
   1Morales-Ivorra I, et al. RMD Open 2022;8:e002458. doi:10.1136/rmdopen-2022-002458

ORIGINAL RESEARCH

Assessment of inflammation in patients 
with rheumatoid arthritis using 
thermography and machine learning: a 
fast and automated technique

Isabel Morales-Ivorra  ‍ ‍ ,1 Javier Narváez  ‍ ‍ ,2 Carmen Gómez-Vaquero,2 
Carmen Moragues,2 Joan M Nolla  ‍ ‍ ,2 José A Narváez,3 
Manuel Alejandro Marín-López  ‍ ‍ 4

To cite: Morales-Ivorra I, 
Narváez J, Gómez-Vaquero C, 
et al. Assessment of 
inflammation in patients with 
rheumatoid arthritis using 
thermography and machine 
learning: a fast and automated 
technique. RMD Open 
2022;8:e002458. doi:10.1136/
rmdopen-2022-002458

	► Additional supplemental 
material is published online only. 
To view, please visit the journal 
online (http://​dx.​doi.​org/​10.​
1136/​rmdopen-​2022-​002458).

Received 6 May 2022
Accepted 30 June 2022

1Rheumatology Department, 
Hospital Universitari d'Igualada, 
Igualada, Spain
2Rheumatology Department, 
Hospital Universitari de Bellvitge, 
L'Hospitalet de Llobregat, Spain
3Radiodiagnosis Department, 
Hospital Universitari de Bellvitge, 
L'Hospitalet de Llobregat, Spain
4R&D Department, Singularity 
Biomed, Sant Cugat del Vallès, 
Spain

Correspondence to
Dr Isabel Morales-Ivorra;  
​isabel.​morales.​ivorra@​gmail.​
com

Imaging

© Author(s) (or their 
employer(s)) 2022. Re-use 
permitted under CC BY-NC. No 
commercial re-use. See rights 
and permissions. Published 
by BMJ.

ABSTRACT
Objectives  Sensitive detection of joint inflammation in 
rheumatoid arthritis (RA) is crucial to the success of the 
treat-to-target strategy. In this study, we characterise a 
novel machine learning-based computational method 
to automatically assess joint inflammation in RA using 
thermography of the hands, a fast and non-invasive 
imaging technique.
Methods  We recruited 595 patients with arthritis and 
osteoarthritis, as well as healthy subjects at two hospitals 
over 4 years. Machine learning was used to assess joint 
inflammation from the thermal images of the hands 
using ultrasound as the reference standard, obtaining a 
Thermographic Joint Inflammation Score (ThermoJIS). 
The machine learning model was trained and tuned using 
data from 449 participants with different types of arthritis, 
osteoarthritis or without rheumatic disease (development 
set). The performance of the method was evaluated based 
on 146 patients with RA (validation set) using Spearman’s 
rank correlation coefficient, area under the receiver-
operating curve (AUROC), average precision, sensitivity, 
specificity, positive and negative predictive value and F1-
score.
Results  ThermoJIS correlated moderately with ultrasound 
scores (grey-scale synovial hypertrophy=0.49, p<0.001; 
and power Doppler=0.51, p<0.001). The AUROC for 
ThermoJIS for detecting active synovitis was 0.78 (95% 
CI, 0.71 to 0.86; p<0.001). In patients with RA in clinical 
remission, ThermoJIS values were significantly higher 
when active synovitis was detected by ultrasound.
Conclusions  ThermoJIS was able to detect joint 
inflammation in patients with RA, even in those in clinical 
remission. These results open an opportunity to develop 
new tools for routine detection of joint inflammation.

INTRODUCTION
Rheumatoid arthritis (RA) is an inflammatory 
disease characterised by chronic synovitis, 
joint destruction and disability. Current thera-
pies and treat-to-target strategies make remis-
sion an achievable goal.1 2 Several definitions 

of clinical remission have been proposed, 
mainly using composite indices of disease 
activity, with the strictest being the American 
College of Rheumatology (ACR)/European 
Alliance of Associations for Rheumatology 
(EULAR) Boolean definition of remission.3–5 
Many patients in clinical remission continue 
having subclinical synovitis irrespective of 
whether the 28-joint count Disease Activity 
Score (DAS28), Simplified Disease Activity 
Index (SDAI), Clinical Disease Activity Index 
(CDAI) or ACR/EULAR Boolean definition 
remission is used. Subclinical synovitis has 
been associated with a higher risk of flares, 
progression of structural damage and unsuc-
cessful drug tapering, especially when Doppler 
activity is present.6–15 Imaging modalities such 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Thermography is a fast, non-invasive imaging tech-
nique that creates an image of the heat emitted by 
bodies.

	⇒ Warmth is one of the cardinal signs of inflammation. 
Previous preclinical and clinical research showed 
thermographically detectable changes in inflamed 
joints.

WHAT THIS STUDY ADDS
	⇒ The analysis of thermal images of the hands with 
a novel machine learning-based algorithm assesses 
joint inflammation in patients with rheumatoid ar-
thritis instantaneously, accurately and automatically.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ This novel method could help to assess subclinical 
inflammation in the rheumatologist’s office quickly 
and automatically.

	⇒ This novel method constitutes an easy approach to 
assessing joint inflammation remotely.
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as MRI and ultrasound are more sensitive than clinical 
assessment for detecting inflammation.16–19 However, 
ultrasound and MRI have disadvantages such as operator 
dependency for interpretation of the images, limited 
availability for routine clinical use, a steep learning curve 
and scanning time.20 21 In this context, new techniques 
that enable detection of subclinical inflammation in 
a fast and automated way could improve assessment of 
inflammation in routine clinical practice.

Thermography is a fast, non-invasive imaging tech-
nique that works by capturing the intensity of long 
wave infrared radiation emitted by bodies that increases 
with temperature.22–24 Given that warmth is one of the 
cardinal signs of inflammation, thermography could be 
useful for detecting arthritis. Previous research (both 
preclinical and clinical) has demonstrated thermograph-
ically detectable changes in inflamed joints.25–30

The aim of this study was to validate a novel machine 
learning-based computational method to automati-
cally assess joint inflammation in patients with RA using 
thermal images of the hands.

METHODS
Patients
The study population comprised 595 consecutive subjects 
recruited at outpatient visits to the departments of rheu-
matology and radiodiagnosis of two hospitals between 
March 2018 and March 2022. The inclusion criteria 
were a diagnosis of RA, psoriatic arthritis, undifferenti-
ated arthritis, arthritis of the hands secondary to other 
diseases and osteoarthritis of the hands (OA). Subjects 
without a previous diagnosis of rheumatic disease were 
also recruited as healthy subjects (HS). Exclusion criteria 
were: age under 18 years; subjects with wounds, infection 
or trauma in the dorsal side of the hands; and subjects 
using bandages, cosmetics or other substances that could 
affect the thermal pattern prior to data collection. Data 
from the patients with RA whose thermal image was 
acquired with the Thermal Expert TE-Q1 camera were 
used to evaluate the performance of the method (vali-
dation set). Data from the other subjects were used for 
training and tuning of the machine learning model 
(development set).

The study complied with the Declaration of Helsinki.

Thermography
A thermographic image of the hands was taken using a 
Flir One Pro or a Thermal Expert TE-Q1 camera with a 
6.8 mm lens. Both cameras use the same type of detector 
and capture infrared radiation on the same wavelength 
band (see detailed specifications in online supplemental 
table S1). Thermal cameras were connected to a smart-
phone, and a custom mobile application was developed to 
acquire the raw thermal images (ie, infrared wave inten-
sity). Thermography was performed at the outpatient 
visits before ultrasound and physical examination and 
without an acclimatisation process or controlled room 

temperature in order to reproduce real-world conditions. 
The dorsal images of both hands were recorded with the 
fingers spread. No fixed distance between the camera 
and the hand was required, although the researcher was 
instructed to frame and focus the image.

Ultrasonography
Ultrasonography of both hands was performed in all 
patients except HS and was used as a reference standard 
for the detection and quantification of synovitis. Ultra-
sound was performed by three examiners (IM-I, CM and 
JAN) using a GE Logiq 9 with a 9-MHz to 14-MHz linear 
array transducer (Milwaukee, Wisconsin, USA). Both 
the patient and the probe were positioned according 
to EULAR guidelines.31 All participants underwent an 
ultrasound assessment (blinded with respect to other 
study results) consisting of a systematic examination (in 
B-mode and power Doppler mode) of the wrist (radi-
ocarpal, midcarpal, distal radioulnar joint, using the 
highest score as representative), metacarpophalangeal 
joint 1–5, and proximal interphalangeal joint 1–5 of 
both hands. Each joint was scored using the OMERACT-
EULAR semi-quantitative scoring system (0–3) for grey-
scale synovial hypertrophy (GS) and for power Doppler 
(PD).32 33 At the patient level, an ultrasound sum score of 
the joints explored was made for GS (GS sum score) and 
PD (PD sum score). GS and PD sum scores were set to 0 
in HS. Patients with a GS sum score grade >1 and PD sum 
score >0 were labelled as having active synovitis.34–36

Clinical and laboratory assessment
Clinical and laboratory assessments were performed in 
the validation set and included the number of swollen 
and tender joints in the standard 28-joint count exam-
ination (SJC28 and TJC28), Patient Global Assessment 
(PGA) and Evaluator Global Assessment of disease 
activity based on a Visual Analogue Scale score (0–10), 
erythrocyte sedimentation rate (ESR) and C-reactive 
protein value (CRP). The criteria for clinical remission 
were applied, with remission being defined as follows: 
DAS28  <2.637 38 ; CDAI ≤2.8; SDAI ≤3.35 39 40 ; and the 
ACR/EULAR Boolean definition of remission (all  ≤1: 
TJC28, SJC28, CRP in mg/dL and PGA).40 Clinical and 
laboratory assessments were not performed on the devel-
opment set, as these variables were not required to train 
or tune the machine learning model.

Thermal features extraction
Thermal images were resized to 160×120 pixels and 
processed to set the intensity values to an eight-bit 
grey-scale image. Additionally, images were improved 
by means of noise reduction, background removal and 
contrast enhancement (figure  1). For each thermal 
image, a set of regions of interest (ROIs) was obtained. 
ROIs were defined as local regions of the image with a 
large variation in intensity in all the directions, such as 
corners or blobs. The corners or blobs were detected 
in various sizes using a scale-space representation of 
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the image. Local thermal features were extracted using 
scale-invariant and rotation-invariant descriptors from 
the ROIs detected. These features contained highly 
distinctive patterns, which may elucidate the underlying 
inflammatory process. Given that ROIs were selected and 
features extracted automatically by the algorithm, no 
human intervention was needed to process the thermal 
images.

Machine learning
Each thermal feature obtained from the development set 
was labelled with the PD sum score of the hand of the 
patient from whom the feature was extracted. A k-nearest 
neighbours algorithm was used to evaluate whether 
an unseen feature is characteristic of synovitis (ie, the 
average of the k-nearest features of the development set 
was used to assign a synovitis score to new features). A 
Thermographic Joint Inflammation Score (ThermoJIS) 
was assigned to each patient by averaging the synovitis 
scores of its features. The hyperparameters (eg, number 
of neighbours) were tuned using a leave-one-out cross-
validation within the development set. The ThermoJIS 
raw values of the validation set were normalised to be in 
a more intuitive range (mean of 5 and a SD of 2.5). The 
higher the ThermoJIS value, the greater the confidence 
of having active synovitis. The analysis was performed 
using in-house software (Singularity Biomed).

Statistical analysis
Subject characteristics were described using means with 
SD, medians with IQR and frequencies with proportions, 
where appropriate. The performance of ThermoJIS was 
evaluated in the validation set, which is completely inde-
pendent of the development set, to prevent overfitting. 
Subjects with missing ultrasound or thermographic data 
were excluded. Patients with missing clinical or labo-
ratory data from the validation set were moved to the 
development set. Sample size for the development set 

was unknowable, so we recruited as many participants 
as possible to maximise training. The number of partic-
ipants in the validation set exceeded the sample size 
calculations to provide robust results. The correlations of 
the scores were calculated using Spearman’s rank corre-
lation coefficient. Differences between group medians 
were tested for significance using the Mann-Whitney 
test. The area under the receiver operating characteristic 
curve (AUROC) and the average precision were used to 
evaluate the diagnostic performance. Sensitivity, speci-
ficity, positive predictive value (PPV), negative predictive 
values (NPV) and F1-score were also calculated. Statis-
tical significance was set at p<0.05 (two-sided). The statis-
tical analysis was performed using Python V.3.7, NumPy 
V.1.19, Scikit-learn V.0.24, and SciPy V.1.4.

RESULTS
Characteristics
All subjects tolerated the procedure well, and no adverse 
effects were observed. No participants were excluded 
due to lack of ultrasonography or thermography data. 
However, seven patients from the validation set were 
moved to the development set due to missing clinical or 
laboratory data. A diagram showing the flow of the partic-
ipants and the description of each group is reported in 
online supplemental figure S1. Thermal images of the 
hands were acquired with a FLIR ONE Pro in 71% of 
cases in the development set. Demographic and ultra-
sound data from the development set are reported in 
table 1.

Table 2details the demographic, clinical and laboratory 
data and disease activity of patients included in the vali-
dation set.

Association between ThermoJIS and ultrasound scores
The correlation coefficients for ThermoJIS and the 
GS sum score (rho, 0.49; p<0.001) and for ThermoJIS 
and the PD sum score (rho, 0.51; p<0.001) were both 
moderate (figure  2). The correlation coefficients for 
ThermoJIS, GS sum score, PD sum score and the results 
of the clinical and laboratory assessments are detailed in 
table 3. The distribution of ThermoJIS is shown in online 
supplemental figure S2.

Detection of active synovitis
ThermoJIS had an AUROC of 0.78 (95% CI, 0.71 to 0.86; 
p<0.001) for detecting active synovitis (GS sum score 
>1 and PD sum score >0) (figure 3A). AUROC results 
were similar in different age and gender groups (online 
supplemental table S2). Sensitivity and specificity values 
depend on the cutoff chosen of ThermoJIS. The Ther-
moJIS value with maximum sensitivity and specificity 
was 3.56 (sensitivity, 94%; specificity, 51%; PPV, 68%; 
NPV, 88%; F1-score, 0.79). The probability of having 
active synovitis at different ThermoJIS intervals was 
also calculated (figure 4). ThermoJIS values between 4 
and 5 showed no difference with random probabilities. 

Figure 1  Eight-bit grey-scale thermal images of the hands 
of a patient with rheumatoid arthritis from the validation set 
after noise reduction, background removal and contrast 
enhancement.
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Therefore, if values around this interval are considered 
indeterminate, the performance improves at the cost 
of reducing applicability of the method. In a subanal-
ysis in which ThermoJIS values between 3.46 and 5.65 
were considered indeterminate, the AUROC improved 
to 0.86 (95% CI, 0.78 to 0.95, p<0.001), although 43% 
of patients had an indeterminate result (figure 3B). In 
this subanalysis, the ThermoJIS value with maximum 
sensitivity and specificity was 5.81 (sensitivity, 87%; 
specificity, 82%; PPV, 81%; NPV, 88%; F1-score, 0.84). 
The precision-recall curves and average precisions are 
reported in online supplemental figure S3.

Detection of subclinical active synovitis
Some patients in clinical remission presented active syno-
vitis: 25.0% for DAS28-CRP<2.6, 31% for CDAI ≤2.8, 30% 
for SDAI ≤3.3 and 37.5% for the ACR/EULAR Boolean 
definition of remission. The values of ThermoJIS in 
patients with RA in clinical remission were significantly 
higher in patients with active synovitis than in patients 
with remission determined by ultrasound (figure  5). 
AUROC values were 0.81 (95% CI, 0.70 to 0.92; p<0.001), 
0.88 (95% CI, 0.76 to 1.0; p=0.001), 0.85 (95% CI, 0.71 
to 0.98; p=0.003) and 0.92 (95% CI, 0.81 to 1.0; p=0.001), 
respectively.

Table 1  Demographic and ultrasound data: development set

RA (n=169) PsA (n=39) UA (n=30) SA (n=35) OA (n=22) HS (n=154)

Age (years) 61±15 58±13 61±14 64±15 61±11 52±17

Female sex (%) 75.1 59.0 60.0 60.0 90.9 57.8

Active synovitis (%) 43.8 20.5 56.7 57.1 4.5 NA

Active synovitis
(GS sum score)

5 (3, 8) 6 (2, 9) 5 (3, 14) 4 (3, 5) 2 (2, 2) NA

Active synovitis
(PD sum score)

2 (2, 4) 3 (2, 5) 3 (2, 8) 2 (1, 3) 1 (1, 1) NA

Distributions are presented as mean±SD or median (IQR).
GS, grey-scale synovial hypertrophy; HS, healthy subjects; OA, osteoarthritis; PD, power Doppler; PsA, psoriatic arthritis; RA, rheumatoid 
arthritis; SA, arthritis of hands secondary to other diseases; UA, undifferentiated arthritis.

Table 2  Demographic, clinical, laboratory assessment and ultrasound data: validation set

All (n=146) Active synovitis (n=77) No active synovitis (n=69)

Age (years) 57±14 59±15 54±12

Female sex (%) 80.1 80.5 79.7

TJC28 1 (0, 4) 4 (1, 7) 0 (0, 2)

SJC28 0 (0, 3) 3 (0, 6) 0 (0, 0)

PGA 5 (2, 7) 5 (3, 8) 3 (1, 5)

EGA 3 (1, 5) 5 (2, 6) 2 (0, 3)

CRP (mg/L) 2.4 (1.0, 7.6) 5.0 (1.9, 11.0) 2.0 (1.0, 4.0)

ESR (mm/h) 19 (10, 34) 19 (10, 43) 19 (9, 27)

DAS28-CRP 3.1±1.4 3.8±1.4 2.3±0.8

CDAI 12.7±10.6 18.0±11.3 6.8±5.3

SDAI 13.4±11.1 19.0±1.9 7.2±5.3

DAS28-CRP Rem 60 (41.1%) 15 (19.5 %) 45 (65.2 %)

CDAI Rem 29 (19.9 %) 9 (11.7 %) 20 (29.0 %)

SDAI Rem 30 (20.5 %) 9 (11.7 %) 21 (30.4 %)

Boolean Rem 24 (16.4 %) 9 (11.7 %) 15 (21.7 %)

GS sum score 3 (0, 8) 7 (5, 11) 0 (0, 1)

PD sum score 1 (0, 4) 3 (2, 5) 0 (0, 0)

Distributions are presented as mean±SD or median (IQR).
CDAI, Clinical Disease Activity Index; CRP, C-reactive protein; DAS28, 28-joint Disease Activity Score; EGA, Evaluator Global Assessment; 
ESR, erythrocyte sedimentation rate; GS, grey-scale synovial hypertrophy; PD, power Doppler; PGA, Patient Global Assessment; SDAI, 
Simplified Disease Activity Index; SJC, swollen joint count; TJC, tender joint count.
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DISCUSSION
The 595 subjects recruited over 4 years for this cross-
sectional study make it the largest study on thermog-
raphy in rheumatology to date. Machine learning tech-
niques generally require large amounts of data for 
training, so we recruited patients with different types 
of arthritis, OA and HS with the aim of increasing the 
development sample size and improving model training. 
Validation was performed exclusively in patients with RA 
in order to provide generalisable results for this disease. 

Furthermore, the use of two different camera models 
allowed us to note that the thermal patterns detected in 
a thermal image are not specific to a particular camera 
model, but are mantained between cameras with different 
specifications.

Our findings suggest that thermography analysis of 
the hands using our machine learning-based algorithm 
can successfully detect active synovitis. Furthermore, in 
patients in clinical remission, regardless of the definition 
used, the ThermoJIS was significantly higher if active 
synovitis was detected using ultrasonography. The Ther-
moJIS correlated moderately with ultrasound, but weakly 
with PGA, CRP and ESR, suggesting that ThermoJIS is 
not redundant with respect to symptoms and laboratory 
assessment and could be combined with these variables 
to develop new indices of disease activity. Moreover, the 
ThermoJIS also correlated better with ultrasound than 
symptoms and laboratory assessment.

Ultrasonography and MRI are sensitive methods for 
evaluating synovitis in RA, although routine use of these 
techniques is not feasible for most outpatient visits.41 42 In 
recent years, a new generation of affordable, uncooled, 
microbolometer-based thermal detectors has been devel-
oped. These thermal cameras are compact and perform 
sufficiently well for medical imaging.43 Assessing joint 
inflammation using thermography of the hands with 
machine learning-based analysis is a non-invasive, instan-
taneous, automatic and operator-independent approach. 
These advantages make this promising new technique 
suitable for routine use in clinical practice. Given that 
ThermoJIS is higher in patients with subclinical synovitis 
than in those in ultrasound remission, it could be used 
to detect patients with persistent subclinical joint inflam-
mation who have a higher risk of flares and progression 
of structural damage.8 10 44 Furthermore, the ThermoJIS 
could be of value in situations where the rheumatologist’s 
physical examination cannot be performed, since ther-
mography can easily be performed remotely (ie, without 
the need to attend the clinic), even at the patient’s home.

In most previous studies using thermography to assess 
joint inflammation, descriptive statistics (eg, mean, SD) 
were used to report temperature in degrees.28–30 These 
showed increased temperature in the inflamed joints. 
However, in our approach, the features extracted repre-
sent patterns rather than a temperature measurement, 
thus avoiding the need for precise calibration or the 

Figure 2  Association between the Thermographic 
Joint Inflammation Score (ThermoJIS) and ultrasound. 
(A) Correlation between the grey-scale synovial hypertrophy 
(GS) sum score and the ThermoJIS; (B) Correlation between 
the power Doppler (PD) sum score and the ThermoJIS.

Table 3  Correlation between ThermoJIS and ultrasound scores and the clinical and laboratory assessments

TJC28 SJC28 PGA EGA CRP ESR

ThermoJIS 0.33 (p<0.001) 0.38 (p<0.001) 0.16 (p=0.047) 0.32 (p<0.001) 0.20 (p=0.001) 0.28 (p=0.015)

GS sum score 0.52 (p<0.001) 0.79 (p<0.001) 0.35 (p<0.001) 0.60 (p<0.001) 0.40 (p<0.001) 0.22 (p=0.006)

PD sum score 0.56 (p<0.001) 0.72 (p<0.001) 0.39 (p<0.001) 0.60 (p<0.001) 0.36 (p<0.001) 0.16 (p=0.057)

CRP, C-reactive protein; EGA, Evaluator Global Assessment; ESR, erythrocyte sedimentation rate; GS, grey-scale synovial hypertrophy; 
PD, power Doppler; PGA, Patient Global Assessment; SJC28, swollen joints in standard 28-joint count; ThermoJIS, Thermographic Joint 
Inflammation Score; TJC28, tender joints in standard 28-joint count.
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use of a blackbody to obtain accurate temperature read-
ings. Another strength of the method is that the features 
extracted are not limited to regions that coincide with 
the anatomical sites of the joints; instead, the entire hand 
is analysed without human intervention.

Our study is subject to limitations. Although we vali-
dated our method internally with a validation set 
containing data that were not used in the development 
of the model, external validation is needed to avoid spec-
trum bias. In addition, we did not measure tenosynovitis. 
The inclusion of tenosynovitis could improve the results, 

since it would improve comprehension of the inflamma-
tory process in the hand captured by the thermal camera. 
New studies are planned to externally validate perfor-
mance in a new cohort of patients with RA.

In conclusion, the ThermoJIS detects active synovitis 
and could pave the way for the development of new tools 

Figure 3  Analysis of the area under the receiver operating curve (AUROC) of the Thermographic Joint Inflammation Score 
(ThermoJIS) for the detection of active synovitis. (A) Considering the entire validation set (AUROC, 0.78; 95% CI 0.71 to 
0.86, p<0.001); (B) Considering ThermoJIS values lower than 3.46 and greater than 5.65 (AUROC, 0.86; 95% CI 0.78 to 0.95, 
p<0.001). TPR, True Positive Rate; FPR, False Positive Rate.

Figure 4  Probability of presenting active synovitis at 
different ThermoJIS intervals in the validation set. The 
baseline probability (dashed line) is the proportion of 
patients with active synovitis in the set, that is, the random 
probability. ThermoJIS, Thermographic Joint Inflammation 
Score.

Figure 5  ThermoJIS distributions according to clinical 
remission criteria in patients with and without active 
synovitis. DAS28-CRP Rem (DAS28-CRP <2.6), CDAI Rem 
(CDAI ≤2.8), SDAI Rem (SDAI ≤3.3), and Boolean Rem (all 
≤1: 28 tender joint count, 28 swollen joint count, C-reactive 
protein (mg/dL) and Patient Global Assessment). *p<0.05; 
**p<0.01; ***p<0.001. CDAI, Clinical Disease Activity Index; 
DAS28, 28-joint count Disease Activity Score; GS, grey-scale 
synovial hypertrophy; PD, power Doppler; SDAI, Simplified 
Disease Activity index; ThermoJIS, Thermographic Joint 
Inflammation Score.
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for routine detection of joint inflammation in the rheu-
matologist’s office and for remote assessment of patients 
with RA.
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