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Abstract

The field of natural language processing is essential in today’s data-driven world.
In 2017 the Tranformers architecture was introduced based on the concept of at-
tention from 2014. The effects of this new structure were already changing the
paradigm when the language processing model BERT marked an inflection point,
in 2018.

BERT makes use of the Transformers’ parallelization to achieve a network that
can be pretrained. In that pretraining, the model is able to learn how a language
works on its own: by only feeding it with texts. An improved version came out
shortly after, RoBERTa, after which most of the models were based.

In this thesis, we will focus on studying BERTa (a RoBERTa-based Catalan
language model) with a dataset from the Gran Enciclopèdia Catalana. That analysis
will include tasks to assess how does the model perform with real-world data.

The study aims to validate the quality of the resulting embeddings produced
by the model in order to further use them to build an article retrieval platform.
There, each article query could be related to those with similar information. The
semantic textual similarity describes how alike a pair of sentences are and this will
be a fundamental target for the designed experiments and development.

Finally, the results will be visualized and interpreted by using a simple front-
end tool also created in this work.

2020 Mathematics Subject Classification. 68T50, 68T07, 91F20



Resum

El camp del processament del llenguatge natural és essencial per la societat ori-
entada a les dades en la que vivim. El 2017 l’arquitectura Transformers fou in-
troduïda basada en el concepte d’atenció, del 2014. Els efectes d’aquesta nova es-
tructura estaven ja canviant el paradigma quan l’aparició del model de llenguatge
BERT, el 2018, va marcar un punt d’inflexió.

BERT fa ús de la paral·lelització dels Tranformers per tal d’aconseguir una
xarxa que pot ser preentrenada. En aquest preentrenament el model és capaç
d’aprendre com funciona un llenguatge per sí mateix: només consumint textos.
Poc després va sortir una versió millorada, RoBERTa, en la qual es basarien gairebé
tots els models que apareguessin posteriorment.

En aquest treball, ens centrarem en estudiar BERTa (un model de llenguatge
en català basat en RoBERTa) amb un conjunt de dades de la Gran Enciclopèdia
Catalana. Aquesta anàlisi inclourà tasques per avaluar quin és el rendiment del
model amb dades quotidianes.

L’estudi busca validar la qualitat dels embeddings produïts com a resultats del
model i utilitzar-los per tal de construir una plataforma de cerca d’articles, on cada
consulta d’article podrà ser relacionada amb aquells que tinguin una informació
semblant. La semantic textual similarity (similaritat textual semàntica) descriu quan
s’assemblen una parella de frases i serà un objectiu fonamental pels experiments i
el desenvolupament.

Finalment, els resultats seran visualitzats i interpretats fent servir una pàgina
senzilla; també creada en aquest treball.



Resumen

El campo del procesamiento del lenguaje natural es esencial para la sociedad ori-
entada a los datos en los que vivimos. En 2017 la arquitectura Transformers fue
introducida basada en el concepto de atención, de 2014. Los efectos de esta nueva
estructura estaban ya cambiando el paradigma cuando la aparición del modelo de
lenguaje BERT, en 2018, marcó un punto de inflexión.

BERT utiliza la paralelización de los Tranformers para conseguir una red que
pueda ser preentrenada. Mediante este preentrenamiento el modelo es capaz de
aprender cómo funciona un lenguaje por sí mismo: sólo consumiendo textos. Poco
después salió una versión mejorada, RoBERTa, en la que se basarían casi todos los
modelos que aparecieran posteriormente.

En este trabajo, nos centraremos en estudiar BERTa (un modelo de lenguaje en
catalán basado en RoBERTa) con un conjunto de datos de la Gran Enciclopèdia Cata-
lana. Este análisis incluirá tareas para evaluar cuál es el rendimiento del modelo
con datos de uso diario.

El estudio busca validar la calidad de los embeddings producidos como re-
sultados del modelo y utilizarlos para construir una plataforma de búsqueda de
artículos, en la que cada consulta de artículo pueda ser relacionada con aquellos
que tengan una información similar. La semantic textual similarity (similaridad tex-
tual semántica) describe cuánto se asemejan una pareja de frases y será un objetivo
fundamental para los experimentos y el desarrollo.

Por último, los resultados serán visualizados e interpretados utilizando una
página sencilla; también creada en este trabajo.
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Chapter 1

Introduction

Motivation and objectives

As humans, we tend to communicate a lot with each other. All this communica-
tion leads to the generation of vast amounts of information, invaluable in today’s
data-driven world. In AI, the field responsible for analyzing those interactions
is called Natural Language Processing (NLP), which actually is the combination
of Artificial Intelligence and linguistics (sometimes also called computational lin-
guistics).

The main way humans communicate is via speech and text. NLP develops
methods for understanding and processing those types of data. In fact, there
are many chances you have already been using some of the most powerful NLP
techniques although without really being aware.

Those applications, if done well, are almost always transparent to the end
users. Amongst others, they include famous recognition assistants like Amazon’s
Alexa or Apple’s Siri and all the chat bots in web pages, Google’s multilingual
translation, and even spam filters in your inbox. Stepping away from the end
users and concentrating more on the data science approach, NLP is arguably one
of the most used machine learning tools.

In 2018, the NLP field was struck with a disruptive language representation
model: BERT [5], which used the Transformers [18] architecture. As soon as it
was tested, it produced state-of-the-art results with many different NLP tasks.
It emerged as a new approach where the model would be pre-trained (basically
to understand a certain language) and, later, with specific fine-tuning, it will be
capable of creating highly developed models for a wide range of tasks. It implied
that you might be able to have your own model for many particular problems with
little training. The one caveat is that the pre-training part need loads of documents,
making it very resource intensive and time consuming. It only needs to be done
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2 Introduction

once, but it is a mandatory step if you want to have a model in a specific language.
As you might expect, English is the language in which there have been more

models trained. In fact, some under-resourced languages are struggling to collect
enough clean information to train a language-specific model. Fortunately enough,
a team at the Barcelona Supercomputing Centre (BSC) released last year (July 2021)
BERTa [2], a Transformer-based model in Catalan. We will focus our thesis on this
particular model.

Our first objective with this thesis is to understand how do Transformers (and
the Neural Networks behind them) work. Our second goal is then to evaluate
how good the Catalan model is on a particular dataset when evaluated in the
task where it was trained. After that, we also aim to extract the Semantic Textual
Similarities (STS) between different articles. Finally, we would like to retrieve the
k-Nearest Neighbors (k-NN) for each article while letting the user interact with
the results.

Essentially, we will be testing and applying a Transformer-based model to a
specific use case. In our circumstances, the final application will be to use the
results obtained from this thesis in order to analyze and visualize relevant articles
for a given article query.

Structure

This thesis is structured in the following manner:

• Related work: In this section we will cover the main state-of-the-art ap-
proaches to finding articles similarities by using transformers.

• Language representation models: In this block we will review the theoret-
ical background needed before diving into solving the problem at hand, by
covering the formal aspects of neural networks from a mathematical point
of view.

• Development and experiments: In this section we will look at the articles
similarities problem, focusing on the methodologies we have implemented
on our practical development with the transformers model. The process
is presented, comprehending all the parts of the operations as well as the
results obtained.

• Conclusions and further work: Conclusions of the project and ideas for
further work regarding article similarities and transformers.
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Planning

It was at the beginning of the academic year when I first contacted my tutors and
agreed on the topic, with no previous knowledge neither of deep learning nor
on using transformers. A few weeks later I started to work as an intern and, by
chance, the project assigned to me dealt in some way with transformers and other
NLP techniques. When the time to begin my thesis finally arrived in February,
I had been working for a while with those technologies at a very practical level.
However, my lack of theoretical background meant that quite a bit of research had
to be done before I could confidently plan and tackle this project.

The methodology followed during this project was SCRUM, where one-week
sprints were made. Then, weekly meetings were held to discuss the progress and
the next steps.

The conducted experiments were mostly sequential: requiring one step to be
finished before initiating the next one. However, some overlapping usually oc-
curred when the final improvements were being made to the current iteration of
the subject, while also starting to investigate the next topic.

The development of this thesis took place during 4 months: between February
and June of 2022. A broken-down, more detailed view of the timeline can be seen
at the Figure 1.1.

Phases of the Project
2022

Feb Mar Apr May June

Transformers
Data processing

Model validation
STS

Front End
k-NN

Thesis writing

Figure 1.1: Timeline of the project
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Related work

Natural Language Processing (NLP) is a field that has undergone many changes
in its history. The latest revolution took place when unsupervised learning algo-
rithms were used. With that approach, the need to have labelled data in order to
train the models disappeared and virtually any text source could be used for that
purpose.

The current state-of-the-art models follow a clear progression building upon
previous research. Focusing on the most relevant work regarding the topic we will
cover, it was in 2014 when the introduction of the attention mechanism [3] began.

Despite being understood that attention improved the existing models, the im-
plementations of this mechanism were done on top of a recurrent or convolutional
NN until that moment. Attention connected two important parts of the network
structure (the encoder and the decoder) hence highlighting what were the most
relevant segments of the text: therefore noticing the appearance of complex rela-
tionships within the sentences.

It was not until 2017 when the renown paper "Attention Is All You Need" [18]
disrupted the machine learning community by introducing the Transformer net-
work architecture. It significantly improved the existing benchmarks and showed
the path to follow.

Using the Transformer architecture, a Google AI Language team introduced
BERT in 2019 [5]. BERT (Bidirectional Encoder Representations from Transform-
ers) established a new state-of-the-art baseline in machine translation tasks and
other baselines. It took the best performing models and kept only the encoder-
decoder structure: making the result more parallelizable and, thus, requiring less
time to train. Less than a year later, the RoBERTa model [9] appeared as an im-
provement to the BERT pretraining method, taking it even a step further.

That pre-training step is an essential task. It allows the model to understand a
given language by only feeding it with massive amounts of texts. As it could be
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expected, it is a costly task; but once it has been done, the model can easily and
rapidly fine-tuned for the completion of downstream tasks with great results.

The vast majority of these pre-trained models has been done in English. Some
other models have multilingual capabilities, although it has been shown that
language-specific models outperform them in nearly every task [2]. With that in
mind, it comes as no surprise that every language community wants to have their
own trained model. And that is exactly what a team at the BSC (Barcelona Su-
percomputing Centre) did for Catalan language in July 2021, when they released
BERTa[2].



Chapter 3

Language representation models

3.1 Embeddings

When working with any kind of object in machine learning, it is useful to have a
representation of that object. In our case, we need to find a way of transforming
the sentences (groups of discrete words) into a more manageable form. One of the
most manageable form that we could think of would be a continuous vector.

That is precisely what we call an embedding: a mapping of a discrete variable
to a vector of continuous numbers. This way, we can describe the words as a
real-valued vector of arbitrary dimension rather than having to stick with the
huge (thousands or millions) of dimensions that would be needed in the case of a
sparse word representation, like a one-hot encoding.

The fact that a word is now represented as an embedding belonging to a vector
space gives us a hint on how we can take advantage of it. If done correctly, similar
words should end up quite close to each other. Moreover, linear operations can be
done such that we are able to infer a relationship between groups of words.

Note that the word embedding could also be referring to a mathematical em-
bedding, where an instance of a mathematical structure is contained within an-
other group. We could see that our usage is merely a less abstract one, but its
meaning is still reminiscent of the original one.

Creating embeddings

How those embeddings are created is a really interesting problem, to which there
are very different approaches. We will explore some of them, depending on certain
parameters.

The main parameter regarding the embeddings is whether or not it takes into
account the context, i. e. if the same input word will always correspond to the

6



3.1 Embeddings 7

same output vector or if the model will consider the surrounding structure and
the rest of the sentence to produce the output vector.

Let us dive into an example just to make it clear. For instance, we will take the
word bank and use it in two different scenarios:

1. My brother-in-law works at the bank next to the post office.

2. I enjoyed a great run next to the river bank yesterday.

For us, the readers, it is really clear that the two meanings of bank in the pre-
vious sentences are not the same. However, when creating each embedding: if we
were to simply look at the individual words and replace each of them for a vector,
the different meanings would be lost. In the context relies all that information.

As obvious as it may seem, using the words context to create the embeddings
is (by far) a trivial task. Some models opt for the simplicity of not caring about
that information at all while others make full use of it. Several approaches have
been tried since the early days of NLP. Using a variety of techniques, many models
have been created. In the Figure 3.1, we can see some of them.



Context-independent



No machine learning

{
TF-IDF [17]

Bag-of-words [6]

With machine learning

{
Word2Vec [12]

GloVe [13]

Context-dependent



RNN-based

{
ELMO [14]

CoVe [10]

Transformer-based

{
BERT [5]

RoBERTa [9]

Figure 3.1: Classification of some NLP techniques

Since our aim is to understand how BERTa works, we will first study the model
it was based on: RoBERTa.

RoBERTa, in particular, is a retraining of BERT. And, finally, BERT is the model
that disrupted the whole community by obtaining state-of-the-art results on eleven
natural language processing tasks.



8 Language representation models

BERT stands for Bidirectional Encoder Representations of Transformers. We
will begin by understanding what a transfomer is and why it is useful, but since
the tranformer is an architecture of a neural network, let us have an introduction
on the topic.

3.2 Neural Networks

A Neural Network (NN) (sometimes also called Artificial Neural Network) is a
serie of algorithms belonging to machine learning, in particular to deep learning.
Its aim is to recognize underlying relationships in a set of data and solve common
problems.

3.2.1 Structure

NNs are especially well known for having and structure that was inspired by
how the human brain works: a collection of interconnected layers of small units
that perform mathematical operations. Formally speaking: it forms a directed,
weighted graph.

We will begin by defining the different parts that make up the structure:

• Neuron: It is the main building block of the NN. It takes in certain inputs
and produces a single output. It can also be called node or perceptron.

• Layer: Name received by a collection of neurons operating together at a
specific depth within the NN. There are three different types:

– Input layer: First layer of the network. The neurons inputs come di-
rectly from the raw data.

– Hidden layer: Internal layers of the network.

– Output layer: Last layer of the network. The outputs of this layer cor-
respond to the final values of the network. They accomplish the task,
usually by having classifications or other signals to which input pat-
terns may map.

• Weight: Value defining how strong is the connection between neurons of
two consecutive layers.

• Bias: Value added to the sum of the product between the input values and
their respective weights of a single neuron. It is used to accelerate or delay
the activation of a given node.
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• Activation function: Defines how the weighted sum of the input is trans-
formed into an output from a layer of nodes of the network.

Definition 3.1. A neural network parameter is a coefficient of the model which is
chosen by the model itself. A neural network hyperparameter is an element that
affects the model architecture or performance, but is pre-set.

On the one hand, the weights and the biases of each neuron of the network are
both parameters that the model will try to optimize to better perform at the given
task. Meanwhile, the number of layers and the number of neurons on each layer
are hyperparameters that need to be chosen by the designers of that specific NN.

Figure 3.2: Neural network structure

In the Figure 3.2 we can see a neural network structure. The input vector of
dimension n is mapped to the input layer. Afterwards, each of the m neurons in
the hidden layer is influenced by the weighted sum of the input layer neurons,
and slightly modified with a bias. An activation function φ is then used to map
the previous result to the output layer, consisting in only one neuron. Ultimately,
the output of this final layer is what the neural network will predict.

3.2.2 Activation functions

Activation functions are an essential part of the NN that must not be overlooked.
Their choice will control how well the model learns the training dataset. These
functions may not be linear, otherwise the network capabilities would be very
limited.

Definition 3.2. An activation function is a non-linear function φ : Rn → A ⊂ Rn.
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A few have been used and their complexity has evolved over time. We will
show a couple of the most used ones..

Definition 3.3. The Rectified Linear Unit (ReLU). This activation function is linear
only for x ≥ 0, and it is given by

ReLU(x) =

{
0, if x < 0

x, if x ≥ 0
= max{x, 0}

Definition 3.4. The logistic or sigmoid function. This activation function ap-
proaches 1 as x → +∞ and 0 as x → −∞. It is given by

sigmoid(x) =
1

1 + e−x

Definition 3.5. The softmax function is given by

softmax(x) =
( ex1

∑n
i=1 exi

, . . . ,
exn

∑n
i=1 exi

)
It can be interpreted as the generalisation of the logistic function for n dimensions.
In this context, the softmax activation function is frequently used since it acts as a
smooth arg max.

3.2.3 Learning

As stated before, the aim of a NN is to capture the relationship between its input
and the supposed output. When a NN is initialized it is clueless on how to solve
that problem, therefore it must be trained.

For starters, we will need a metric to see evaluate the output of the NN.

Definition 3.6. A loss function L is a function that measures the proximity be-
tween the NN predictions and their target value.

Then we can call learning to the process of changing the parameters of the
network so that they produce the minimal loss.

Loss functions L can be any metric that measures proximity. However, differ-
entiable functions are typically used to take advantage of interesting properties of
functions that allow the usage of methods for minimizing. One of such methods
is the Gradient Descent.
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3.2.4 Gradient Descent

Let f : Ω → R be a differentiable function. Now, consider the general uncon-
strained optimization problem:

arg min
x∈Ω

f (x)

Definition 3.7. Let f : Rn → R be a differentiable function. We define the gradient
of f , ∇ f : Rn → Rn, at the point x = (x1, . . . , xn) as the vector composed by its
partial derivatives:

∇ f (x) =
( ∂ f

∂x1
(x), . . . ,

∂ f
∂xn

(x)
)T

Remark 3.8. Note that at any point x, the direction −∇ f (x) is the direction of the
fastest decrease of f at x.

Iterative methods try to converge to the solution (the local minimum x∗) by
generating a sequence of values x0, x1, . . .. First order methods must generate that
sequence using only the function value and its gradient at different points of Ω.

The Gradient Descent (GD) is a first order method that generates each next
point by taking a step of size η > 0 in the direction of the antigradient (−∇). GD
is arguably the simplest and most intuitive first order method. [1] In the Figure 3.3
we can see an example of how does it work.

x0

x1

x2

x3

x4

x5

Figure 3.3: A gradient descent example

Formally speaking: We start at a random point, x0. Then, at iteration k the next
point (xk+1) is defined as

xk+1 = xk − η
∇ f (xk)

∥∇ f (xk)∥
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The step size η is called the learning rate. It has a great impact on the results.
Smaller learning rates will take longer to arrive to the minimum. On the other
hand, larger rates may be too big and miss the minimum: that is known as the
overshooting problem.

One of the first improvements that can be made to the algorithm is to progres-
sively change the value of the learning rate: making it larger when starting and
decrease it as the solution converges. This technique receives the name of learning
rate decay.

The GD is a greedy, local algorithm that can only be expected to converge to
a local minimum of f . Despite the learning rate decay optimization, the compu-
tation of the gradient could still be computationally demanding. Unfortunately,
supervised learning is one of the most common scenarios where this problem
arises.

Stochastic Gradient Descent

Remember: when learning, the aim of the NN is to minimize the loss function
L. We are doing so by calculating the average difference of the actual values and
the target ones for all the samples (or a subsample) of size r. Calculating the
theoretical loss would mean to run the calculations for each one of the samples,
on every step of the gradient descent. That operation is not only impractical but,
fortunately, not necessary.

The gradient is a vector that results by summing the r gradient-vectors (one
per sample). We can deem reasonable to presume that no particular sample has
too much domination in the resulting gradient. It is then not a bad assumption
to infer that a good approximation of the gradient could be obtained by taking
a random subset of s < r samples. Then, we would need to calculate s gradient
vectors, add them, and scale the resulting gradient proportionally.

The process described above is what is called the Stochastic Gradient Descent
(SGD). It is the most widely used optimization method in the machine learning
community.

Convergence of the gradient descent

As it could be expected, some conditions must be met to guarantee that the GD
algorithm converges towards a certain point x∗ ∈ Ω.

Remark 3.9. The previously defined concept of transition from one point to the
next one

xk+1 = xk − η
∇ f (xk)

∥∇ f (xk)∥
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can be interpreted as an update function G f ,η : Ω → Ω

G f ,η(x) = x − η∇x f

Definition 3.10. Let (M, d) be a metric space. Let f : M → M be a function. f is a
contraction mapping if

∃c, 0 ≤ c < 1 : d
(

f (x), f (y)
)
≤ c · d(x, y), ∀x, y ∈ M

Proposition 3.11. If the gradient update is contractive, then the GD converges to
a stationary point x∗, i.e., ∇x∗ f = 0

We can even go a step further and define a couple concepts that can help us
determining the rate of convergence.

Definition 3.12. Let X be a convex subset of Rn space. Let f : X → R be a
function. f is convex if

∀t, 0 ≤ t < 1 : t · f
(
x + (1 − t)y

)
≤ t · f (x) + (1 − t) f (y), ∀x, y ∈ X

Definition 3.13. A continuously differentiable function f : X → X is β-smooth if
its gradient, ∇ f , is β-Lipschitz. Equivalently:

∥∇ f (y)−∇ f (x)∥ ≤ β ∥x − y∥ ∀x, y ∈ X

Definition 3.14. Let (M, d) be a metric space. A function f : M → M is Lipschitz
if

∃K ≤ 0 : ∥ f (x)− f (y)∥ ≤ K · ∥x − y∥ , ∀x, y ∈ M

Proposition 3.15. If f is convex and β-smooth, and a step of η ≤ 2/β is used, then
the k-th iterate, xk, of GD satisfies

| f (xk)− f (x∗)| ≤ ∥x0 − x∗∥2

2ηt

Thus, GD has an O(1/k) rate of convergence.

3.3 Transformers

The Transformer is a network architecture that was introduced in the renown
paper Attention Is All You Need [18] from December 2017. The distinguishing trait
of this model architecture is that it dispensed with recurrence and convolutions,
and it was solely based on the attention mechanism.

Using an attention mechanism to connect the encoder and the decoder was
something that the best models already did, but the dominant ones were based
on complex recurrent or convolutional neural networks. This apparently simple
change is what led to having better results, making the model more parallelizable
and require less training time.
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3.3.1 Attention

In the case of NLP, the idea behind the concept of attention is to have a way of
telling the transformer how important is the relationship between the words in the
same sentence. Therefore, being able to find what the most important parts are.

An attention function can be described as mapping a query and a set of key-
value pairs to an output. A compatibility function of the query with the corre-
sponding key is used to compute the weights assigned to each value, and then the
output is computed as a weighted sum of the values.

We will call Q, K, V to the matrices associated with the query, keys and values
respectively. Let the dimension of the queries and keys be dk, and the dimension
of the values be dv.

The steps for obtaining the Scaled Dot-Product Attention are:

1. Compute the dot products of the query with all the keys.
2. Divide each result by

√
dk.

3. Apply a softmax function to obtain the weights on the values.

Since the vectors will be processed in batches, from now on we will consider
the attention mechanism for each batch. Understood as a mapping, it is defined
as

Attention(Q, K, V) = So f tmax

(
QKT
√

dk

)
V

3.3.2 Model architecture

Now we will dive deep into the concepts that the Transformer model is made of:
mainly the Encoder-Decoder structure and its main building blocks: the positional
encoding, the multi-head attention and the feed forward. The structure of the
architecture can be seen in Figure 3.4.

The encoder is responsible of mapping an input sequence of symbol represen-
tations (x1, . . . , xn) to a sequence of continuous representations z = (z1, . . . , zn).
Then, given z, the decoder will generate the output sequence (y1, . . . , yn).

For each sequence of words that the Transformer is fed, a series of operation
are performed. Let us briefly go over them.

Firstly, using a dictionary (vocabulary) and an embedding matrix, each of those
words gets their embedding representation. That embedding has a dimension of
512. Afterwards, they get information added via a positional embedding before
being fed to the Encoder-Decoder block.
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Figure 3.4: The Transformer model architecture [18]

Positional Encoding

One of the main advantages the transformer model has is that it splits the input
in what is called batches. Batches are processed in parallel and in the same way.
Therefore, we must find a way of conveying the original position of the input on
each batch.

In the first iteration of the structure, a position vector was added to each batch:
with the objective of having the weights matrices take into account that position,
in case that was needed [18]. That way of adding a fixed position vector is called
positional encoding. If, instead of being fixed, the added vector is also trained,
we call it positional embedding.

Encoder

Instead of using a single self-attention function, numerous self-attention heads
are used: each with a distinct weight matrices for the queries and keys. Multi-
head attention allows the model to simultaneously attend to information from
several representation subspaces at different positions. In the original study, the
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Transformer had eight parallel attention heads.
The resulting outputs are then added and normalized and passed to the feed-

forward block.
The feed-forward block consists of a fully connected feed-forward network,

made up of two linear transformations with a ReLU activation in between.
What we have defined until now is an encoder. The encoding component from

the Transformer is a stack of 6 encoders. They are all identical in structure, yet
they do not share weights.

Decoder

The decoder section of the Transformer model in composed by mostly the same
blocks as those found in the Encoder and previously explained. Like the encoder
component, it is also composed by a stack of 6 identical layers.

Since this block is not essential for following rest of the thesis. In case that the
reader wanted to keep learning about the decoder block, the original paper does
a good job explaining the details: [3].

3.4 Language models evolution

As one might expect, scientific research builds upon itself to keep improving.
There is no doubt that we are standing on the shoulders of giants. Language models
are no exception to that rule.

In this section, we will briefly study the technical developments that built the
tools that will be used in the thesis.

3.4.1 BERT

BERT Bidirectional Encoder Representations from Transformers is a language rep-
resentation model introduced in May 2019 [5]. It was the first of its kind and gen-
erated such an impact that new models are still produced with the basis layed by
BERT.

Prior to the appearance of BERT, the state of state-of-the-art NLP model was
Generative Pre-trained Transformer (OpenAI GPT) [15].

GPT [15], introduced minimal task-specific parameters, and it was trained on
the downstream tasks by simply fine-tuning all pre-trained parameters. The rea-
son behind that was because it was unidirectional. Having that property, it forced
the authors to use a left-to-right architecture: where every token can only attend
to previous tokens in the self-attention layers of the Transformer.
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The main improvement BERT does is to change the pre-training objective and
being freed from having to be unidirectional.

The pre-training objective used is called Masked Language Model (MLM). It
was inspired by the Cloze task: where some randomly selected tokens are masked
and the goal was to predict them only from their context. In addition to the MLM,
a task where the two sentences were presented to the model and it had to predict
if the second followed the first was used.

3.4.2 RoBERTa

After closely studying the process through which BERT had been developed, sev-
eral improvements were found. Apparently, some design choices had been over-
looked and hyperparameter choices had too big of an impact in the final results.
Those were the claims that the RoBERTa[9] paper exposed and backed up with
data.

On top of that, they were able to refine the detected issues and they developed
an improved version of BERT. As the paper and model name suggest: A Robustly
Optimized BERT Pretraining Approach. With the enhanced training recipe for BERT
models (RoBERTa) the performance of all post-BERT methods was matched or
exceeded.

It came as no surprise that from then on, RoBERTa became the new language
model standard.

3.4.3 BERTa

BERTa training was trained following the RoBERTa [9] base model. The Next
Sentence Prediction task, present in the original BERT, was omitted in this case
since it was auxiliary. Therefore, only the masked language modeling was used as
the pre-training objective.

The paper is also important because in it, high-quality Catalan corpus (the
largest to its date) was released with an open licence. On top of that, annotated
corpora for multiple NLP tasks was created and released as well. That makes
future work in the Catalan language much easier by lowering the barrier to entry.

3.4.4 Sentence Transformers

One of the most important things that BERT is lacking is the ability to compare
pairs of sentences. In reality, BERT can compare pairs of sentences but only one
at a time: since they must be fed to the model at the same time. It means that
to compare n sentences we must use the model n2 times. In practice, that small
caveat makes this feature unusable.
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That shortage is clearly impractical and it was also the reason why the Sen-
tenceBERT (SBERT) model [16] was created. SBERT is a modification of the BERT
network able to derive semantically meaningful sentence embeddings. SBERT was
built using siamese networks that allow it to process two sentences in the same
way, simultaneously. These two twins are identical down to every parameter,
which allows us to think about this architecture as a single model used multiple
times.

BERT is the base of this model, to which a pooling layer has been added.
This pooling layer makes SBERT able create a fixed-size representation for input
sentences of varying lengths. The original BERT model already generates a CLS
token summarizing the information from its tokens that was also considered in
the study.

Another alternative would be to use an aggregation of the individual embed-
ding for each word as the sentence embedding. That is an interesting experiment
and different aggregation functions could be studied to find which one captures
best the sentence as a whole. Furthermore, that method might be used as a bench-
mark when comparing it against SBERT.

It was found that SBERT had only minor differences compared to SRoBERTa
for generating sentence embeddings. For our needs, we will use BERTa [2] as the
starting point with all its vocabulary learnt in the pre-training.

3.5 Hugging Face

Hugging Face Transformers 2 is a library that provides thousands of pretrained
models to perform tasks on different modalities such as text, vision, and audio. It
first started in 2020 and had a paper follow up the launch [19].

Hugging Face Transformers provides APIs to quickly download and use those
pretrained models on a given text, fine-tune them on your own datasets and then
share them with the community on our model hub.

Transformers is backed by the three most popular deep learning libraries —
Jax, PyTorch and TensorFlow — with a seamless integration between them. In our
case, we benefited from using PyTorch. It provides a useful layer of abstraction to
the usage of the GPU, very useful for working with large batches of data.

As stated in the introduction the chosen language can be considerate under-
resourced.

There is clearly a difference in the number of models if we group them by
language. Bear in mind that the multilingual models are also counted towards
each of the languages it comprehends.

2https://huggingface.co

https://huggingface.co
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The top 4 languages (and their respective number of models) are: English
(6568), Spanish (602), French (496) and German (415). Catalan sits in the 23rd
position by having 107.



Chapter 4

Development and experiments

4.1 Problem definition

The aim of these experiments is on the first place to evaluate how does the
BERTa [2] model for Catalan perform with our dataset. Then to use the con-
textualized sentence embeddings to represent a set of articles from which we will
extract the approximate nearest neighbours. In the following sections, a detailed
explanation on how each objective was planned and resolved is given.

4.2 Experiments environment

The entirety of the code of this project has been written in Python, in a Jupyter
notebook environment. For the NLP processing, the transformers library has been
used. For the neural network testing, we took advantage of the Tensorflow library.
Moreover, we used the scientific computing library NumPy and Pandas, as well
as Plotly for data visualizations.

Neural networks training is a computationally expensive and time-consuming
process. Therefore, deep learning models are generally run on GPUs, with which
we can achieve much shorter performance times. In our particular case: we did
not train any model, but when doing certain calculations we made good use of
the free GPU instances offered by the Kaggle environment.

The code of this project can be found at the following GitHub repository:
https://github.com/t1emp0/tfg-transformers.

20

https://github.com/t1emp0/tfg-transformers
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4.3 Gran Enciclopèdia Catalana dataset EDA

For the whole experiment, we used the Gran Enciclopèdia Catalana (GEC) dataset.
It consists on 33 files, each one with different articles inside. The files provided
from the GEC database, but it is not fundamental because they could also have
been scraped from the web, since all the information is publicly available.

Each file in the dataset contained 107 columns and a certain number of rows.
Since the only columns that we were interested in were the Title and the Body
(text), we reduced each dataframe to only those two, and we looked at how many
articles are there inside each file: before and after dropping all the empty ones.

Un any de COVID-19

Antecedents i inicis de la pandèmia\n\nLa pandèmia de la
COVID-19 causada pel coronavirus SARS-CoV-2\xa0és filla de la
globalització. La mobilitat de persones, ...

Figure 4.1: A sample of a title and article (just a few words of it)

Figure 4.2 shows a plot describing that information. The blue bars represent
the number of articles before filtering, the red bars stand for the number of articles
after filtering the empty ones, and the green bars depict the difference between
those two numbers. The red line is the mean number of filtered articles per file
(5187). The total number of filtered articles is 171186.

Please note that the number of articles (y axis) is in logarithmic scale, in order
to better show the wide range of the article numbers on each file (σ = 18840).

Figure 4.2: Articles per file before and after filtering, with the difference
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Then we proceeded to explore the number of words per article. Now we don’t
care anymore of which file do the articles come from, we joined all of them and
proceeded to count. We display the histogram obtained from those calculations in
the Figure 4.3. The red horizontal line is showing the mean value (341.5). Note
that, again, the y axis has a logarithmic scale.

Figure 4.3: Number of articles grouped by words per article

From looking at the graph, it is obvious that most of the articles are in the
shorter range of the spectrum. Just to give some more evidence of that fact, we
show a description of the distribution. In the Table 4.1, a summary can be seen.

Measure mean std min 25% 50% 75% max

Value 341.5 1389 1 34 78 178 61221

Table 4.1: Number of articles grouped by words per article

Dataset corrections

Since we are working with real world data and not any kind of competition pre-
pared datasets, we need to make sure the compatibility is right. That includes
checking that the text is harmonized and that there are no encoding problems.

If you were to carefully read the article quote shown in Figure 4.1, you might
see that there are some strange characters. The \n character represents a line
break, but something else is encoded in the \xa0 sequence. It represents a non-
breaking space. To deal with it, and any other similar problem that may arise, we
will need to understand how Unicode normalization works.
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Unicode normalization

Unicode is a standard for the consistent encoding, representation, and handling of
text expressed in most of the world’s writing systems. It is responsible of defining
the UTF-8 encoding, among others.

Some Unicode characters can be written in different ways, but in practice they
are the same one. That phenomenon is called equivalence. It can happen when
two characters combined form an existing one ( ), or when the order-
ing of the combining marks is altered ( ). There also exists the
equivalence when characters or sequences represent the same abstract character
but may have different visual appearances ( ).

There are a few ways of dealing with this issue. The standard practices are
brought together in the Unicode Normalization Forms.

Unicode Normalization Forms are "formally defined normalizations of Uni-
code strings which make it possible to determine whether any two Unicode strings
are equivalent to each other".3 There are four Unicode Normalization Forms. In
order not to extend ourselves too much, we will just focus on NFKC, the recom-
mended form for our use case.

Figure 4.4: How the diferent Unicode Normalization Forms act 3

NFKC is the 4th Normalization Form and stands for Compatibility Decompo-
sition, followed by Canonical Composition. In the NFKC form, many formatting
distinctions are removed, as it can be seen in the Figure 4.4 . The "fi" ligature
changes into its components "f" and "i", the superscript formatting is removed
from the "5", and the long "s" is changed into a normal "s".

By applying the NFKC to each one of the texts, we obtain the homogeniza-
tion we were looking for. And, therefore, we do not need to worry anymore by
those characters like \xa0 since they will all have been replaced by their canonical
equivalents.

3Obtained from the Unicode website: https://unicode.org/reports/tr15/#Norm_Forms

https://unicode.org/reports/tr15/#Norm_Forms
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Apostrophes

Another issue that emerged was that some apostrophes were straight apostrophes
while others were smart apostrophes: they curl in the direction of the accompa-
nying text. The smart ones are represented by the character U+2019 right single
quotation mark ’ while straight ones use the character U+0027 apostrophe ’. There is
no problem when using one or the other, but in our case they were mixed.

An easy fix we found was to replace all of them for straight apostrophes. This
is due to the fact that smart apostrophes might also be used to quote some texts,
and this way we prevented any confusions. Moreover, by doing so, the model will
have an easier time dealing with them since they belong to the vocabulary and can
be interpreted as a single token.

4.4 Model evaluation

The aim of the evaluation is to find out how does the BERTa model [2] perform
with the GEC dataset explored in the previous section.

4.4.1 Task

The assignment with which the model was evaluated was an open cloze test. It
is the same task that the model undertook in its training and, if done properly,
should give quite good results.

The open cloze test is one where we hide a word from a sentence and ask the
model to supply what word goes in that place as a test of its ability to comprehend
text. The model will then return a series of predictions with its guesses. By default,
it will return 5 predictions of words and their accompanying confidence scores.

Those confidence scores on their own are not enough to measure how well the
model is performing. With the object of correctly determining the quality of the
predictions, some particular metrics were used.

4.4.2 Metrics

The following measurements were used to assess the quality of the desired trans-
formers model detectors:

• Hit rate @ k. It measures the fraction of words correctly predicted in the top
k results. Since there are 5 predictions, the hit rate at 1, 3 and 5 will be taken.

• Confidence. The confidence score given by the model to the first prediction
(the most likely one).
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• NDCG score. Stands for Normalized Discounted Cumulative Gain: the re-
sult of the sum of the position of the predicted word in the order of predicted
words, after applying a logarithmic discount. It is frequently used in recom-
mender systems but a little unknown outside of that niche. We will dedicate
a brief section to fully understand how it works.

After each individual guess has been evaluated, all the previous metrics will
be calculated. Afterwards, an average across all the results from the predictions
in the sentence will be considered. Finally, the global average between all the
sentences in the run will be performed and that value will be our output.

As you can see, all metrics will return a value between 0 and 1, being 1 the
best score and 0 the worst.

NDCG

The Normalized Discounted Cumulative Gain (NDCG) metric is a measure of
ranking quality. As its name implies, it is the normalized version of the Discounted
Cumulative Gain (DCG). DCG, at its turn, originates from an earlier (more prim-
itive) measure called Cumulative Gain (CG). Where, using the relevance of each
result, it computes the relevance of a query. [7]

Definition 4.1. Given a list of recommendations where each item has an associated
relevance, we define the Cumulative Gain (CG) as

CG :=
n

∑
i=1

reli ,

where reli is the relevance of the result at position i.

CG is only considering the relevance of the list as a single whole, not taking
into account the order in which the results are appearing. If we assume that the
earlier a relevant result appears, the more useful it will be; a discount should be
introduced to improve CG.

Definition 4.2. Using the same premises and notation as in the Definition of CG,
we define the Discounted Cumulative Gain (DCG) as

DCG :=
n

∑
i=1

reli
log2(i + 1)

= rel1 +
n

∑
i=2

reli
log2(i + 1)

As shown in the formula, the discount penalizes if the relevant results appear
in later positions on the list. It can be seen that for a list with only one relevant
result, it would penalize iif that document is not in the first position.
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Finally, NDCG is calculated by dividing the DCG by the best possible score.
The optimal score is obtained by ordering the given query: forming a list in which
all the relevant results are monotonically decreasingly sorted.

In our particular case, we only have one relevant document with an associated
relevance of 1. Therefore, some simplifications can be done to optimize this metric.

• The ideal DCG score will always be 1: no need to calculate it nor divide in
the NDCG. Meaning that NDCG will be equal DCG.

• We only have one relevant result: no need in the summation of DCG.

Bearing the above deductions into consideration, we present the optimized
formula used in our experiments. By calling the result we are looking for item and
its position in the list index, we have:

NDCG =

{
log2(index + 1)−1, if item in predictions

0, if item not in predictions

4.4.3 Pipeline

In this section we will briefly explain how were the experiments conducted.
In the first place, we processed the articles coming from the dataset explored

in the previous section. This action is necessary to homogenize all the apostrophes
and, also, fix any codification errors.

Afterwards, we downloaded the model, tokenizer and fill-mask pipeline from
HuggingFace. They are an essential part of our system, as demonstrated in Chap-
ter 3.

At this point, we built a custom dataset class using PyTorch, to optimize the
performance time. This way, some operations can be parallelized; even more when
taking advantage of the GPU. Fortunately, we do not need to own a compatible
GPU since we can use one online. In our case, we profited from Kaggle offering
some free usage of an environment with a built in GPU. The only thing we had to
do was to upload our notebook and dataset and run it there.

The code execution was completed without any major setback. The notebook
had all the above mentioned preparations, as well as the main method and some
helper functions. The helper functions were used to clarify the process and give a
richer structure to the notebook. Those support functions primarily contained the
operations needed to predict and, then, to evaluate the results. The main function,
on its part, was responsible for sequentially calling all the steps.

Once the code had ran, the final results were downloaded. Computing them
was the hard part of the work. But, considering that we only keep the metrics,
their final size is not too big (almost 2MB for 10000 predictions).
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4.4.4 Results

The previously explained pipeline was ran with sentences that had between 13
and 33 words: corresponding to the mid-half of the distribution. In that region,
we had a little more than one million sentences.

As you might expect, the experiments were performed with only a small sam-
ple of that dataset. Our election was to take 10k sentences and evaluate their
results. Just to make sure our process was not faulty, we had two trials with
different partitions.

Measure NDCG score confidence hit@1 hit@3 hit@5

1st run 0.664 0.675 0.567 0.698 0.746
2nd run 0.666 0.676 0.570 0.700 0.748

Table 4.2: Model evaluation results

In the Table 4.2 the metrics for each one of the trials are portrayed. It is quite
clear that the two results basically coincide with each other. Therefore, we might
be able to deduce that the random samples we took were representative of the
dataset.

After examining the obtained results, we can conclude that the model per-
formed quite well. Interestingly, we might interpret the differences between the
various hits as a generalization of what might be happening behind the scenes.

We can see that more than half of the times it got the prediction right at the
first try (that can be understood as a one-hot measure). Also, we can observe that
the hit@5 is less than 0.2 larger that the hit@1. From there, we can derive that
if the result was not immediate, the model was not very likely to improve in the
following attempts.

That deduction is backed up by the relatively high confidence that the model
has on its first guess: around two thirds. So, although we cannot be completely
assured, we can say that the attributed behaviour is quite likely to be happening.

4.5 Semantic Textual Similarity

For the second part of our experiments, we wanted to get the approximate nearest
neighbors of a given article. That task will use the embeddings generated by
each article and locate the closest ones. Taking a step back, we first needed to
investigate how well could the model embeddings relate different sentences: a
process which goes by the name of Semantic Textual Similarity, STS. For that
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matter, we used a labelled dataset and evaluated the predictions of our model
using it as a reference.

4.5.1 Catalan Language Understanding Benchmark

We took advantage of the Semantic Textual Similarity in Catalan resource released as
part of the Catalan Language Understanding Benchmark (CLUB), accompanying
the BERTa model [2]. That dataset was published as an open resource. It includes
over 3000 pairs of sentences written in Catalan and evaluated by 4 different anno-
tators. Each of them gave the pairs a score ranging from 0 (no similarity at all) to
5 (semantic equivalence).

That methodology is a pretty standard practice in this type of problems. It is
based on the work done in the SemEval challenges. The SemEval challenges come
each year as a workshop in semantic evaluation. The paper [20] explains in detail
what is being evaluated at SemEval, but we will not go into the technicalities in
here.

What we did was to closely examine the dataset with the aim of getting an
idea of the contents. In the Figure 4.5 we can see two examples of the dataset.
Effectively, the more similar sentences get a better result that the ones that differ
in their meaning.

Score: 4.67 - Id: TE2_21
No se sap res més de la seva vida.
De la seva vida, però, no se’n sap gaire res.

Score: 1.25 - Id: Oscar2_619
Digues un llibre que no hagis llegit.
No passa res si t’has llegit el llibre.

Figure 4.5: A couple of sentence pairs with their scores and ids

When studying the contents of the files, it was seen that they could have been
slightly better organized. That is because all the outputs of the steps of the pipeline
were present in the file, with the purpose of being able to analyse the process.
However, some inconsistencies were found regarding the number of row in the
different datasets. Although the analysis were looked over the smallest one was
chosen, just to be on the safe side.
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4.5.2 Model predictions

As stated in the previous section (4.5.1), the CLUB was analysed and used as a
reference. The task now at hand was to determine the quality of the transformers
model predictions. This time, we did not use Kaggle and we only processed a
sample of 200 sentence pairs.

The steps taken were the following ones:

1. Use a transformers model to encode each sentence (individually) and obtain
the corresponding embedding.

2. Obtain the nearest 5 sentences from the embeddings, using the cosine simi-
larity.

3. Check if the matching pair was present and calculate the metrics.

With the aim of having a baseline with which being able to compare the Catalan
only BERTa model, the steps were repeated with the multi-qa-MiniLM-L6-cos-v1
model 4. Both of them needed to be used in the sentence-transformers environ-
ment, as explained in the introductory part.

In the Figure 4.6 we can see an example of a sentence, its pair, the Ground
Truth, and its predicted matches along their cosine similarity scores (using the
BERTa model). That interface is result the development of a Streamlit app. More
on that in the Section 4.6.2.

Figure 4.6: Sentence number 379 and its predicted matches

4https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1

https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1
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In the Table 4.3 we can see the results obtained by each one of the models. The
metrics are the same as in the previous evaluation, with the only difference being
the scores: they correspond to the cosine distance evaluation. The mean between
all the sentence predictions was made.

Model hit@1 hit@5 max score other scores diff

BERTa 0.948 0.988 0.912 0.800 0.112
multi-qa 0.870 (348) 0.943 (378) 0.742 0.553 0.189

Table 4.3: STS results

As you see, they are quite good results. The BERTa model correctly assigned
95% of the sentence pairs to the one with the highest value. It can also be seen
that the scores calculated with the Catalan-only model are higher and, thus, have
a closer relationship with the original sentences.

The difference between the predicted sentence score (column max score) and
the next 4 scores (other scores) appears in the column diff. They are similar in both
models, having a larger gap between the two max and the two other scores.

It is interesting to also study when does the model fail to make the correct
predictions (miss). Since not all the sentences have exactly the same similarity,
we could check if the model fails with a higher frequency in the pairs that have
a more distinct meaning. Those metrics are reflected in the Table 4.4, where the
Ground Truth is the value assigned by the (human) classifiers in the CLUB. For
each case, it is averaged among the corresponding predictions.

Model hit@1 hit@5 miss@1 miss@5

BERTa 2.677 2.653 2.044 1.884
multi-qa 2.722 2.666 2.122 2.279

Table 4.4: STS results Ground Truth

A higher value on these predictions means the original sentences were consid-
ered more similar by the taggers. As expected, the earlier was a sentence retrieved,
the higher the score; and similarly with the missing ones. Even though there is an
exception: the miss@5 of the multi-qa model was actually greater than the miss@1
of the same model. This anomaly might be caused by the random properties of
the subsample or may be an underperformance of the model. Either way, the issue
could be further investigated in an effort to detect and understand the cause.

On the upside, this evidence reinforces the claim made by the authors of
BERTa, that their model outperforms general purpose ones.
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In most of the cases where the prediction did not match the original pair, the
model’s guess was actually more similar to the provided one than the original’s
pair. Also, the scores tend to be in quite a narrow range. An example of this
phenomenon can be seen in the Figure 4.7.

Figure 4.7: Sentence 6 - An example where the pair is not found

4.6 GEC Similarities

After the work done in the previous sections, we can state that the Sentence Trans-
former along with the BERTa model form a good pair for working on the Seman-
tic Textual Similarity problem. Now we can proceed to use that on the original
dataset.

For that matter, we reproduced the pipeline explained when making the model
predictions at 4.5.2. The output of the pipeline was the list of the sentences (now
articles) embeddings.

Unfortunately, we are working with an unlabelled dataset and we do not have
any quantitative metric for measuring how good are the embeddings relationships.
However, since we are dealing the vector representation of the articles, we are able
to create some visualizations from of the outputs.
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4.6.1 Visualization techniques

If we recall the theoretical part, the output embeddings dimension is 768. It is
impossible for us to conceive those magnitudes. Therefore, some procedures have
been developed to project those vectors into a space we can more easily under-
stand: 2D or 3D.

We will take a brief look at two of the most used ones: PCA and UMAP.

PCA

Principal Components Analysis (PCA) is a method used for dimensionality re-
duction via feature extraction. It is one of the simplest and most well known
techniques. In order to calculate PCA the idea is to find the principal components
to obtain lower-dimensional data while preserving as much of the data’s variation
as possible.

It does that by combining the input variables in a specific way, then keeping
only the most valuable parts of all of the variables, while dropping the least im-
portant ones. This process has the added benefit of producing all the variables as
linearly independent to each other.

In the Figure 4.8 we can see how data from a 3D space gets mapped to a 2D
component space via PCA.

Figure 4.8: PCA Example 5

UMAP

UMAP: Uniform Manifold Approximation and Projection for Dimension Reduc-
tion [11]. Taking the input data, UMAP builds a high dimensional graph repre-

5Image obtained from https://www.analyticsvidhya.com/blog/2016/03/
pca-practical-guide-principal-component-analysis-python

https://www.analyticsvidhya.com/blog/2016/03/pca-practical-guide-principal-component-analysis-python
https://www.analyticsvidhya.com/blog/2016/03/pca-practical-guide-principal-component-analysis-python
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sentation. Then, it optimizes a low-dimensional graph to be as structurally similar
as possible.

To build the initial, high-dimensional graph, it joins neighboring points to-
gether by creating a n-dimensional ball around each one and connects those whose
radii overlap. It is able to overcome the challenge of the radius selection by do-
ing it locally. The resulting graph is weighted, with the values representing the
likelihood that two points are connected. Formally speaking, it is called a fuzzy
simplicial complex.[4]

Dataset visualization

There are multiple implementations of those techniques from which we could
benefit. We will use TensorFlow Projector 6, a tool specifically designed with that
purpose: to visualize embeddings.

The process is really simple: we only need to correctly format the embeddings
that we want to represent and upload them to the online visualizer. On top of the
points, we can add some metadata to have a certain context to guide our intuitions.

TensorFlow Projector allows users to select the projection method between
UMAP, T-SNE (UMAP’s predecessor) and PCA. The latter falls short to capture
any meaningful clustering information. T-SNE is more complex and allows for
more hyperparameter tuning, including a temporal timeline; one of the reasons
why we have opted to stay with the simpler of the representations: UMAP.

Figure 4.9: GEC Embeddings

6https://projector.tensorflow.org

https://projector.tensorflow.org
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The projections you will see have been produced using UMAP with the num-
ber of neighbors = 20.

You can see the construction obtained in the Figure 4.9. After the construction
and exploration, we reach some interesting findings:

• The tiny dense island in the upper-middle is exclusively composed of polit-
ical parties.

• The right cluster is mainly formed by people, with the exception of some
sports clubs in the lower regions.

From this angle is hard to see, but by looking at the big cluster located on the
left from the opposite side we see some more groupings. Those are shown in the
Figure 4.10.

Figure 4.10: GEC Embeddings from the opposite side

Some more comments on the groups:

• The aggregation in the lower left corner corresponds to places from around
the world.

• The dense cluster in the bottom of the image are sites belonging to Catalonia.
• The narrow column on the left and the upper section it connects to mainly

contain articles related with science and medicine.
• The upper right cluster and the dense region below it are all articles about

people.
• The middle sparse sector contains some news articles and other categories.
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4.6.2 Front End

The final step we wanted to take was a way for the users to interact with the
articles’ database and show those that the model considered the most similar.

Our main goal was for the front-end to be simple and, if possible, quick to
develop in Python. For those reasons, the Streamlit library 7 was used.

Streamlit is intended for the creation of simple interfaces, mainly with data
in mind. The development is done via a script; in which you call the API com-
ponents that will turn into the front-end components displayed in the screen. It
automatically updates as you save the source file, what helps with the process.

Since the source file is written in Python, we can directly import data from an
exported file with pandas or pickle. That data is easily visualized in the given
widgets. Instantiating them is as simple as calling a function with the contents:
saving the need to deal with the hassle associated with creating a back-end, a
front-end and linking them.

Figure 4.11: Streamlit app screenshot

7https://streamlit.io

https://streamlit.io


36 Development and experiments

As can be seen in the Figure 4.11, the first element of the web page is the
article we have chosen (or the default one): made up of the title and a preview
of the text. Then, the predominant component is the table showing the 5 nearest
articles, their scores and a small preview too. We deemed the preview a necessary
feature because it is difficult to guess the contents of some articles only by their
title. That being said, if the user prefers not to see that preview there is the option
to hide it.

Be noted that in the drop-down menu, the user can begin typing and the titles
list will be filtered accordingly. That is useful if the user is looking for a particular
article.

Thinking into the user experience when using this app, we considered essential
some hints to help with exploring the results, which is the main objective of the
app. Bearing that in mind, a button to random article is permanently shown. On
top of that, the user can toggle some suggestions that will show them 4 article
titles and the possibility to explore their nearest results when clicking on them.
The resulting header can be seen in the Figure 4.12.

Figure 4.12: Streamlit app header

An added advantage when using Streamlit was the ease with which you could
deploy the app costless. In a few minutes (and completely hassle-free) we had our
page up and running. The initial load time could be slightly improved but you
could not ask for a better service.

You can try out the application for yourself. It is deployed in the following url:
https://share.streamlit.io/t1emp0/tfg/main/GEC_streamlit_app.py

4.6.3 Approximate Nearest Neighbours

The k-Nearest Neighbours (k-NN) is an optimization problem in which given a
point from a set, the k closest points need to be found. This problem arises quite
frequently in different fields of application.

In our particular case, we are only interested in finding the articles that are
nearer to the given one. Therefore, we could use this method in order to save the
need of calculating the cosine similarities between all the articles embeddings.

https://share.streamlit.io/t1emp0/tfg/main/GEC_streamlit_app.py
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There are several algorithms that resolve this problem. The quality of the out-
puts depends on the time and space complexities of their search data structures.

A common relaxation of the problem is what is known as the Approximate
Nearest Neighbours search. The aim of this thesis was not to implement these
algorithm nor to compare them. For this reason, we took advantage of the work
done by some libraries. After testing a few of them, Facebook’s FAISS [8] was cho-
sen due to its simplicity and speed. A proof of concept was made using some data
from the previous sections. The pipeline started by indexing the dense vectors.
Afterwards you could launch a query with another vector and it would return the
closest ones. Despite no formal evaluation taking place, different trials were ran
and the final results were satisfactory.

Using the proof of concept as a starting point, the ideal scenario would be to
build a web service with that use case. Such web service would have a running
instance of the FAISS pipeline. The first time it was executed, the indexing would
need to take place but afterwards it will be as easy as making a query to obtain
the results.

This would greatly expand the usability of the preview app by allowing users
to query the database with their own texts. First, those texts will need to be
passed through the sentence transformer to obtain their embeddings. Then, the
embedding would be sent to the web service and the response would be shown to
the user.

Conceptually it is a simple pipeline. However, due to the architectural con-
straints of this implementation, it ended up out of the scope of the thesis.



Chapter 5

Conclusions and future work

The first objective of this thesis was to understand how do neural networks work:
in particular, the attention mechanism and the transformers architecture as well
as the language models and their training. Our aspirations were to not only get
the basic idea but also to be able to formulate those concepts from a mathematical
perspective. In the beginning, it looked like a daunting task, but (with quite a bit
of research) it was successfully achieved in Chapter 3.

Afterwards, in Chapter 4, we explain the pipeline of how a model should be
tested by experimenting with some real-world data. Once we had checked the
Semantic Textual Similarities from a labelled dataset and seeing that our model
performed in a reasonable way, we proceeded to retrieve the k-Nearest Neighbors
(k-NN) from a sample of the articles. With all the data obtained, some visualiza-
tions were produced which confirmed that the embeddings were behaving in the
way we were expecting them to do so. In addition, a simple front-end applica-
tion was built so that users could interact with the articles and get a grasp of the
model’s inner workings.

Bearing all the above in mind, we can claim that the thesis was fulfilled as
intended and the objectives that were set in the start have been fruitfully accom-
plished. The development was quite smooth, which brought us great joy and left
us with new knowledge that, for sure, will be proven useful in our future adven-
tures.

However, we need to acknowledge some limitations of our study. Firstly, the
results obtained from the GEC dataset articles lacked quantitative measures. Those
metrics could have been obtained via user validation. That way, we could assess
how good the predicted neighbours are and give some insights on their relation-
ship. Nonetheless, it was quite clearly out of the scope of this project due to the
magnitude difference.

Moreover, if we had more time (or resources) we could have aimed to process
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the whole dataset and not just a subset, meaning that the relationship between
articles from the same collection might have been made more evident with more
samples. Also, we could have been able to make some more tests even probably it
would have only affected lightly to our results. We state that because, as seen in
the Table 4.2, the data was already consistent and the returned k-NN were already
the closest ones.

Another possible expansion of the thesis would have been to explore topic
modelling: a collection of techniques that allow the users to group the articles by
topic. It could be useful to see how articles are consumed along timeline segre-
gated by themes.

Finally, it would have been positive to compare the BERTa model with some
other Catalan model, as for example Julibert 8, another Roberta-based model. The
pipeline is adapted for using Hugging Face’s API, so it would be trivial to perform
this experiment (once having the resources needed).

In conclusion, we can state that is very useful to have a language-specific model
for Catalan language with all the associated benefits it carries.

8https://huggingface.co/softcatala/julibert

https://huggingface.co/softcatala/julibert
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