78!, as

D0.2.14310212
T

T̂

n̂

neff

r̂

r

cm2

s
. ~85!

Further, one obtains from Eq.~60! for the diffusion coeffi-
cient at the critical tilt the formula

D.4.9931023
n̂

neff

r

r̂ S T

T̂
D 1/3S r2r l

r̂

L3m0

4ĥ0
D 2/3

cm2

s

for q53. ~86!

In the actual experimental realization, which is presently u
der construction in the labs of one of the present auth
~H.L.!, each fraction appearing in Eqs.~85! and~86! is of the
order of unity@44#. In particular, for typical shapesh(x) one
finds that Lqm0/2q21h0 is a dimensionless number of th
order of unity@cf. Eqs.~30!,~75!,~76!,~77!#, independently of
the actual value of L. It follows that the diffusion coefficient
in the critically tilted periodic potential~86! is enhanced in
comparison with the free thermal diffusion coefficient~85!
by about nine orders of magnitude, so that it may well rea
macroscopically observable values. The width of the peak
the diffusion coefficient with respect to variations of the p
4-11
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tential tilt has been estimated above Eq.~58!, namely,DF
.m1/q@kT#121/q. This width of the peak may be used
estimate the experimentally admissible deviationDh0 from
the exact ‘‘critical’’ h0 value in Eq.~71!. Due to Eq.~76! we
see thatDF5Dh0Fg /L, yielding the following theoretical
estimate forDh0 :

Dh0

ĥ0

.1.2310210S L3m0

4ĥ0
D 1/3S T

T̂

r̂

r2r l
D 2/3

r̂ 2

r 2
. ~87!

Since the fractions on the right-hand side are again of
order of unity, this theoretically required precision is th
extremely high.

As discussed in the previous section, the largest enha
ment of thermal diffusion is expected for 2.q.1. From Eq.
~64! we then find for the maximal diffusion coefficient th
result

D.2.423102q~22q!
n̂

neff

r 2

r̂ 2

r2r l

r̂

Lqm0

2q21ĥ0

3

2q21

q~22q!

E
x0

x01L dx mLq22

Fc2V08~x!

cm2

s
for 2.q.1, ~88!

see also Eqs.~56! and ~68!. Again, all the fractions in the
right-hand side are of order unity. In other words, if the fa
rication of such a specially tailored profileh(y) with 2.q
.1 is possible with the necessary precision, then the
hancement of thermal diffusion can be further improved
another five orders of magnitude as compared to the caq
53. For the required precision to hit the correcth0 value in
Eq. ~71! one obtains@45#

Dh0

ĥ0

.S 0.06
q~q21!

22q

Lqm0

2q21ĥ0
D 1/q

3S 1.3310215
T

T̂

r̂

r2r l

r̂ 3

r 3D 121/q

. ~89!

In comparison with Eq.~87!, this theoretically required pre
cision is considerably lower, especially forq values close to
unity. In contrast to thisglobal precisionDh0 , the necessary
local precision of the profileh(y) may be a more seriou
problem in practice. Finally, we remark that the maxima
enhanced diffusion in Eq.~64! and hence in Eq.~88! is not
reached exactlyat the critical tilt, cf. Eq. ~66!. The corre-
sponding~negative! deviation from the criticalh0 value in
Eq. ~71! is of the same order of magnitude asDh0 in Eq.
~89!, see also Eq.~67!.

VI. DISCUSSION

In this paper, we have addressed the problem of o
damped Brownian motion in a tilted periodic potential in t
03110
e

e-

-

n-
y

r-

presence of white thermal noise@31#. Our first main result is
the compact and exact expression~22! for the diffusion co-
efficient, valid for arbitrary tilted periodic potentials and a
bitrary strengths of the thermal noise. At the basis of t
result lies Eq.~15!, connecting the diffusion coefficient with
the mean first passage time and the dispersion of the
passage times. The relations~14! and ~15! have been previ-
ously proposed~without proof! in the context of random
walk theory on discrete lattices@46#, and they are also well-
known asymptotic relationships in the particular case of
called renewal processes, see, e.g., formulas~14! and~16! in
Chap. 5 of Ref.@47#. While all these works are concerne
with models in discrete space, the use of the above relat
for the continuous problem at hand has in fact been ad
cated~without proof! in Ref. @11#, and an independent alte
native derivation of Eq.~15!, based on the results from Re
@47#, has recently been presented in Ref.@48#. Note also that
a different expression for the diffusion coefficient~24! was
recently proposed in Ref.@39#, which is, in general, only
approximatively valid~see Fig. 1 and Sec. IV!. As a side
remark we mention that our result has nothing to do with
relation between the diffusion coefficient and the Lyapun
exponent in certain chaotic dynamics@49#. In particular, the
concept of Lyapunov exponents is useless in our con
since it focuses on infinitesimal deviations between trajec
ries, while the diffusion coefficient here is governed by d
viations ranging over many periodsL.

It seem likely that a relation analogous to Eq.~15! can
also be derived under more general conditions, e.g., in hig
dimensions or beyond the overdamped limit@39,50#. While
in these cases the mean first passage times and the dispe
of the passage times are generally not known in analyt
form, such a relation may still be useful for speeding up
numerical determination of the diffusion coefficient. For sp
tially discrete, periodic, one-dimensional systems, an ex
expression for the diffusion coefficient has been derived
Derrida in Ref.@51#, see also Ref.@52# for various generali-
zations. It is clear that Derrida’s result will become equiv
lent to Eq. ~15! or Eq. ~22! in the continuous space limit
Conversely, by considering periodic potentialsV0(x) with
very high barriers between neighboring local minim
~‘‘states’’!, an effective spatially discrete model is recovere
Again, it is clear that in this way our result will becom
equivalent to Derrida’s discrete random walk result. In pra
tice, our compact expression~22! for the diffusion coefficient
is, however, considerably simpler than Derrida’s.

Turning to our second main result, we recall that quant
mechanics is generally appreciated to be indispensable
the explanation, e.g., of the stability of atoms, molecules,
solids. Yet, verifying and exploiting basic quantum mecha
cal effects ‘‘more directly’’ on a macroscopic scale is cu
rently attracting much attention. A somewhat similar situ
tion arises with respect to the random microsco
fluctuations at the basis of statistical mechanics. As deta
in Sec. V, the present study suggests a very elementary
periment that would make those microscopic fluctuatio
‘‘visible’’ on a macroscopic scale. In contrast to the quantu
mechanical case, here the word ‘‘macroscopic’’ litera
means ‘‘observable by the naked eye.’’
4-12
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We note that somewhat related phenomena are
known in other far-from-equilibrium systems. For examp
the spreading of particles can be enhanced by the cri
fluctuations in the vicinity of a nonequilibrium phase tran
tion to a convective state, resulting in a diverging diffusi
coefficient D;(T2Tc)

2z, wherez is a dynamical critical
exponent@53#. Another well-known example is the enhanc
ment of dispersion by turbulence. Diffusion can also be a
plified by the coupling to a convective~laminar! process as
exemplified in the well-studied example of Taylor dispersi
with a characteristic diffusion coefficient given byD;D0

21

;T21, whereD0 is the usual~bare! molecular diffusion co-
efficient: see Ref.@54# for a review. In contrast to our presen
case, in those examples strong nonequilibrium fluctuati
and/or gradients of the temperature and the velocity of
surrounding medium are a crucial ingredient. Two other
amples that come closer to the situation of interest to us
respectively, the Suzuki scaling law for relaxation from
marginally stable state@55# and the transient bistability in
explosive systems@56#. In these cases, the dispersion is
creased by the amplification of the initial thermal spread
in the close vicinity of a metastable point through the sub
quent fast dynamical evolution away from this point. Fro
this point of view, our present problem may be considered
the dispersion of particles in a potential displaying a spatia
periodic repetition of marginally stable states—recall a
our qualitative explanation of the effect below Eq.~55!. Fi-
nally, we mention that a somewhat similar, resonance
enhancement of the free thermal diffusion has also been
ported for various systems in the presence of a tim
dependent external driving force@57–61#. While the behav-
ior of the diffusion coefficient there is reminiscent of th
present case, the underlying physical mechanisms are
again quite different.
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APPENDIX A

We present in this appendix some details pertinent to
derivation of Eq.~22!. We first introduce the quantities

Ĩ 1~x!ª
1

D0
eV~x!/kTE

2`

x

dy e2V~y!/kT5
I 1~x!

12e2LF/kT ,

~A1!
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Ĩ 2~x!ª
1

D0
e2V~x!/kTE

x

`

dy eV~y!/kT5
I 2~x!

12e2LF/kT .

~A2!

The last identity in Eq.~A1! follows from Eq.~17! and simi-
larly for Eq. ~A2!. Next, we rewrite the first two moments i
Eq. ~10! as

T1~x0→b!5E
x0

b

dx Ĩ1~x!5
1

12e2LF/kT E
x0

b

dx I1~x!,

~A3!

T2~x0→b!5
2

D0
E

x0

b

dx eV~x!/kTE
2`

x

dy e2V~y!/kT

3E
y

x

dz Ĩ1~z!1R. ~A4!

HereR is given by

Rª
2

D0
E

x0

b

dx eV~x!/kTE
2`

x

dy e2V~y!/kTE
x

b

dz Ĩ1~z!

52E
x0

b

dx Ĩ1~x!E
x

b

dz Ĩ1~z!

52@T1~x0→b!#222E
x0

b

dx Ĩ1~x!E
a

x

dz Î1~z!

52@T1~x0→b!#222E
x0

b

dx Ĩ1~z!E
z

b

dx Ĩ1~x!

52@T1~x0→b!#22R5@T1~x0→b!#2. ~A5!

Substituting this in Eq.~A4! we obtain

DT2~x0→b!5
2

D0
E

x0

b

dxE
2`

x

dyE
y

x

dz e@V~x!2V~y!#/kTĨ 1~z!

5
2

D0
E

x0

b

dxE
2`

x

dzE
2`

z

dy e@V~x!2V~y!#/kTĨ 1~z!

52E
x0

b

dxE
2`

x

dz e@V~x!2V~z!#/kT@ Ĩ 1~z!#2. ~A6!

Using the fact thatĨ 1(x) in Eq. ~A1! is L periodic, a similar
calculation as in Eq.~17! then yields

DT2~x0→b!

5
2

@12e2LF/kT#3 E
x0

b

dxE
x2L

x

dz e@V~x!2V~z!#/kT@ I 1~z!#2.

~A7!
4-13
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By choosingb5x01L and interchanging the order of inte
gration, we finally obtain

DT2~x0→x01L !5
2D0

@12e2LF/kT#3 E
x0

x01L

dz@ I 1~z!#2I 2~z!

52D0E
x0

x01L

dz@ Ĩ 1~z!#2 Ĩ 2~z!. ~A8!

With the definitions

H~x!ªE
2`

x

dy e2V~y!/kT, ~A9!

K~x!ªE
x

`

dy eV~y!/kT, ~A10!

we can rewrite Eq.~A3! as

T1~x0→x01L !5
1

D0
E

x0

x01L

dx@2K8~x!H~x!#.

~A11!

Using the fact that the productK(x)H(x) is L periodic, a
partial integration yields

T1~x0→x01L !5
1

D0
E

x0

x01L

dx H8~x!K~x!

5E
x0

x01L

dx Ĩ2~x!

5
1

12e2LF/kT E
x0

x01L

dx I2~x!.

~A12!

Similarly, Eq. ~A8! can be rewritten as

DT2~x0→x01L !5
2

D0
2 E

x0

x01L

dz

3@2K8~z!H~z!#2H8~z!K~z!.

~A13!

Since H8(z)K8(z)51 the integrand equal
(1/2)H2(z)dK2(z)/dz; integration by parts yields

DT2~x0→x01L !5
2

D0
2 E

x0

x01L

dz@2H8~z!K~z!#2

3@2K8~z!H~z!#

52D0E
x0

x01L

dz@ Ĩ 2~z!#2 Ĩ 1~z!

5
2D0

@12e2LF/kT#3 E
x0

x01L

dz@ I 2~z!#2I 1~z!.

~A14!
03110
Finally, using Eqs.~A3!, ~A8!, ~A12!, and~A14! in Eq. ~15!
leads to the result~22!.

APPENDIX B

In this appendix we discuss in some detail the spe
casesq52 andq54/3 that have been omitted in the ma
text in Sec. IV.

In the caseq52 we may choose, similarly as in the dis
cussion below Eq.~43!, a large value ofA and then approxi-
mately sete50 and A2q50 in Eq. ~35!. The remaining
integral does not converge fora→0 but we may introduce a
convergence-inducing term according to

E
2L/2

2a

dx I1~x!5E
2L/2

2a

dxF h

Fc2V08~x!
2

h

2muxuG
1E

2L/2

2a

dx
h

2muxu
. ~B1!

The first integral converges fora→0 and by actually per-
forming this limit we make an error that vanishes forkT
→0, see Eq.~34!. The second integral in Eq.~B1! can be
performed, with the result

E
2L/2

2a

dx I1~x!5E
2L/2

0

dxF h

Fc2V08~x!
2

h

2muxuG
1

h

2m F1

2
lnS LFc

2kTD1 lnS mL

2Fc
D2 ln AG ,

~B2!

where we have used Eq.~34!. Exactly the same result is
recovered for Eq.~36!. Turning to Eq.~38!, a convergence
inducing term forA→` may be introduced according to

E
2a

a

dx I1~x!5
h

m E
2A

A

dxFK~x,g!2
1

2

1

11uxuG
2

h

m E
2A

A

dx
1

2

1

11uxu
. ~B3!

Indeed, the first integral now converges whenA→`, while
the second one can be performed. Neglecting all contri
tions that tend to zero whenA→`, we thus obtain

E
2a

a

dx I1~x!5
h

m E
2`

`

dxFK~x,g!2
1

2

1

11uxuG2
h

m
ln A.

~B4!

Putting together everything, we finally find that

E
x0

x01L

dx I6~x!5
h

m F1

2
lnS FcL

2kTD1G̃1~g!1CG for q52,

~B5!

where we have introduced
4-14
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G̃1~g!ªE
2`

`

dxFK~x,y!2
1

2

1

11uxuG , ~B6!

Cª lnS mL

2Fc
D1E

2L/2

L/2

dxF m

Fc2V08~x!
2

1

2uxuG . ~B7!

As in the case ofG1(g) in Eq. ~42!, G̃1(g) is again a uni-
versal, dimensionless scaling function of its dimensionl
argumentg. Further, the saddle point approximation~46! can
be applied for large negativeg values. Finally,C is a con-
stant of order unity that depends on the details of the po
tial V0(x). For instance, when the form~26! is exactly valid
on the entire interval@2L/2,L/2# then we haveC50.

A similar calculation yields the result

E
x0

x01L

dx I6~x!I 1~x!I 2~x!5
81

128S h

m D 3

lnS FcL

2kTD
for q54/3, ~B8!

where we have restricted ourselves to the leading order t
in the weak noise limitkT/FcL→0, i.e., higher order terms
analogous to those on the right-hand side of Eq.~B5! have
been omitted.

For the resulting diffusion coefficient~22! one obtains
tt

e

ys

-

03110
s

n-

m

D5D0

L2m

kT

G3~g!

F1

2
lnS FcL

2kT
D 1G̃1~g!1CG 3 for q52,

~B9!

D5D0

81

128
lnS FcL

2kTD
F E

x0

x01L dx mL22/3

Fc2V08~x!G3 for q54/3. ~B10!

The detailed discussion of the result~B9! can be carried
out in complete analogy to the one for 2.q.4/3 below Eq.
~55!. In particular, for sufficiently smallkT, the second and
third term in the denominator are negligible for positive a
moderately negativeg values, while for large negativeg the
saddle point approximation~46! for G̃1(g) and G3(g)
5@S(g)#2/2 can be applied. In Eq.~B10! only the leading
order terms for smallkT have been kept. Thus the discussi
of the dependence for a fixedkT upon variation ofg is not
possible on the basis of Eq.~B10! but it is clear that this
dependence will be of exactly the same form as the one
4/3.q.1 discussed below Eq.~68!. Especially, Eqs.~64!–
~68! can be taken over forq54/3 without any change
tt.
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