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Social, technological, and economic time series are divided by events which are usually assumed to be
random, albeit with some hierarchical structure. It is well known that the interevent statistics observed in these
contexts differs from the Poissonian profile by being long-tailed distributed with resting and active periods
interwoven. Understanding mechanisms generating consistent statistics has therefore become a central issue.
The approach we present is taken from the continuous-time random-walk formalism and represents an ana-
lytical alternative to models of nontrivial priority that have been recently proposed. Our analysis also goes one
step further by looking at the multifractal structure of the interevent times of human decisions. We here analyze
the intertransaction time intervals of several financial markets. We observe that empirical data describe a subtle
multifractal behavior. Our model explains this structure by taking the pausing-time density in the form of a
superstatistics where the integral kernel quantifies the heterogeneous nature of the executed tasks. A stretched
exponential kernel provides a multifractal profile valid for a certain limited range. A suggested heuristic
analytical profile is capable of covering a broader region.
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I. INTRODUCTION

The dynamics of many complex systems, not only in
natural sciences, but in economical and social contexts as
well, is usually presented in the form of time series. These
series are frequently separated by random events, which, in
spite of their randomness, show some structure and apparent
universal features �1–6�. During the last few years, there
have been endeavors to explain the sort of actions involved
in interhuman communication �1,7�. According to this frame-
work, decisions are taken based on a queuing process and are
aimed to be valid for a wide range of phenomena such as
correspondence among people, the consecutive visits of a
web portal, or even transactions and trading in financial mar-
kets �5�. The main conclusion of these studies is that, in
order to reproduce the empirical observations as well as to
give the reason for the heterogeneous nature of outgoing
tasks, the timing decision has to adopt a rule of nontrivial
priority. Otherwise, the implementation of, for instance, the
simple rule “first-in-first-out” leads to Poissonian timing be-
tween consecutive outgoing events and this seems to deviate
from many empirical observations.

One convenient framework in which to approach these
phenomena is provided by the continuous-time random-walk
�CTRW� formalism. Within this framework one is basically
concerned with the appropriate description of ��t�, the so-
called pausing-time density �PTD�, which gives the probabil-
ity of having a certain time interval t between two consecu-

tive events. Many empirical PTDs present long-tailed
profiles, suggesting a self-similar hierarchy in the entire
probability distribution. Following this indication some au-
thors �5� claim that the slow decay of the PTD obeys a power
law ��t�� t−� whose exponent is almost universal in the
sense that it seems to adopt only two different values �=1
and �=3 /2 �5�. In the next section we will present a simple
approach which gives a power law reproducing these expo-
nents.

Besides the PTD, which doubtlessly provides maximal
information on interevent statistics, the deep structure of the
fractal hierarchy is perhaps more easily unveiled by looking
at the q moments of the interevent times instead of solely
observing the PTD tails. One is thus able to answer questions
such as whether the process is monofractal or multifractal
and if there eventually exist different regimes depending on
the value of q �the order of the q moment�. This information
obtained from data can afterwards guide us to find out the
main ingredients of a more refined theoretical model for hu-
man decision dynamics. This is certainly the chief motiva-
tion of this work.

Herein we propose an alternative framework to the exist-
ing ones, which are basically based on queuing processes,
but that it still considers the heterogeneous nature of the
executed tasks. Within our approach it is possible to deal
with analytical expressions, not only simulations, and we
believe we provide good tools to describe the more subtle
structure arisen from q moments.

The approach we propose has its roots in physics and is
reminiscent of the mixture of distributions hypothesis in fi-
nance, which can be traced back to the 1970s �8�, the varia-
tional principle of energy dissipation distributions at different
time scales in turbulence in the 1990s �9�, and the supersta-
tistics and nonextensive entropy �10�. In fact, the PTD ��t�
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was first introduced within the CTRW model that was origi-
nally established by Montroll and Weiss �11–13�. Under this
very general setting, the present development has been in-
spired by the work of Scher and Montroll �14� who in 1975
proposed the so-called “valley model” to describe the power-
law relaxation of photocurrents created in amorphous
�glossy� materials. We shall use the same idea, but in a com-
pletely different background.

The paper is organized as follows. In Sec. II we present
the fundamentals of Scher and Montroll’s model and apply it
to explain the emergence of long-tailed distributions in the
pausing-time statistics. In Sec. III we address the question of
the moments of the interevent times and obtain the condi-
tions for the multifractal behavior of such moments. In Sec.
IV we test multifractality on large financial data sets. Con-
clusions are drawn in Sec. V, and some technical details are
in the Appendix.

II. VALLEY MODEL AND PAUSING-TIME DENSITY

Scher and Montroll’s valley model proposes a conditional
PTD ��t ��� as the starting distribution. This conditional den-
sity accounts for the probability that a given carrier is
trapped during a time interval t within a potential well of
depth �. After this time interval has elapsed the carrier jumps
to another potential valley. It is next assumed that the energy
� is a random variable described by a density ���� �14,15�.
We thus have a “superstatistics” with the unconditional
pausing-time density ��t� given by

��t� = �
−�

�

��t�������d� . �1�

The conditional PTD is assumed to be the simple exponential
�Poisson� form �14�

��t��� =
1

����
exp�−

t

����	 . �2�

This choice is quite reasonable since for a given � the emerg-
ing statistics is homogeneous because all occurrences have
the same origin and in consequence they enjoy an identical
characteristic time scale ����. Scher and Montroll also as-
sume that the relationship between the random energy � and
the characteristic time of the distribution is given by the
simple exponential form

���� = �0e�� ��0,� � 0� , �3�

where �0=��0� and �−1, a fundamental constant of the
model, is measured in units of energy. We should note that in
the Scher-Montroll approach �−1=KBT is the thermal energy
of the environment at temperature T �KB is the Boltzmann
constant�.

We remark at this point that the valley model is consistent
with the most basic properties of a queuing process recently
addressed by Vázquez et al. �5�. Indeed, in that process a set
of incoming messages, or tasks, arrives at random. To these
messages a certain priority labeled by � is attached. The
execution time of a given task with priority � is described by
the conditional density ��t ���. In the most general setting, �

is also a random variable characterized by a density ����. We
are thus faced again with the superstatistics mentioned above
since the timing of the outgoing tasks is governed by the
unconditional PTD ��t� given by Eq. �1�.

In the simplest case of a first-in-first-out queue the prior-
ity �=	 has the same value for all tasks; hence, ����=���
−	� and the unconditional PTD reads

��t� =
1

��	�
exp�−

t

��	�	 , �4�

which is a Poissonian density with a single characteristic
time scale �the mean time between consecutive outgoing
events� ��	�=�0e�	. In terms of decision theory, the situation
is comparable to that of having no priority protocol at all �5�.

Another particular situation would be to assign priorities
in a uniform random manner with ����=1 /2
, where pos-
sible values of � are constrained inside the interval �−
 ,
�.
In this case,

��t� =
1

2

�

−





��t���d� ,

and from Eqs. �2� and �3� we can easily see that

��t� =
1

2
�t
�exp
−

t

�+
� − exp
−

t

�−
�	 , �5�

where ��=�0 exp��
�� �see Fig. 1�. The characteristic time
scale �c of this model �i.e., the mean time between outgoing
events �c= �t� is straightforwardly obtained using Eq. �5�
and reads

�c =
cosh 
�


�
�0.

Observe that, when �+��−,
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FIG. 1. �Color online� The pausing-time distribution for differ-
ent cases as a function of the t /�0. The dashed line provides the
Poisson case as given by Eq. �4�. The dotted line is the PTD, Eq.
�5�, when ���� is uniform ��0=1, 
=3, �=1�. The solid line repre-
sents the PTD, Eq. �8�, when ���� follows the Laplace density �7�
�=2 and �=1; hence, the power-law exponent is 3 /2; cf. Eq. �9��.
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��t� �
1

2
�t
exp
−

t

�+
� . �6�

This truncated power law with exponent 1 is precisely one of
the two universal classes suggested in Ref. �5� for queuing
processes which emerged when the queue had a fixed length.
In our model, this simple power law arises when the random
variable � is uniformly distributed.

The second universal class proposed by Vázquez et al. �5�
is given by a power law with exponent 3 /2, which appears in
their simulated series when the queue is supposed to have an
arbitrary length. Let us show that within our approach we
can obtain arbitrary power laws of the form ��t��1 / t� ��
�1�. To this end we shall assume that the random variable �
follows the Laplace distribution

���� =
1

2
e−���/, �7�

where = ��� � �0. Plugging into Eq. �1�, assuming that the
conditional PTD is Poissonian �cf. Eq. �2��, and using the
exponential form of ���� given by Eq. �3�, we get

��t� =
1

2�0
�

−�

�

exp�− �� − �t/�0�e−�� − ���/�d� .

The integral appearing on the right-hand side of this expres-
sion and which runs over the entire real line can be split in
two integrals over the interval �0,��:

��t� =
1

2�0
�I�+��t� + I�−��t�� ,

where

I����t� = �
0

�

exp���� − �t/�0�e��� − �/�d� .

One can easily see by simple transformations of variables
that

I�+��t� =
1

�

 �0

t
�1−1/��

t/�0

�

x−1/�e−xdx

=
1

�

 �0

t
�1−1/�

��1 − 1/�,t/�0�

and

I�−��t� =
1

�

 �0

t
�1+1/��

0

t/�0

x1/�e−xdx

=
1

�

 �0

t
�1+1/�

��1 + 1/�,t/�0� ,

where ��� ,z� and ��� ,z� are incomplete gamma functions
�16�. We therefore obtain the exact PTD �see Fig. 1�

��t� =
1

2��0
�
 �0

t
�1+1/�

��1 + 1/�,t/�0�

+ 
 �0

t
�1−1/�

��1 − 1/�,t/�0�	 . �8�

The characteristic time scale �c corresponding to this den-
sity is shown to be �recall that �c= �t and see Eq. �16��

�c =
�0

1 − ���2 .

This characteristic time will exist as long as ��1—i.e., for
the “high-temperature phase.” Thus the process has a com-
pletely different dynamics according to whether ��1 or
��1. For in the former case the system has a finite average
time between consecutive outgoing events, while in the latter
case—i.e., for the “low-temperature phase”—such a time
ceases to exist, which means that the long-term localization
for the whole observational time has sufficient probability.
We can say that in this phase event statistics is dominated by
rare and extreme events �17,18�.

We may therefore assert that when =�−1 the system un-
dergoes a “phase transition.” Note that for the carrier cur-
rents of the Scher-Montroll model such a phase transition
will occur when the energy fluctuations = ���� equal the
environment’s thermal energy �−1=KBT.

Let us return to Eq. �8�. For long times t /�0�1 we can
write �16�

��1 + 1/�,t/�0� � ��1 + 1/�� − �t/�0�1/�e−t/�0

and

��1 − 1/�,t/�0� � �t/�0�−1/�e−t/�0.

Hence, neglecting exponentially small terms, we get

��t� �
��1 + 1/��

2��0

 �0

t
�1+1/�

�t � �0� , �9�

which is a general power law of the form 1 / t� with exponent
greater than 1 �recall that � and  are both positive�. There-
fore, the appearance in the PTD of long tails in the form of a
nontruncated power law is exclusively due to the assumption
of a nonuniform distribution �in the present case the Laplace
distribution �7�� for the random variable �. Note that in de-
riving the power law �9� no other power laws had to be
imposed in intermediate stages such as the in the conditional
PTD, which still maintains the Poissonian form, or in the
characteristic time scale ���� given by Eq. �3�. We also ob-
serve that, contrary to the uniform distribution where � is
limited by the fixed length 
, there is now no upper or lower
bound for the random variable �. We finally remark that one
of the cases analyzed in �5�, a power law with exponent 3 /2,
can be obtained from Eq. �9� when =2 /�.

III. PAUSING-TIME MOMENTS

The PTD ��t� provides maximal information about the
timing between successive events. There are, nonetheless,
other quantities that can more easily unveil hidden but rel-
evant features of the process such as multifractality. This is
precisely the case of the pausing-time moments:

�tq = �
0

�

tq��t�dt .

Within our framework based on a superstatistics with some
weight function ����, q moments are written as
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�tq = �
−�

�

�tq������d� , �10�

where �tq �� are the conditional pausing-time moments de-
fined by

�tq�� = �
0

�

tq��t���dt .

From Eqs. �2� and �3� we get

�tq�� = ��1 + q��0
qeq��, �11�

and the moments read

�tq = ��1 + q��0
q�

−�

�

eq������d� . �12�

We remark that the exponent q may be negative. However,
for the Poissonian density �2�, the conditional moment �tq ��
and, hence �tq, will exist as long as q�−1. Moreover, for
the moments to exist, ���� must decay faster than eq�� as �
→ ��.

Before proceeding ahead let us briefly recall that the tim-
ing process will show multifractality if q moments behave as

�tq � Lf�q�,

where f�q� is a nonlinear function of q and L is some suitable
scale. When f�q� is linear the process is termed as monofrac-
tal �19�.

We will now explore the possible emergence of multifrac-
tality depending on the choice of the weight function ����.
The simplest assumption is ����=���−	�; that is, there is no
heterogeneity and all the “valleys” have identical depth 	. In
such a case we readily obtain the monofractal behavior

�tq = ��1 + q��0
qlq, �13�

where

l � e�	. �14�

We have shown in the previous section that the uniform
���� and Laplace ���� both result in long-tailed expressions
for the PTD ��t�. It is thus natural to ask ourselves whether
those two long-tailed distributions �cf. Eqs. �5� and �8�� are
also responsible for any multifractal behavior of the q mo-
ments.

For the uniform distribution ����=1 /2
 �−
���
� we
have

�tq =
��q�
2
�

��+
q − �−

q� , �15�

where ��=�0 exp��q
��. Equation �15� describes approxi-
mately a monofractal situation. The genuine monofractal
structure with �+

q emerges when �+��− or equivalently if

��1.

For the Laplace distribution ����= 1
2e−���/, we have

�tq =
��1 + q�

2
�

−�

�

eq��−���/d� .

Now q moments will exist as long as �q�−1. In such a
case we get

�tq =
��1 + q�

1 − �q��2�0
q �q � ���−1� , �16�

which is again a monofractal.
Therefore, none of the two weight functions that result in

exact long-tailed PTD’s produce a multifractal structure. To
get multifractality we should go one step further in the for-
malism and consider, for instance, a stretched exponential

���� =
1

2��1 + 1/��
exp�− �� − 	


��� �17�

���0 and �0�. Substituting Eq. �17� into Eq. �12� we get
after a simple change of variables the unconditional moment
in the intermediate form

�tq =
��1 + q�

2��1 + 1/��
�0

qlqI�q� , �18�

where l is defined in Eq. �14� and

I�q� � �
−�

�

exp�− �y�� + q�y�dy . �19�

Looking at this integral we see at once that the convergence
is assured as long as ��1. In other words the unconditional
moment �tq exists if ��1 and also if q�−1 �see above�.
We can integrate Eq. �19� by means of a power series. In
effect,

I�q� = 2�
0

�

e−y�
cosh�q�y�dy = 2�

n=0

�
�q��2n

�2n�! �
0

�

y2ne−y�
dy .

Hence

�tq =
��1 + q�
��1/��

�0
qlq�

n=0

�
���2n + 1�/��

�2n�!
�q��2n, �20�

which is an exact expression for the q moment. However,
due to the term �(�2n+1� /�) appearing in the numerator, the
convergence of the series in Eq. �20� is quite slow and diffi-
cult to evaluate from a numerical point of view. Neverthe-
less, when �=2 �i.e., for a Gaussian �� the integral in Eq.
�19� can be done exactly in closed form with the result

�tq = ��1 + q��0
qlqe2�2q2/4,

which, after defining

L � e���2/4,

clearly shows for the Gaussian � the multifractal behavior of
the q moment:

�tq = ��1 + q��0
qlqLq2

. �21�

When ��2 the integral �19� cannot be done exactly and
to elucidate any possible multifractal behavior of the q mo-
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ments we have to resort to approximations. To this end we
first define in Eq. �19� a new integration variable x by the
change of scale y= ���1/��−1�x. We have

I�q� = �1/��
−�

�

exp�− ���x�� − qx��dx , �22�

where

� � ����/��−1�. �23�

Let us suppose that the fluctuations of the random variable �,
represented by , are larger than the “thermal energy of the
environment,” �−1–that is, ��1. In such a case the dimen-
sionless parameter � is large and we can safely use the
saddle-point approximation �20� for the evaluation of I�q�.
This is done in the Appendix with the result

I�q� � A�q�exp�b�q��/��−1�� , �24�

where A�q� is given in Eq. �A9� of the Appendix and

b = �� − 1���/���/��−1� � 0. �25�

Substituting Eq. �24� into Eq. �18� we get an approximate
analytical expression for the q moment of the interevent time
intervals. We write such an expression in a form that clearly
enhances its multifractal �MF� character:

�tq � ��1 + q��0
qlqL�q��/��−1�

, �26�

where, as before, we have introduced two different scales l
and L. The former l=e	� and given by Eq. �14� is related to
dissipation because it depends on the dissipative term 	 of
the weight density �17�. On the other hand, the scale

L � eb �27�

providing the multifractal behavior is responsible for fluctua-
tions since b defined in Eq. �25� depends on , which, in
turn, is related to the variance of ����, the latter given by
���3 /�� /��1 /���2. Note that all q moments considered
above obey the normalization condition; i.e., they are equal
to 1 for q=0.

The dissipative and fluctuating scales l and L merge into a
single scale when b=	�. This equality means that dissipa-
tion 	 and fluctuation  are linked by

	 = k�/��−1�, �28�

where k= �1−1 /���� /��1/��−1�. For �=2 �the Gaussian case�
this relation reads

	 = �/2�2,

which is the analog of the usual fluctuation-dissipation rela-
tion. This leads us to look at Eq. �28� as the fractional ver-
sion of the fluctuation-dissipation theorem suitable to the
present approach.

Let us finally observe that when the fractional fluctuation-
dissipation relation holds, the monofractal and multifractal
parts of the q moment are both governed by the same scale:
that is,

�tq � ��1 + q��0
qLq+�q��/��−1�

.

IV. FINANCIAL DATABASE: AN EMPIRICAL ANALYSIS

We shall now confront our analytical model with empiri-
cal data. We focus on moments and multifractality and leave
for a future presentation extensive testing of the PTDs ob-
tained in Sec. II and their comparison with previous studies
�21–29�.

We have decided to apply our approach to financial mar-
kets because finance is one of the fields where large amounts
of data are easily available. In particular, we collect tick-by-
tick data of futures contracts on several indices and also on a
single stock �see Table I�. The assets chosen have a very
diverse nature, thus providing wide generality to our analy-
sis.

Figure 2 displays the empirical q moments up to order q
=20. The empirical analysis shows that all databases adopt a
monofractal form for q sufficiently large. To check this we
define the estimate �̂i by

�i
q �

�ti
q

��1 + q�
, �29�

where �ti
q is the empirical q moment of the database labeled

by i. We then perform the linear regression

TABLE I. Empirical data specifications of the tick-by-tick inter-
transaction data used. These are futures contracts on German index
�DAX�, on the Dow Jones American index �DJI�, on the Polish
index �WIG20�, and on the Foreign Exchange US Dollar-Deutsche
Mark �USDM� and U.S. Dollar-Euro �EURUS�. We also add a
single stock: Telefonica �TEF�.

Ticker Time period No. of transactions

DAX 2007/02/13–2007/06/14 4 997 027

TEF 2006/01/02–2007/08/27 3 010 511

DJI 2006/03/01–2007/08/27 3 806 980

WIG20 2006/06/19–2007/03/16 282 007

USDM 1993/01/04–1997/07/31 1 048 590

EURUS 2007/08/01–2007/08/27 4 176 362
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FIG. 2. �Color online� The normalized moment �tq /��1+q� as a
function of the order q from six empirical financial data sets in a
semilogarithmic scale. Solid lines correspond to regressions with
functions of the form �q for q values between 10 and 20.
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ln
�ti

q
��1 + q�

= q ln �i

and obtain that for 10�q�20 the estimate �i is independent
of q, which proves the monofractal character of the q mo-
ments when q is large �see Table II for the specific values of
�i�. Note that the error in estimation is very small being
around 0.03% in all markets.

Let us now support the monofractal findings for q large
and also check the robustness of the estimate �̂i for all data
sets. To this end we evaluate the ratio

�i�q� �
�ti

q
��1 + q�


 �

�i
�q

, �30�

where � is an arbitrary parameter identical for all databases
while �i is the parameter obtained from the monofractal fit
when 10�q�20 �see Table II�. We have chosen the param-
eter � to be the estimated � for the Dow Jones Index; that is,
we take �=�DJI=exp�6.144� �in seconds�. If the monofractal
hypothesis holds, �i�q� curves would collapse onto a single
straight line �in a semilogarithmic scale�. We show this
analysis in Fig. 3 and observe that all data sets merge into a
single curve for q�10. Looking more carefully at Fig. 3 we
also observe a deviation from the monofractal behavior for

q�10. Moreover, the differences among the data sets be-
come neatly visible for q�5.

This indeed can be checked in another way than that of
Fig. 3 by plotting the quantity

fF�q� �
1

q ln �i
ln��ti

q/��1 + q�� . �31�

If data were monofractal, the points should be close to 1
independently of the value of q, but as can be observed in
Fig. 4, this is only true for q�10. Also observe that the
points converge to 1 monotonically as the order of the mo-
ments increases. Thanks to this, the plot gives us some hints
on possible multifractal candidates able to fit data for the
smallest orders of q. The description given by Eq. �26� where
we assumed a stretched exponential for ���� appears to be a
good candidate. Figure 5 exemplifies these abilities with the

TABLE II. Fitted parameters �i in seconds of the monofractal
case provided by Eq. �29� in the domain 10�q�20. Error in the
estimation is very small.

i data set ln �i

DAX 4.598�0.004

TEF 5.458�0.004

DJI 6.144�0.005

WIG20 7.008�0.003

USDM 5.217�0.003

EURUS 6.697�0.002
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FIG. 3. �Color online� The ratio �i�q� defined in Eq. �30� as a
function of the order q from six empirical financial data sets in a
semilogarithmic scale. Observe the merging of all data sets for q
�10.
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stock Telefonica and the future contracts on DAX. Table III
shows the values of the estimated parameters not only for the
DAX and Telefonica but also for the rest of datasets.

Summarizing we may say that empirical q moments of
financial interevent times clearly show multifractal behavior
for �approximately� q�3.5. In this case the analytical model
expressed by Eq. �26�,

�tq � ��1 + q��0
qlqL�q��/��−1�

, �32�

agrees with empirical data �see Table III�. On the other hand,
for higher values of q the data undoubtedly show a clear
tendency to monofractality as has been tested in Figs. 3 and
4. The abilities of the model �32� for small q can be checked
as well through the function

fMF�q� �
1

q
ln��tq/��1 + q�� − ln��0� − 	� . �33�

We can plug into Eq. �33� the parameters estimated from
each database and afterwards represent fMF�q� as a function
of bq1/��−1�. In this case we observe the merging of all data-
bases into a straight line with slope 1, and without an inde-
pendent term, we could thus assert that the MF model with
stretched exponential for the density ���� is a good candidate
�cf. Eqs. �32� and �33��. This exercise is done in Fig. 6. The
merging for small q demonstrates the abilities of the MF
model not only for the Telefonica stock and the futures on
DAX, but also for the rest of financial databases.

If we want, however, to have all empirical facts in the
nutshell of a single formula, we should generalize Eq. �32�
so as to include the monofractal behavior when q becomes
large. The requirements that such a heuristic multifractal
�HMF� formula has to satisfy are the following: �i� it must
obey the normalization condition �i.e., for q=0 it should be
equal to 1�, and �ii� for small values of q it must reproduce
Eq. �32�, while �iii� for larger values of q the HMF formula
must tend to a monofractal form.

The heuristic formula we propose is

�tq = ��1 + q��0
qlqL��q�, �34�

where

��q� =
1

b1
�1 − exp�− b1�q�1/��−1���q . �35�

Note that we have added a fourth parameter b1�0, which
modifies the scale L=exp�b� by a new one exp�b /b1� �cf. Eq.
�26��. Equation �34� obviously satisfies the normalization
condition. Moreover, for q small we have 1
−exp�−b1�q�1/��−1���b1�q�1/��−1� and we recover Eq. �32�.
Also for q large 1−exp�−b1�q�1/��−1���1 and Eq. �34� tends
to the monofractal form

�tq � ��1 + q��0
qlqLq/b1.

Figure 7 shows �solid curves� how the HMF formula fits

TABLE III. Fitted parameters within the multifractal domain of
small q’s. Every market has different ranges going from q=0 to q
=3.5. The parameter � appears in general to a smaller error in-
volved compared to other parameters.

q domain � ln��0�+	� b

DAX 0–3.5 1.85�0.13 −1.5�0.4 0.9�0.3

TEF 0–3.5 1.47�0.06 1.45�0.12 0.14�0.05

DJI 0–3.0 1.47�0.08 0.34�0.16 0.3�0.2

WIG20 0–2.0 1.65�0.06 1.67�0.14 1.19�0.14

USDM 0–3.0 1.89�0.03 2.82�0.02 0.32�0.02

EURUS 0–2.5 2.1�0.2 −4.6�1.1 3.4�1.1 0
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small q to linear curve with slope equals 1.
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the DAX and Telefonica empirical data on the whole range
of values of q. This is additionally confirmed for the shorter
range by the zoom provided by the inset graph. For q�2 the
predictions of MF and HMF formulas cannot be distin-
guished. The value of parameters of the HMF model ob-
tained by the fit is given for comparison in Table IV.

The predictions of formula �34� have been tested on the
available data sets with satisfactory results by plotting the
function

fHMF�q� �
b1

b
�1

q
ln��tq/��1 + q�� − ln �0 − 	�	 �36�

versus b1q1/��−1�. If the HMF formula holds, we then would
be able to see a merging of all data sets along the curve 1
−exp�−x�, where x=b1q1/��−1� �cf. Eqs. �34� and �36��. The
model also allows for studying explicitly the dependence on
ln L=b of the transformed q moment:

b1�1

q
ln��tq/��1 + q�� − ln �0 − 	�	 . �37�

For doing this we scale the q values in each market i as

q̂i = �b1/b1
i ��i−1q��i−1�/��−1�, �38�

where �i and b1
i are these estimated parameters from market

i as shown in Table IV. The unlabeled parameters b1 and �
concern a reference market, which again corresponds to the
DJI futures. If the model holds, there would be a linear de-
pendence between the transformed q moments �37� and
ln L=b across the different markets since the HMF model
�35� is invariant across the markets through

fHMF�q� = fHMF�q̂i�

and where fHMF�q� would be its slope. Figures 8 and 9 show
the satisfactory results that supports the validity of the HFM.

We finally mention that the problem of the explicit forms
of conditional PTD ��t ��� and distribution ����, which gives
the heuristic formula �34� according to relation �10�, is still a
challenge. We can otherwise check the soundness and self-
consistency of our multifractal approach by looking at its
sojourn probability �i.e., the decumulative probability�

��t� = �
t

� �
−�

�

��t��������dt�d� �39�

and compare it with empirical data. We take the sojourn
probability instead of the pausing-time distribution because
verification with empirical data is firmer. Recall that the MF
model takes the Poisson density ��t ��� provided by Eq. �2�
while ���� obeys a stretched exponential as given in Eq.
�17�. Substituting these densities into Eq. �39� yields

�MF�t� =
1

2��1 + 1/���−�

�

exp
− �x�� −
t

�0e	�e−�x�dx .

�40�

The expression needs to be numerically evaluated, and for
doing this we have taken the parameters of Telefonica given
in Table III and slightly modified them to improve the fit

TABLE IV. Set of the corresponding parameters of the heuristic
extension HMF given by Eq. �34�.

� ln �0+	� b b1

DAX 1.91�0.03 −3.0�0.3 2.5�0.3 0.33�0.02

TEF 1.78�0.02 0.1�0.2 1.07�0.11 0.20�0.01

DJI 1.60�0.02 0.18�0.12 0.29�0.05 0.091�0.012

WIG20 1.96�0.05 0.5�0.5 3.3�0.6 0.50�0.05

USDM 1.69�0.02 2.97�0.06 0.26�0.03 0.115�0.009

EURUS 2.21�0.03 −9.5�0.7 11.7�1.1 0.71�0.03
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with empirical data. The solid line in Fig. 10 shows the re-
sulting curve, and it is there compared with the empirical
sojourn probability of Telefonica.

The empirical analysis on the pausing-time density and
the sojourn probability in financial data has been extensively
studied during the last few years �23,26–29�. Some recent
papers argue that ��t� can be described properly by the Tsal-
lis q exponential �28,29�

�q�t� =
1

�1 + m�q − 1�t�1/�q−1� ,

with q�1, or the Weibull distribution �28,29�

�W�t� = exp�− atc� .

These candidates are also represented in Fig. 10, and the
quality of their fits is comparable to that of our MF model. A
more accurate study among the differences and similarities
of the MF model �and eventually the HMF� between both the
theoretical and empirical distributions is certainly necessary.
However, we leave a more complete study of the sojourn
probability for a future work.

V. SUMMARY AND CONCLUSIONS

In this work we have extended the original CTRW formal-
ism, within the frame of Scher-Montroll’s valley model, to
furnish an analytical treatment for the statistics of interevent
times. The model developed has been tested to financial time
series, although the analysis is applicable to the broader area
of interhuman communications.

The approach presented consists in obtaining the PTD
��t� and the q moments �tq of the interevent time intervals
through a random variable � described by a probability den-
sity ����. The nature of this hidden variable depends on the

problem at hand. In the original work of Scher and Montroll,
� represented the depth of the potential well where carriers
were trapped. In other contexts, such as queuing processes, �
may represent the priority assigned to an incoming task, and
for financial markets we are exploring the possibility that �
would be related to transaction volumes, market depth, or
bid-ask spread �30–32�.

Whatever the case, the overall approach assumes an ex-
pression for the conditional PTD ��t ��� governing the timing
of incoming events �charged carriers, messages, news, etc.�.
If these incoming events are supposed to arrive at random,
the natural choice for the conditional PTD is the Poisson
distribution as given in Eq. �2�. A second assumption is that
for a given � the mean time between consecutive events,
����, depends on the hidden variable � through the simple
exponential form expressed by Eq. �3�. Finally, in terms of
the probability distribution of � the unconditional PTD and
the q moments �which both refer to executed tasks or out-
coming events� are, respectively, given by Eqs. �1� and �10�.

With these simple ingredients we have been able to obtain
long-tailed PTDs and multifractal q moments. Thus, for in-
stance, for a Laplace density ���� we have

��t� �
1

t� �� � 1� ,

which agrees with many empirical observations of diverse
phenomena from queuing theory �5� to finance �27�.

Regarding moments the choice of a stretched exponential
as the probability density for � leads to a multifractal behav-
ior of the form

�tq � L�q�� �� � 1� ,

where L is a conveniently chosen scale.
We have tested the multifractal behavior of intertransac-

tion times on large financial sets of tick-by-tick data �see
�33–35� for multifractal analyses in other financial settings�.
The overall conclusion is that q moments are multifractal for
small values of q �q�5�, while for larger orders �tq be-
comes monofractal. A more refined but heuristic analytical
formula has also been proposed which fits the whole range of
empirical q moments. Nevertheless, the problem of the ex-
plicit forms for both the conditional PTD ��t ��� and the
density ���� resulting in the heuristic expression is still a
challenge.

Let us finish by noting that in some places in the paper we
have highlighted some thermodynamic similarities in our
method. In fact, the multifractal approach we have herein
developed is feasible of a thermodynamic interpretation
�19,36�. We will develop this analogy in a future work.
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APPENDIX: APPROXIMATE EVALUATION OF I(q)

We want to evaluate the integral �22�, which we write in
the form
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FIG. 10. �Color online� The sojourn probability ��t� of the
Telefonica �TEF� stock. The solid line provides the numerical com-
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I�q� = �1/��
−�

�

e−�h�x�dx , �A1�

where

h�x� = �x�� − qx �A2�

���1�. For � large we can employ the saddle-point approxi-
mation or Laplace’s method �20�. Expanding h�x�=h�x0�
+ �1 /2�h��x0��x−x0�2+O(�x−x0�3) and performing the result-
ing Gaussian integral we obtain

I�q� = �1/�� 2�

�h��x0�	1/2

e−��h�x0�+O��−1/2��, �A3�

where x0 is the minimum of h�x�. That is, x0 is the solution to

h��x0� = ��x0��−1 sgn�x0� − q = 0,

i.e.,

��x0��−1 sgn�x0� = q . �A4�

But q= �q�sgn�q� and we rewrite Eq. �A4� as

��x0��−1

�q�
=

sgn�q�
sgn�x0�

.

Since the right-hand side of this equation is positive �recall
that ��0�, then necessarily sgn�x0�=sgn�q�. Hence

�x0� = 
 �q�
�
�1/��−1�

, �A5�

and the two extremes of h�x� are

x0 = �q/��1/��−1�

when q�0, and

x0 = − �− q/��1/��−1�

when −1�q�0.
Taking into account that the second derivative h��x0�

=���−1��x0��−2, i.e.,

h��x0� = ��� − 1�
 �q�
�
���−2�/��−1�

� 0, �A6�

is always positive, we conclude that x0 is indeed a minimum
of h�x�.

On the other hand, recalling that x0 has the same sign as q,
we can write h�x0� in the form

h�x0� = �x0�� − �q��x0� ,

and using Eq. �A5� we have

h�x0� = − �� − 1�
 �q�
�
��/��−1�

. �A7�

Collecting terms we finally obtain

I�q� � A�q�exp�b�q��/��−1�� , �A8�

where

A�q� = �1/�� 2�

���� − 1�	1/2
 �q�
�
��2−��/2��−1�

�A9�

and �see Eq. �23��

b =
��� − 1�
��/��−1� = �� − 1�
�

�
��/��−1�

. �A10�
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