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Abstract: Rock slope monitoring using 3D point cloud data allows the creation of rockfall inventories,
provided that an efficient methodology is available to quantify the activity. However, monitoring
with high temporal and spatial resolution entails the processing of a great volume of data, which can
become a problem for the processing system. The standard methodology for monitoring includes
the steps of data capture, point cloud alignment, the measure of differences, clustering differences,
and identification of rockfalls. In this article, we propose a new methodology adapted from existing
algorithms (multiscale model to model cloud comparison and density-based spatial clustering of
applications with noise algorithm) and machine learning techniques to facilitate the identification of
rockfalls from compared temporary 3D point clouds, possibly the step with most user interpretation.
Point clouds are processed to generate 33 new features related to the rock cliff differences, predomi-
nant differences, or orientation for classification with 11 machine learning models, combined with
2 undersampling and 13 oversampling methods. The proposed methodology is divided into two
software packages: point cloud monitoring and cluster classification. The prediction model applied
in two study cases in the Montserrat conglomeratic massif (Barcelona, Spain) reveal that a reduction
of 98% in the initial number of clusters is sufficient to identify the totality of rockfalls in the first case
study. The second case study requires a 96% reduction to identify 90% of the rockfalls, suggesting
that the homogeneity of the rockfall characteristics is a key factor for the correct prediction of the
machine learning models.

Keywords: rockfall; TLS; point cloud; monitoring; machine learning

1. Introduction

Rockfalls are one of the most frequent and dangerous phenomena in mountainous
areas [1,2]. They consist of rock fragments that are detached from a steep rock face by
descending rapidly while performing a free fall, rolling or bouncing [3]. They are essentially
gravitational events triggered at high speed, which may cause severe damage to buildings,
infrastructures, and lifelines due to their spatial and temporal frequency and their intensity
(kinetic energy) [4,5]. Rockfall risk in mountainous areas is increasing as the population and
economic activity increase [6]. Therefore, rigorous hazard and risk analyses are essential
to provide the best possible protection measures [5]. The rockfall magnitude–frequency
relationship is an important component of hazard and risk assessment for dangerous slopes,
which can be evaluated using a rockfall inventory [7,8]. In addition to the magnitude–
frequency relationship, information on the location of the source zone and the shape of the
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block can be useful for understanding the failure processes that operate on the slope [7,9].
Thus, the identification and characterization of rockfall events on rock slopes constitute a
necessary task for risk assessment and mitigation.

Nowadays, the development of remote sensing techniques such as terrestrial laser
scanner (TLS) based on the lidar (light detection and ranging) technique and digital pho-
togrammetry has been advantageous where steep and unstable slopes make conventional
field data collection dangerous and impractical [10]. Such remote sensing techniques greatly
facilitate the collection of a significant amount of high-quality data, i.e., 3D point clouds.
As a result, the studies on the identification of changes in rock slopes and the acquisition of
rockfall inventories are rapidly increasing [11–13].

1.1. Rockfall Source Analysis from Point Cloud Data

Recently, many applications of rockfall analysis employing 3D point cloud data pro-
duced from TLS or photogrammetry have been developed. In terms of rockfall source
detection, Santana et al. [14] and Corominas et al. [15] identify rockfall scars and calculate
their volumes, using a point cloud by means of identifying discontinuity surfaces and
the minimum spacing between them. Other authors used single point clouds to perform
rock cliff stability analysis such as Fanti et al. [16] and Mazzanti et al. [17]. However, the
development of change detection algorithms, such as M3C2 [18], facilitates the identifi-
cation of areas of loss on slopes (i.e., rockfalls) among subsequent 3D point clouds. The
location, volume, and shape of rockfalls on the slope can be calculated and populated into
a database. In this respect, Tonini and Abellan [19] detect and extract individual rockfall
events that occurred during a time span by using clustering algorithms. Van Veen et al. [7]
applied these methods to a hazardous slope that presents rockfall hazards to the CN Rail
line in British Columbia, to build a database of rockfalls. Janeras et al. [20] quantified
the frequency of small or even previously unnoticed rockfalls in Montserrat massif near
Barcelona (NE Spain). Bonneau et al. [21] describe the rationale and consequences of
measuring the dimensions of 3D rockfall objects obtained from successive point clouds, and
introduce two unique algorithms to standardize the process. Bonneau and Hutchinson [22]
use high-resolution photographs to validate changes described in TLS data analysis and to
follow deposition patterns in a dynamic cliff talus system. Furthermore, in order to moni-
tor progressive failures, change detection systems have been used to identify precursory
indicators, such as cleft opening or pre-failure deformations [23–25].

The interval between point cloud acquisitions has a significant impact on both the
identification of rockfall precursory indicators and the categorization of rockfalls with
their shape and volume from change detection approaches [7,19,26]. In order to better
understand progressive failures and to improve the magnitude–frequency relationship
to characterize the rockfall activity on a rock cliff, fixed systems have been developed to
acquire data with a high frequency or in quasi real-time [27–29]. Consequently, a large
amount of high-quality data acquired by TLS and photogrammetry in high-frequency
monitoring approaches has begun to overwhelm users [26,30]. Consequently, the process
of change identification in rock cliffs from lidar or photogrammetric 3D point clouds has
undergone a thorough development in the last years to address and improve the current
time-consuming analytical methods.

The algorithms developed to automate the processes for the detection of change from
multi-temporal 3D point cloud comparison usually follow these steps (see comparative in
Figure 1): (a) point cloud classification to remove objects without interest (e.g., vegetation,
or misplaced points due to moisture or edge effects); (b) point clouds alignment (i.e.,
placing the different point clouds in the same reference system); (c) computing differences
between point clouds; (d) clustering neighboring points with significant differences, and
(e) classification of clusters according to their nature (e.g., bedrock, vegetation, edge effects,
soil, rockfall, or deformation) [24,25,31]. Numerous initiatives have been made to automate
intelligent pipelines using machine learning techniques such as deep learning and neural
networks, which have made tremendous progress, particularly in the task of identifying
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rockfalls. However, in this proposal we try to automate not only the identification of
rockfalls but also the evolution of the overall process, as data are collected over time until
the final prediction is obtained.
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Figure 1. Comparative of the standard workflow with the method proposed in this study to identify
rockfalls from point clouds. The proposed workflow uses 33 features and point cloud texture intensity
for machine learning classification. Letters refer to text explanation in Section 1.1.

1.2. Improvements on Rockfall Detection from Point Cloud Comparison including Machine
Learning Algorithms

Recent research studies utilize mainly machine learning algorithms for rock-slope
and landslide monitoring and analysis ([32] and references therein). However, few studies
address the automation of rockfall detection including machine learning processes in the
different steps of the point cloud comparison.

Since differences in vegetation, soil, anthropic actions or rockfalls lead to inaccuracies
in the point clouds alignment process, the first step for point clouds comparison is the
filtering of unwanted areas of each point cloud, such as vegetation or edges, to infer
optimal change detection and posterior rockfall classification [29]. It is sometimes difficult
to separate bedrock from vegetation or another class of surface in terms of time consumption
or supervision of the result. Different approaches consist of manually generating masks
with the areas of interest in the point cloud scene [30,33]. Furthermore, based on the
possibilities of analyzing the lidar return intensity, Williams et al. [29] remove points with
certain criteria, thereby reducing uncertainty. Other approaches, such as CANUPO [34],
classify regions of interest, training binary classifiers and combining them with some rules.
Weidner et al. [33] present a random forest machine learning approach that improves the
classification accuracy and efficiency compared to CANUPO. Other approaches, such as
surface interpolation concepts with the cloth simulation filter (CSF, [35]), or multiscale
curvature classification MCC [36], are also strategies for identifying relevant classes of
surfaces (e.g., bedrock, soils, or vegetation). This step for removing unwanted points can be
carried out, providing that the success of this operation is ensured. However, in cliffs with
complex morphology and compounded of different materials (rock, soil, talus, vegetation,
etc.), it is difficult to encompass a good automatic classification, requiring time-consuming
manual filtering.

Other advances have focused on adapting and improving change detection algorithms.
While the most commonly used algorithm is Multiscale Model-to-Model Cloud Comparison
(M3C2) [18], other authors such as Williams et al. [29] and Kromer et al. [37] improved
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the overall accuracy of change detection and streamlined the workflow when applied to
large time series scan datasets. For the purpose of recognizing rockfall events, additional
developments have been offered by DiFrancesco et al. [4], indicating enhancements to the
performance of the change algorithm. According to these authors, the procedure of filtering
away incorrect clusters (such as vegetation, edge faults, snow, or dampness) is often either
disregarded or carried out manually once individual objects are recovered from the point
cloud using clustering.

Several authors have developed different approaches to gain objectivity, efficiency, or
productivity in cluster classification. Supervised or manual classification is one of the most
commonly employed techniques, but identifying rockfalls according to several classes is a
tedious and laborious undertaking that can sometimes become subjective and dependent
on the criteria used by the expert classifiers [7,38,39]. More recent proposals are based on
statistical model classifications and machine learning studies such as those by Schovanec
et al. [30]. The aforementioned study proposes a way of filtering clusters using the random
forest algorithm. However, they do not address the data imbalance issues (lower number of
rockfall labeled clusters vs. higher number of no-rockfall clusters), caused by the sensitivity
of the sensor and the complexity of the analyzed scene [32]. In this context, Zoumpekas
et al. [32] focus their work on identifying 3D point cloud clusters of the rockfall class while
dealing with an imbalanced classification task.

In this paper we propose a cluster classification method based on the developments by
Zoumpekas et al. [32], using different machine learning models and resampling strategies
in the classification of rockfall clusters in order to implement prediction models. In our
opinion, machine learning algorithms are better trained by using cluster features than
using 3D point characteristics. Consequently, we propose some adaptations of the al-
ready accepted algorithms for change detection (M3C2 by Lague et al. [18]) and clustering
(Density-Based Spatial Clustering of Applications with Noise, DBSCAN by Ester et al. [40])
to compute geometric features. Thus, a total of 33 features are used to characterize clusters
to improve the training stage for the machine learning classification. In this study, certain
characteristics of the clusters are proposed to be able to feed the learning models. Although
there could be more or others, in our proposal a global framework based on machine
learning is presented, but the study and validation of the elicitation of the characteristics
(features) used by the learning models is outside the scope of this proposal.

Zoumpekas et al. [32] concentrate on the machine learning training stage, analyzing
the associated problems and proposing a series of solutions and tools (data normalization,
balancing techniques, cross-validation, hyper-parameterization, classifier models, tools to
identify the best classifier model). Our current proposal shows the adaptation of existing
algorithms to better characterize clusters and incorporating the approaches proposed
by Zoumpekas et al. [32] to solve the problems encountered in the training stage. The
proposed intelligent framework is performed in two different rock cliffs of the Montserrat
massif (NE Spain) to test the response of prediction models against rockfalls of different
characteristics, in terms of volume and shape. This framework provides a novel ready-to-
use point cloud machine learning software targeted at rockfall identification, which may
be incorporated as a stand-alone component in a rockfall hazard decision support system.
The main contributions of this work are the following:

• We propose an extension of the full end-to-end intelligent framework proposed by
Zoumpekas et al. [32] for rockfall detection handling highly imbalanced data by
reducing the number of clusters in our data. We further introduce geological properties
to the framework itself.

• We implement the proposed intelligent system with real data from two different cliffs
of Montserrat massif (NE Spain) to validate its efficacy and effectiveness.

• Our results show great performance and robustness, which is of paramount impor-
tance in rockfall detection.

• We provide a baseline methodology and a detection accuracy benchmark for future
related experimental analyses.



Remote Sens. 2022, 14, 4306 5 of 30

• We have made fully accessible the applications developed in this work, the 3D point
cloud data used, and an example of application in public repositories (see Section 2).

The paper is organized as follows. Section 2 exposes how these methods have been
adapted to the proposed methodology, based on measuring new features that upgrade
machine learning classifications. Section 3 shows the results of the study case of the
Degotalls in the Montserrat massif (Barcelona, Spain), a rock cliff where the fracture pattern
favors the rockfalls next to infrastructures [20].

2. Methods

In the first steps, the proposed methodology follows the standard processes of data
capture, alignment, and a light manual point classification, which can be applied with the
most commonly used processing software (e.g., CloudCompare [41] or Polyworks [42]).
After that, the methodology is split into two steps. Firstly, the measurement of differences
to create clusters with associated features, and secondly the classification of clusters to
identify rockfalls (right side of Figure 1). Our contribution consists in implementing the
new features necessary for characterizing clusters and classifying rockfall clusters with
machine learning in order to increase the automation of the process. Thus, our methodology
proposes the following four-fold contributions:

1. The adaptation of the M3C2 algorithm to measure differences point-to-point and to
obtain the new associated features required for the machine learning processes. The
main features are geometric such as difference between point clouds, reference and
compared surface orientation, indexes of coplanarity and collinearity.

2. The development of a self-calibration method to automatically define the limit of
detection (LoD) and differentiate real changes in the rock cliff from the system noise.

3. The adaptation of the DBSCAN algorithm for clustering point clouds and create new
cluster features of predominance associated with the point differences (retreat or
advance) in the cliff surface.

4. The analysis of different machine learning models to classify clusters of rockfalls.

The first three methods, measurements of differences, LoD and clustering, imple-
mented in the “Point Cloud Monitoring” software (PCM), have been developed using
Visual Studio 2019 [43] and the BASIC programming language. The fourth method related
to the cluster classification is called “Cluster Classification” and it has been implemented
using Python programming language. All the developed applications in this research
are available at the GitHub repository of the group (https://github.com/Geomodels-
UB/Risknat_Detection) (accessed on 12 June 2022). The 3D point clouds, and one ex-
ample can be found in the UB repository: Point Cloud: https://dataverse.csuc.cat/
dataset.xhtml?persistentId=doi:10.34810/data201 (accessed on 20 July 2022). Example:
https://dataverse.csuc.cat/dataset.xhtml?persistentId=doi:10.34810/data199 (accessed on
20 July 2022).

The initial data format of the methodology is a 3D point cloud format (see Appendix A
for detailed information), to which the computed new features are added (see the complete
list in Appendix B). The cluster format (detailed in Appendix C) is a 3D point (the center of
mass of used points) which is characterized with statistical and cluster features.

2.1. Adaptation of the M3C2 Algorithm

Different strategies have been developed to measure changes in rock slope surfaces
over time. The most commonly employed techniques are: (a) point-to-point [41,44];
(b) point-to-model [19,45,46]; or (c) model-to-model [4,18,25]. The M3C2 method pro-
posed by Lague et al. [18] and implemented in the software CloudCompare [47] is one of
the most commonly employed in rockfall change detection [7,22,23,30]. In this case, the
difference is measured along the normal vector calculated with a set of points from the
reference point cloud and projected until intersection with a set of points of the compared
3D point cloud. In accordance with the objectives, the arrangement is configured with
two parameters that define a cylinder, the diameter of search around an initial point and

https://github.com/Geomodels-UB/Risknat_Detection
https://github.com/Geomodels-UB/Risknat_Detection
https://dataverse.csuc.cat/dataset.xhtml?persistentId=doi:10.34810/data201
https://dataverse.csuc.cat/dataset.xhtml?persistentId=doi:10.34810/data201
https://dataverse.csuc.cat/dataset.xhtml?persistentId=doi:10.34810/data199
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the maximum depth [48]. The result of the point cloud comparison is a new point cloud
including the feature difference (ε) as well as to the 3D coordinates and intensity or RGB.

In this work we propose an adaptation of the M3C2 method to obtain more attributes
(features) that characterize rockfall clusters, which will feed the training of machine learning
classifiers.

Essentially, the adaptation consists in compute features associated with the geometric
relationship between reference point (initial 3D point cloud) and compared point (mon-
itoring or second 3D point cloud). For this reason, the [49] algorithm M3C2 has been
converted from model-to-model to point-to-point by changing the detection method to use
real data points. Consequently, a normal (VN in Figure 2) for each reference 3D point (see
PREF in Figure 2) is computed by means of the principal component analysis method [49]
and the eigenvalues and eigenvectors method [50] with the set points selected by a radius
search condition defined by the users (RS in Figure 2). The compared point (see PCOM in
Figure 2) is sought along this normal vector direction (VN) with the closest point criterium.
Thus, the feature difference is calculated with the closest point in an orthogonal direction
to the reference 3D point. Likewise, the cylinder used by Lague et al. [18] is replaced
by a double truncated cone or conical frustum. The user defines the maximal and the
minimal horizontal distance and the maximal vertical distance (normal direction) of the
search (see MaxHd, MinHd, MaxVd in Figure 2). This geometric figure allows a better fit
when working with high densities of point clouds. The high densities of points reduce the
distance between them, allowing to work point-to-point without the need for interpolation,
especially in irregular scenarios. Monitoring always under the same conditions (TLS or
camera position, point cloud density) it is strongly recommended. The process computes
the normal vector as a feature at each point in both point clouds (reference and compared),
decomposing the azimuth and slope values, with the aim of characterizing the surface of
the rock cliff. Furthermore, the coplanarity and collinearity values are calculated as a result
of applying the eigenvalues at each point of the point clouds [51].

The algorithm computes a total of 33 features (using Intensity texture, see the complete
list in Appendix B, summarized in Table 1). All the new features are related to the geometric
components of the distance (vertical and horizontal components), the angle between the
two normal vectors (e.g., reference point cloud, and compared point cloud), and their
direction (towards the TLS or from the TLS), and its geometric attributes are: collinearity
and coplanarity.

Table 1. Summary of the new features computed with the adaptation of the M3C2 [18] algorithm im-
plemented in PCM software. Comparison between the distances of the 3D point clouds is performed
in the direction defined by the reference normal vectors. Results are associated with a new point
cloud with these features.

Features Significance

Distance Distance between points (reference and compared)
Vertical Distance Distance along the normal vector
Horizontal distance Perpendicular distance to the normal vector
Angle between normal Angularity between normal reference and compared
Direction Direction of the normal vector with respect to the surface
Vector Normal vector (i, j, k) for each point
Azimuth Normal vector decomposed in orientation to North
Slope Normal vector decomposed in orientation to horizontal
Collinearity Distribution degree of neighboring points along a line
Coplanarity Distribution degree of neighboring points along a plane
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Figure 2. Depiction of the M3C2 adaption algorithm. From each point of the reference 3D point
cloud, a normal vector (VN) is computed with the neighboring points in a user defined search radius
(Rs). The normal vector (VN) defines the direction in which the closest point is sought (PCOM) in the
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truncated cone (for inward or outward searches).

2.2. Automatic Calibration

The LoD is the value at which the distance is considered representative of a real change
or is assumed to be system noise. Thus, according to the LoD, points can be classified
into three possible classes: (a) surface advance (i.e., precursory deformation); (b) surface
retreat (i.e., rockfall); or (c) undetermined difference depending on the precision of the
system (e.g., TLS precision, TLS–surface range, and software used). The undetermined
type is not assigned to a true variation of the surfaces when the values of the difference are
within the LoD limits. The value of the LoD is established by the knowledge of the user
in the area or by experimental case studies [27,48]. Thus, it is necessary to quantify the
LoD to distinguish between differences caused by the noise of the detection system and
these corresponding to real changes in the slope. For this purpose, we propose to acquire
two datasets with a time interval that is as short as possible, assuming that in this interval
nothing has changed on the bedrock surface. The calculation of the differences between
both point clouds (T0–T1) are fitted to a Gaussian distribution model in which the function
depends on the mean and the standard deviation establishing the precision of the system
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(Figure 3a). Subsequently, when two monitoring point clouds (T1–T2) are compared in
order to determine the real changes, the values of the differences are also fitted to another
Gaussian distribution (Figure 3b). On comparison of both probability density functions, the
points of intersection indicate the limit value (LoD) to be considered as system error, and
therefore indicate the probability of being assigned to a real change in the cliff (Figure 3c).
In fact, the values of the feature difference between the upper LoD and the lower LoD
are regarded as system noise. However, values greater than the upper LoD are regarded
as probable advances in the bedrock, while difference values less than the lower LoD are
regarded as probable mass losses due to possible rockfalls.
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time interval (T0–T1), with the aim of repeating the same conditions in order to calculate the sys-

Figure 3. Depiction of the method for calculating the LoD and interpretation of the result.
(a) Distribution of the differences between the initial data acquisition and the repetition in the mini-
mum time interval (T0–T1), with the aim of repeating the same conditions in order to calculate the
systematic error. (b) Distribution of the feature differences calculated during the monitoring for a
certain period of time (T0–T2). (c) Superposition of distributions to calculate the LoD (intersection
between orange and blue lines). The areas in red mark the values assigned to advanced processes,
and those in blue assigned to decrease due to a loss of volume.

Factors that define the noise of the system are varied [25] and differ in each scan.
During the scan, the angle of incidence of the emitted laser pulse and its return vary
according to the decrease in the perpendicularity of the scene. Distance and incidence
angle affect the precision of the difference values between point clouds. We avoid this
loss of precision during the calibration by using only the points belonging to surfaces
perpendicular to the TLS and at a representative mean distance from the outcrop. The
calibration system values (defined by mean and standard deviation) have been introduced
in PCM software to calculate the upper and lower LoD during monitoring.
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2.3. DBSCAN Adaptation

After computing differences, it is necessary to cluster points in accordance with this
feature in order to identify and reconstruct the rockfall shapes and volumesDBSCAN
algorithm [40] is widely used to cluster points [30,39,52–54]. The algorithm of clustering
points conforms to the parameters of distance with respect to the other points, the values of
the difference between point clouds, and a minimal number of points to define a cluster
(parameters: eps, ε, and minPts). It is implemented in free software available in open-source
libraries such as Open3d [55], Scikit-learn [56], or commercial software such as MATLAB.

This work proposes an adaptation of the DBSCAN algorithm that consists of analyzing
the feature differences in the neighboring points during clustering in order to create four
new features (Table 2); predominance, noise percentage, advance percentage, and retreat
percentage. The feature predominance is defined for each reference point by the majority
value classified as advance, retreat, or noise of its neighboring points according to the LoD
(Figure 4). The remaining features quantify the percentage of each class in the neighboring
points (advance, retreat, and noise).

Table 2. New features computed with the adaptation of the algorithm DBSCAN. The results are
incorporated into the cluster event as cluster feature.

Feature Significance

Predominance Majority class (advance, retreat, or noise)
Noise percentage Percentage of points classified as noise according the LoD
Advance percentage Percentage of points classified as advance according the LoD
Retreat percentage Percentage of points classified as retreat according the LoD
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Figure 4. (a) Reference distribution of the differences between the calibration system and monitoring.
(b) Possible scenarios during the monitoring of a rock cliff and its interpretation in the distribution of
the differences: (1) System noise when the cluster distribution of the differences has a random distri-
bution below the LoD. (2) Deformation when the values of differences are classified predominantly as
advances. (3) Rockfall when the values of differences are predominantly classified as retreats. (4) This
scenario can be interpreted as vegetation: e.g., when the advance and retreat classifications have a
random distribution and exceed the LoD, and is mathematically similar to noise predominance.
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Some of the features that characterize each cluster (detailed in Appendix C) have
their origin in the features that characterize its points. The centroid of each cluster is
represented by the center of mass of the point coordinates, computed with the principal
component analysis method, and the quantifiable features are processed statistically (means
and standard deviations). The specific features of each cluster, such as the volume, area
or the number of points, are computed individually. The reference point clouds and the
compared point clouds are triangulated separately with respect to a common plane base.
The total volume corresponds to the sum of these volumes, and always preserves the
positive and negative direction with respect to the TLS position.

2.4. Cluster Classification

On completion of the PCM software stage for the creation of clusters, the cluster classi-
fication step categorize clusters as rockfalls and not. This step involves different stages (see
flowchart in Figure 5): (1) the training stage to train the models using a hand labeled dataset
of clusters of rockfalls, and (2) the predictive (or testing) stage to identify non-classified
clusters. As input of the system, we manually labeled clusters as “Candidate”, if they
contain rockfalls validated with high-resolution images, and 0 otherwise (i.e., “Unknown”).
We propose the categorization of “Candidate” to determine cluster that contain possible
candidates to be a rockfall, and “Unknown” for clusters attributable to the rest of events.
After that, we proceed with the data normalization to convert all the features in the range
[0–1]. This process is necessary to avoid the classification models weigh more on some
features than others.
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In fact, this prior manual classification must guarantee a minimum number of clusters
labeled as rockfalls. However, some scenarios in the training stage may present an imbal-
ance between the number of clusters in each class due to the large number of “Unknown”
clusters, such as in the case study of the Montserrat massif [20,57]. The number of items re-
sulting from clustering differences, mostly consisting of the “Unknown” class (attributable
to vegetation or edge effects), may range from tens to about one hundred times higher
with respect to the validated “Candidate”. To correct this imbalance, Zoumpekas et al. [32]
propose the implementation of resample strategies, either by reducing the majority classes
(undersampling method) or synthetically increasing the number of minority classes (over-
sampling method). The resample methods implemented in the proposed methodology are
shown in Table 3.

Table 3. Different resampling methods to correct the imbalance between classes.

Undersampling Oversampling

Cluster Centroids SMOTE [58] (Synthetic Minority Oversampling Technique)

Cluster Representatives [59] ADASYN [60] (Adaptive Synthetic Sampling)

SPIDER [61] (Selective Pre-processing of Imbalanced Data)
SWIM [62] (Sampling with the Majority)
Polynom-fit-SMOTE [63]

ProWsyn [64] (Proximity Weighted Synthetic)
SMOTE-IPF [65] (SMOTE-Iterative Partitioning Filter)
LEE [66]

SMOBD [67] (Synthetic Minority Over-sampling Based on Samples Density)
G-SMOTE [68] (Geometric-SMOTE)
LVQ-SMOTE [69] (Learning Vector Quantization-SMOTE)
Assembled-SMOTE [70]

SMOTE-TomekLinks [71]

The classification models used in this refinement process corresponds to two families,
depending on the number of algorithms used in each model. The simplest “Single base
learning”, i.e., models that just use one strategy to learn through a dataset and those that
use multiple strategies, commonly named as “Ensemble learning” [72]. Table 4 shows the
methods contemplated in this study.

Table 4. Different classifier models used to learn and define a pipeline with the nomenclature
proposed by Ma et al. [72].

Single Base Ensemble

Linear Discriminant Analysis [73] AdaBoost Classifier [74]
Quadratic Discriminant Analysis [73] Random Forest Classifier [73]
K-Nearest Neighbors Classifier [73] Extra Trees Classifier [75]

Gaussian Naive Bayes [73] XGBoost Classifier [76]
Decision Tree Classifier [73]

Support Vector Classifier [77]
Multi-Layer Perceptron Classifier [78]

It should be noted that we use a stratified 10-fold cross-validation technique to assess
the effectiveness of the parameters that define each classification model, evaluating and
checking the models for independent datasets in a resampling procedure. The design of
each model architecture is inferred by hyper-parameter tuning optimizing the scoring recall.
Note that with the 10-fold cross-validation, we perform training on the 9 subsets, but we
leave one subset for the evaluation of the trained model. Thus, we iterate 10 times with a
different subset reserved for testing purpose each time.
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In order to find out the classification model and its configuration (i.e., the hyper-
parameters in Table 5 and the feature selection) that obtain the best “scoring recall”, we
performed a set of experiments involving the analysis of different classification models
summarized in Table 4. We symbolize this analysis as a “Refinement” in Figure 5.

Table 5. The table shown the configuration for the exhaustive search of the best parameter in each
classifier model. The best parameter is implemented to obtain the best «scoring recall».

Classifier Models Hyper-Parameters

Linear Discriminant Analysis Solver: svd, lsqr, eigen

Quadratic Discriminant Analysis Reg param: 0.1, 0.3, 0.5

K-Nearest Neighbors Classifier Number of neighbors: 1, 17

Gaussian Naive Bayes Var smoothing: logspace (0, −9, num = 100)

Decision Tree Classifier Criterion: gini, entropy; Maximum depth: 3–15

Support Vector Classifier C: 0.1, 1, 10; Gamma: 1, 0.01; Kernel: rbf

Multi-Layer Perceptron Classifier
AdaBoost Classifier

Solver: lbfgs, SGD, ADAM; Activation: relu;
Hidden layer sizes: 50, 100, 150
Number of estimators: 1–50; Learning rate: 0.2

Random Forest Classifier Number of estimators: 1–20;

Extra Trees Classifier Criterion: gini, entropy; Maximum depth: 3–15
Number of estimators: 1–20;

XGBoost Classifier

Criterion: gini, entropy; Maximum depth: 3–15
Nthread: 4; Booster: gblinear, gbtree; Missing: −999
Learning rate: 0.1, 0.2, 0.3; Number of estimators:
50, 100, 500; Seed: 1337; Disable default metric:
True

Once the classifier models are trained with the optimal score for recall results (fraction
of rockfalls that are successfully identified), the predictor models are executed with a new
monitoring collection dataset that contains unlabeled clusters. The results of the prediction
models provide a list of clusters labeled as “Candidate”. The accuracy of the prediction
models poses two challenges: (a) to achieve a low number of false positives (FP), i.e.,
clusters classified as “Candidate” but which do not correspond to real rockfalls; and (b) to
avoid false negatives (FN), i.e., clusters of real rockfalls but classified as “Unknown”. The
first challenge requires a great effort from the geologist to validate false cluster, while the
second makes it impossible to validate candidate clusters of rockfalls. Therefore, these
goals of making the real number of rockfalls is equal to TP are achieved, and the values of
FP and FN are as close to zero or becomes zero. Thus, unlike with a classical methodology
for selecting the best model using accuracies [32], we evaluate the results of the prediction
by analyzing manually high-resolution images of the landscape, searching true positive,
false positive, and false negative values.

This manual validation of the automatically classified clusters in relation to the ob-
servation of high-resolution images of the outcrop, allows to guarantee the validity of the
labelling for future training and predictions. The clusters validated with this procedure as
“Candidate” are added to the “Labeled Clusters” dataset to feed new trainings in future
scenarios.

3. Study Sites and Processing

In this section, we detail the study sites and how the data has been collected and
pre-processed.
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Study Sites

The Montserrat massif is located about 40 km NW of Barcelona (Spain) with an
extension of 35 km2 with an elevation around 1000 m and a characteristic relief formed
by rounded pinnacles and needles outlining many cliffs (see Figure 6a,b). The massif is a
Natural Park and belongs to the Central Catalonia UNESCO Global Geopark as well as a
tourist complex of cultural-religious heritage. The Montserrat sanctuary is located on the
eastern part of the massif and attracts more than two million tourists and pilgrims per year.
Thus, it requires large infrastructures, some of which are located next to cliffs with a high
rockfall hazard. Precedents of rockfalls are numerous [20] all around the mountain, not
excluding the sanctuary and the nearby Degotalls cliff (see Figure 6b,c).
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great volumes measuring several cubic meters and controlled by mechanical discontinu-
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Figure 6. (a) Regional setting of the Montserrat massif, on the boundary of the Catalan Coastal Range
and the Ebro Foreland Basin. (b) Degotalls Cliff location (41◦35′54′′N, 1◦50′00′′E). Orthoimage of the
area (source: Cartographic and Geological Institute of Catalonia), the Montserrat sanctuary is 600 m
to the SW. (c) Degotalls study area. Left side, Degotalls N orientated E-W, and right side Degotalls E
with N-S orientation. (d) Fracture orientations in Degotalls rock cliff. (e) Strike azimuth rose diagram
of the fractures modeled with TLS.

Geologically, the massif consists of a succession of conglomerates (Montserrat conglom-
erates unit) more than 1000 m thick, interleaved by red siltstone and sandstone (La Salut and
Artés Fm.) with sub-horizontal stratigraphic layers. The depositional system corresponds
to a fan-delta complex accumulation in the Late-Eocene epoch along the southeastern
margin of the Ebro Foreland Basin and adjacent to the Catalan Coastal Ranges [79–81].
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A fracture pattern controls the morphology of the massif, with two orthogonal fracture
sets oriented NNE-SSW (fracture set A) and WNW-ESE (fracture set C) [82] (as shown in
Figure 6d,e). These sub-vertical, penetrative and high-frequency fracture sets cut the massif
into blocks of decametric size, which together with the weathering action contribute to
characterizing the peculiar landscape of the massif. The surface trace of the fractures can
be followed for up to one kilometer on aerial photographs. Fracture set B with a NW-SE
orientation has a lower frequency but contributes to the instability of the cliff, as well as its
conjugate, with an NE-SW orientation and with a residual presence in the Degotalls area.
The alphabetical order of the fracture sets defines their chronology from oldest to most
recent [82]. Fractures represented in Figure 6d,e has been modeled with TLS data [83].

Due to the progressive event of rockfall failure that occurred in the North face of
the Degotalls (hereafter Degotalls N) during the period 2001–2009 (see Figure 7) a risk
mitigation plan was designed. In addition to protective measures, the plan triggered the
monitoring of the Degotalls N and the orthogonal East face (hereafter Degotalls E) with TLS
in 2007. The detachment of a high persistence fracture (fracture set C) and its fragmentation
by the intersections with other fractures (fracture sets A and B) and stratigraphic layers
resulted in rockfalls of decametric and metric dimensions.
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Figure 7. Depiction of the large blocks sequence detachment during the 2001–2009 period in Degotalls
N cliff. The detachment was controlled by discontinuities produced by fractures and stratigraphic
layers. In the 2001 image: Degotalls area before the rockfall (in dashed lines). In 2008, the surface of
the cliff stabilized after different rockfalls episodes, resulting in a total rockfall volume higher than
1000 m3. Data collection and processing.

Rockfalls at the Degotalls cliff are classified into three categories according to the
instability mechanisms and the volume [20]: (a) large blocks, which are detachments of
great volumes measuring several cubic meters and controlled by mechanical discontinuities
produced by fractures and stratigraphic layers; (b) pebbles or pebble aggregates of medium
to small volume, generally less than 1 m3, caused by detachments of the matrix due to
weathering or associated with small fractures; and (c) plates, corresponding to weathering
flakes and thermal exfoliation in slabs with small volumes (cm3 or dm3).

The monitoring system consists of 13 point cloud acquisitions with TLS Optech Ilris-3D
(accuracy of σ = 0.7 cm at 100 m) [84] over the last 14 years, as details in Figure 8a from two
different TLS stations. Degotalls N requires one scanner image acquisition (see Figure 8b),
while Degotalls E requires two scanner images from another TLS station, designated as the
first section (North) and the second section (South), respectively, as shown in Figure 8c,d.
The range of the stations is about 175 m, and the height of the cliff is 185 m. The density
of the scans is approximately one point each 7 cm, and the returned intensity of 1535 nm
(infrared region) is recorded as a feature. In addition, high-resolution images were acquired
to validate the “Candidate” class of clusters classified by the machine learning models.
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Figure 8. (a) Time series relating to the TLS surveys in the Degotalls area. All TLS acquisition
were conducted with the same device from two stations (Degotalls N and Degotalls E). The survey
also included high-resolution images to validate data. (b) Point cloud of the Degotalls N cliff:
2,370,000 points. Station 1 (c) South section point cloud of the Degotalls E cliff: 2,860,000 points.
Station 2, orientation 1 (d) North section point cloud of the Degotalls E cliff: 2,060,000 points.
Station 2, orientation 2 (re-orientation of the scanner). Point clouds and figures correspond to the
texture intensity of the TLS returned signal (1530 nm).

A point cloud classification was executed to manually remove lush and easily iden-
tifiable vegetation, reducing uncertainty and facilitating the accuracy of the alignment
process (see Figure 1). Degotalls scanner data were collected with point cloud format
(Appendix A, with texture Intensity), measure differences (data output in Appendix B
format) and clustering (data output in Appendix C format).

The data processing in the Degotalls cliffs was conducted with different strategies, the
first objective being the identification of rockfalls and the second of previous deformation
movements. The south section of Degotalls E cliff was compared throughout the monitor-
ing period (2007–2020) with 12 consecutive comparisons, whereas the north section was
performed with only one comparison for the same period. These different strategies of com-
parison are due to the reduced area of the north section and the need to identify previous
deformation movements in the cliffs. Longer intervals are interpreted as sceneries more
favorable to the identification of slow deformation movements. Otherwise, the Degotalls N
cliff was compared in two batches, 2007–2017 and 2017–2020.

Throughout the monitoring period, point clouds were acquired from the same position,
TLS device, and settings both for monitoring and calculation of the LoD of the system.
Likewise, the differences between point clouds for this calibration were measured in
areas with a perpendicular orientation to the TLS point position, without vegetation,
and representative mean ranges to the cliff. In addition, the time interval between the
calibration point clouds acquisition was 45 min. The dates of the point cloud acquisitions
for monitoring are shown in Figure 8a.
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4. Results

The parameters for the configuration of the double truncated cone and clustering are
shown in Table 6a,b. The values were fitted according to the resolution of the point cloud
and the expected cluster sizes, generally present in the most frequent antecedents. Thereby,
the metric of the differences is evaluated for fitting to a Gaussian distribution, and the
statistical parameters of the mean and the standard deviation are computed (Table 6c).

Table 6. Parameters to set the calibration and monitoring processes: (a) parameters used to define the
geometry of the double truncated cone in the measure of the differences; (b) clustering parameters
with the nomenclature equivalent to the DBSCAN algorithm; (c) mean and standard deviation to
define the difference distribution for the TLS ILRIS-3D in both Degotalls areas for a mean range of
175 m.

(a) Distance Parameters Degotalls Cliff (m)

Maximum vertical 0.5
Minimal horizontal 0.08
Maximal horizontal 0.10

(b) Clustering Settings

Threshold distance between points (eps) 0.15
Minimum number of points (minPts) 10 points

(c) Degotalls TLS System Calibration Difference

Mean −0.000268
Standard deviation 0.019547

Once the differences have been computed and the LoD established (see Table 7), PCM
software can the process the clustering of points step. From each monitoring the number
of clusters in Degotalls E oscillates around 5800 in the South section, around 2600 in the
North section, and around 3700 clusters in Degotalls N.

Table 7. Statistical summary of the results of calculating the LoD in both Degotalls cliffs. This table
summarizes the 13 comparisons in Degotalls E (12 in the South section and 1 in the North section)
and 2 comparisons in Degotalls N.

Cliffs LoD Mean (m) LoD STD (m)

Degotalls E: South section Upper 0.03242 0.00336
Lower −0.03189 0.00453

North section Upper 0.03430 0.00590
Lower −0.03511 0.00385

Degotalls N: Upper 0.03928 0.01685
Lower −0.04026 0.01626

The monitoring dataset of the period 2007–2009 in the South section of Degotalls E
is constituted by 5957 clusters. The training dataset was manually analyzed to identify
10 real rockfalls, labeled as “Candidates”, and 1990 other clusters labeled as “Unknown”.
Thus, the Cluster Classification pipeline (see flowchart in Figure 5) begins with the training
stage with 1990 clusters from the “Unknown” class and 10 clusters from the “Candidate”
class. The pipeline combines the 15 resampling techniques (shown in Table 3) with the
11 classification models (shown in Table 4) using 10-fold cross-validation procedure, after
normalizing the dataset fitting 165 classification configurations (i.e., 15 resampling tech-
niques times 11 classification models). Thereafter, trained models were used as predictive
models with the rest of the 3957 unclassified clusters (test dataset with 5957 initial clus-
ters, less 10 clusters “Candidate” and 1990 from the “Unknown” class) from the period
2007–2009 in order to identify new “Candidate” clusters.
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The clusters labeled as “Candidate” by the 165 predictive configurations of the models
were validated manually together with the 3957 clusters of the period 2007–2009, thereby
identifying eight new rockfalls. Metric evaluation of the best predictive and the resampling
model is shown in Tables 8 and 9 (Degotalls E, south section, 2007–2009).

Table 8. Summary of the predictive models results in the Degotalls where the disparity of the best
methods is appreciated attending to the true positive (TP), false positive (FP), and false negative (FN)
results. Degotalls N presents two solutions: a the best solution with false negatives = 0 or b the best
solution, but accepting a reduced number of false negatives. * Initial manual classification. Clusters
of “Rockfalls for training” are referred to in the “Candidate” class in the training stage. Real rockfall
is referred to existent and known rockfalls on the bedrock.

Outcrop
Period

Rockfalls for
Training

Best Classifier
Model

Best Resampling
Method

Real
Rockfalls TP FP FN

Degotalls E
South section

2007–2009 10 * Quadratic Discr. Pol. Fit-SMOTE 8 8 91 0
2009–2010 18 Linear Discr. A. Cluster Centr. 5 5 7 0
2010–2011 23 KNN C. Cluster Centr. 4 4 139 0
2011–2012 27 XGBoost C. S. TomekLinks 4 4 48 0
2012–2013 31 Extra Trees C. Cluster Centr. 2 2 10 0
2013–2014 33 XGBoost C. Cluster Centr. 1 1 1 0
2014–2015 34 SVC Cluster Centr. 1 1 0 0
2015–2016 35 Linear Discr. A. Stefanowsky 3 3 53 0
2016–2017 38 - - 0
2017–2019 38 Linear Discr. A. Cluster Centr. 3 3 9 0
2019–2020 41 - - 0
2020–2020 41 Extra Trees C. Stefanowsky 2 2 2 0

North section
2007–2019 43 Quadratic Discr. LVQ-SMOTE 22 22 97 0

Degotalls N
2007–2017 a 10 * Linear Discr. A. Cluster Repres. 107 107 1211 0
2007–2017 b 10 Decision Tree C. Cluster Repres. 107 104 296 3
2017–2019 a 117 Quadratic Discr. SWIM 16 16 455 0
2017–2019 b 117 Quadratic Discr. Pro WSyn 16 15 256 1

Table 9. Summary of the metric for the predictive models results with Recall and Accuracy parameters.
Degotalls N presents two solutions: a the best solution with False Negatives = 0 or b the best solution,
but accepting a reduced number of False Negatives.

Outcrop
Period

Best Classifier
Model

Best Resampling
Method Recall Accuracy

Degotalls E
South section

2007–2009 Quadratic Discr. Pol. Fit-SMOTE 1 0.979
2009–2010 Linear Discr. A. Cluster Centr. 1 0.999
2010–2011 KNN C. Cluster Centr. 1 0.979
2011–2012 XGBoost C. S. TomekLinks 1 0.991
2012–2013 Extra Trees C. Cluster Centr. 1 0.998
2013–2014 XGBoost C. Cluster Centr. 1 0.999
2014–2015 SVC Cluster Centr. 1 1
2015–2016 Linear Discr. A. Stefanowsky 1 0.992
2016–2017 - -
2017–2019 Linear Discr. A. Cluster Centr. 1 0.998
2019–2020 - -
2020–2020 Extra Trees C. Stefanowsky 1 0.999

North section
2007–2019 Quadratic Discr. LVQ-SMOTE 1 0.968
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Table 9. Cont.

Outcrop
Period

Best Classifier
Model

Best Resampling
Method Recall Accuracy

Degotalls N
2007–2017 a Linear Discr. A. Cluster Repres. 1 0.704
2007–2017 b Decision Tree C. Cluster Repres. 0.972 0.906
2017–2019 a Quadratic Discr. SWIM 1 0.891
2017–2019 b Quadratic Discr. Pro WSyn 0.937 0.935

Classification of the following monitoring period (2009–2010) uses the 18 validated
candidates (10 + 8) and the totality of the unknown clusters from the 2007–2009 monitoring
for the training stage. When it finalizes, 165 configurations of the models are fitted again to
be used as predictive models with the 5100 “Unknown” clusters for the period 2009–2010.
The new cluster “Candidate” proposed by the predictive models are validated again with
high-resolution images and their metrics evaluated. This procedure is repeated until
completion of the monitoring period and showed in Table 8, Degotalls E, South section.

The Degotalls E North section begins the learning stage with the 43 clusters labeled
as “Candidate” from the South section in order to analyze one comparison monitoring of
the period 2007–2019. The aim was to identify pre-deformation movements and rockfall
clusters, although only 22 validated “Candidate” of rockfalls were identified (as shown in
Table 8, Degotalls E, North section) and none of pre-deformation.

The Degotalls N pipeline was initialized with the manual identification of the new
10 rockfall clusters for the analysis of two comparison monitoring periods 2007–2017 and
2017–2019. The search for pre-deformation movement clusters was also negative. The
results are shown in Tables 8 and 9, Degotalls N.

With the increase in the number of clusters labeled as “Candidate”, the Degotalls
E South section dataset tends to decrease the number of false positives. Nevertheless,
although the metric of the best classifier and resampling models reveal a high percentage of
models with optimal results (Table 8). It is observed that the best classifier and resampling
models are different for each comparison.

The manual cluster validation of the predictive results demonstrates the existence,
especially in Degotalls E, of acceptable results in terms of true positives, false positives, and
false negatives. It should be noted that the number of initial clusters for each monitoring
is around 5000–6000. However, after the classification of the predictive models, there is a
significant reduction in the number of clusters to be validated. Degotalls N presents an
elevated number of false positives, especially when total identification of TP success is
required for the results for the real number of rockfalls.

Table 10 shows the example when the first best predictive model of the first comparison
in Degotalls E (i.e., quadratic discriminant analysis and polynom-fit-SMOTE) is used for
the whole period. The results are not acceptable due to a large number of false positives
and therefore, the large number of cluster candidates to be validated. Neither is observed a
clear tendency to reduce FP.

However, there are correct identifications among the 165 configurations of the models
(see Table 8), and above all the percentage of these configurations with TP is significant. It
is difficult to select one model as the best one, the common practice in the machine learning
field is to use a pipeline of models and perform cross-validation and to select the one or
ones that obtain the performance (based on accuracy or recall, for example).

To solve this problem, we seek to validate only the clusters labeled as “Candidate”
which were proposed by the totality of the predictive models to most improve the score.
With this premise, the “Candidate” labeled clusters validated manually as rockfalls or
true positives clusters in Degotalls E are always among the 115 clusters most predicted by
the models. An initial average survey of 5800 clusters belonging to the “Unknown” class
produced by each monitoring period, reveal a reduction of 98% in the number of clusters to
be validated (true positives and false positives) with real rockfalls from the rock cliff (true
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positives). In Degotalls N the reduction in “Candidate” clusters to be validated is 80.16%
for complete identification of rockfalls, and in order to identify 96% of the real rockfalls, the
reduction is 90% from a population of 3700 initial class of “Unknown” clusters.

Table 10. Quadratic discriminant analysis model and polynom-fit-SMOTE resampling results. This
combination shows the best model for the 2007–2009 comparison, but not for the following compari-
son in true positive (TP), false positive (FP) and false negative (FN) results.

Outcrop Period Real Rockfalls TP FP FN

Degotalls E
South section

2007–2009 8 8 91 0
2009–2010 5 5 148 0
2010–2011 4 4 461 0
2011–2012 4 4 258 0
2012–2013 2 2 235 0
2013–2014 1 1 224 0
2014–2015 1 1 188 0
2015–2016 3 3 315 0
2016–2017 0 - - -
2017–2019 3 2 517 1
2019–2020 0 - - -
2020–2020 2 2 111 0

Figure 9 depicts one example of cluster validation, comparing the cluster images of
one cluster before and after the monitoring, and visualizing the cluster features. The feature
clusters are shown in Table 11.
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Figure 9. (a) Point cloud intensity in Degotalls E with the difference feature values of cluster #1326
(South section, period 2017–2019) shown in a multi-color scale. The dimensions in this example are
1.4 m (height) and 1 m (wide). (b) Cluster image before the rockfall. (c) Image post rockfall where the
wedge and the surface of the fractures that control the detachment are visible (Fracture set A and the
conjugate fracture set B with orientation NE-SW). This rockfall was classified as a large block.

The total number of clusters labeled as “Candidate” and validated as rockfall events at
Degotalls E during the monitoring period was 65. At Degotalls N the number of candidates
validated was 133, but 40 clusters of them correspond in fact, to only two large events
occurred in December of 2008, therefore we assess 95 rockfalls (see Figure 10). This re-count
is due to the configuration of the monitoring process focused on preventing the loss of
small rockfalls. The number of events registered using the standard methodology [20,57] is
also shown in Figure 10.



Remote Sens. 2022, 14, 4306 20 of 30

Table 11. Summary of features of the cluster shown in Figure 9. Cluster #1326 (Degotalls E, south
section, period 2017–2019).

Cluster Feature Value Cluster Feature Value

Cluster Number 1326 Points %: Noise 10.48%
Centroid Coord. X −23.169 m Advance 0.21%

Coord. Y 192.847 m Retreat 89.31%
Coord. Z −10.063 m Intensity Ref. 210.32

Number of points 428 Intensity Comp. 228.43
Positive Volume 0.27164 m3 Azimuth Ref. 165.10◦

Area 1.45 m2 Azimuth Comp. 166.20◦

Predominance: Mean 2 (Retreat) Slope Ref. 71.11◦

Standard deviation 0.07 Slope Comp. 70.91◦
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Figure 10. Rockfall events in (a) Degotalls N and (b) Degotalls E Orange lines represent the number of
events registered with the methodology used to date with the standard methodology for monitoring
point clouds [20,57]. Cyan and Purple lines represent the results of the proposed methodology in this
study. Mitigation activities are marked from start to finish in red.

5. Discussion

In this study, an inventory of rockfalls is constructed from point clouds with two new
methods (PCM and Cluster Classification). PCM software is implemented to characterize
and identify clusters of differences during monitoring processes, and Cluster Classification
software classifies the nature of the clusters. Specifically, it is trained to classify clusters of
rockfalls with machine learning techniques. The inventory was created covering the period
2007–2020 for the Degotalls cliff area (Montserrat massif, Spain). The cliff, divided into
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Degotalls E and Degotalls N, accounts for 65 and 95 rockfalls, respectively, and these results
are adjusted to the expected and known values of the previous studies in the area [20,57].

PCM software calculates the LoD (as shown in Table 7), and the order of magnitude
of the results are similar to those used previously in the monitoring of the Degotalls and
recommended in previous works [20,57]. In general, values of the LoD in Degotalls N are
higher (20%) than those in Degotalls E, but this is attributable to the greatest height of the
Degotalls N cliff, and therefore, with a somewhat greater TLS–cliff distance.

Measure differences and clustering points are integrated processes in PCM software
and offer similar results to previous studies conducted in the area with the M3C2 and
DBSCAN algorithms by Royán et al. [57] and Janeras et al. [20]. PCM software com-
plements results with features that characterize firstly the points and subsequently, the
clusters (e.g., predominance, coplanarity, or normal vector) to feed the machine learning
classification process.

The results of cluster classification provide differences in the number of rockfalls
counted with respect to previous works, but this fact is attributable to the different methods
of validation. In this work, only those clusters labeled as “Candidate” with a clear validation
in high-resolution images have been accepted. The disparate results of the predictive
models for both scenarios have been interpreted in Degotalls E as promising, which opens
up the possibility of studying in greater detail the importance of each feature in the
contribution of the models. Moreover, this can be extended to the study of the efficiency
of each resample technique and each classification model to evolve the identification of
deformation clusters. At Degotalls E, the manual validation of the first 16 clusters labeled
as “Candidate” most frequently proposed by the 165 predictive models identifies 65% of
the rockfalls. If the manual validation is extended to the first 115 cluster candidates, the
identification reaches 100% of the rockfalls. This implies a significant reduction in the initial
clusters to validate them as rockfalls. The efficiency of predictive models also tends to
increase when the rockfall database increases in number with new identifications in future
monitoring.

Otherwise, the results from Degotalls N, with a higher percentage of clusters to be
validated, the 370 clusters labeled as “Candidate” to identify 90% of the rockfalls show the
potential for further improvement focused on reducing this percentage.

The analysis of these validated clusters reveals a relationship between the feature
volume and the ratio of real TP identifications of the predictive models. The predictive
models have a lower percentage of real TP identifications with large volume rockfalls
(see Figure 11a), while in Degotalls E (shown in Figure 11b) large blocks are not presents.
Degotalls N presents the clusters labeled as “Candidate” least predicted by the models
belonging mainly to the category of large blocks, with volumes greater than 0.1 m3. On
the other hand, the clusters corresponding to the category of plates with smaller volumes
obtain the highest levels of real TP identifications in the prediction because they present
more homogeneous characteristics and, therefore, facilitate the training.

Clusters of rockfalls in Degotalls N can be regarded heterogeneous (in terms of fea-
tures: e.g., volume, orientation, intensity), and therefore are more difficult to learn in the
training stage since the characteristics of the clusters are not as polarized as in Degotalls
E. The two largest-volume clusters in Degotalls N have the lowest percentage of model
predictions because they have a high degree of singularity, which does not contribute to
defining a homogeneous class for the model learning. An increase in rockfalls in the dataset
collection may correct this problem, but it is difficult to increase ratio between the number
of “Candidate” and “Unknown” along the time with the current scenarios.
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Figure 11. Relationship between the volume of the rockfall clusters, classes of rockfalls, and the per-
centage of models predicting the same validated rockfall clusters at the Degotalls. (a) Rockfall classes
of Degotalls N are majority plates, usually associated with weathering processes with small volumes,
and large blocks, due to the large detachment during the 2007–2009 period. Both classes define a
heterogeneous scenario that gives rise to more difficulties in the training stage of predictive models.
(b) Degotalls E presents a homogeneous class with small volumes that facilitate the identification of
predictive models.

The large blocks (>1 m3) category was predominant in Degotalls N during the first
two years of monitoring, and were associated with the large event controlled by fractures
in 2001 and their subsequent risk mitigation activities, as it can be seen in Figure 7. In
the second stage, both rock cliffs enter a stability period in which a reduced and constant
number of rockfalls belonging to the category plates predominated, linked to the lingering
weathering process. In Degotalls E, we observed some detachments of small volumes
with some events controlled by fractures around the cubic meter of volumes. The increase
in registered events in both rock cliffs (look at Figure 10) since 2018 corresponds to the
category plates with small volumes (see Figure 11) of less than half a cubic meter.

The cumulative distribution of volumes registered in the Degotalls presents slightly
different power law exponents in both cliffs, despite the fact that the rock mass structural
conditions are the same, except rock face orientation. In the case of Degotalls N, the
distribution covers a wider range of orders of magnitude due to the 2007–2009 large
rockfalls event (see Figure 12). In consequence, the common sample in the range of 0.01 to
10 m3 is the most representative of the rockfall activity that we are clearly detecting with
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TLS in the Degotalls area. These results should determine the scenarios to be considered in
further hazard assessment for the sanctuary parking area [85].
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A possible new strategy to optimize the results in Degotalls N is to feed the training
stage with each different category (large block, pebble, and plate), but always considering
a significant number of “Candidate” labeled clusters.

On comparison with the results from the standard methodology in the Degotalls [20,57],
a variation is found to exist in the amount and temporal distribution of the events. This can
undoubtedly be attributed to the reduction in the number of clusters to be validated allow-
ing an increase in the quality of the validation that reduces doubtful cases. Furthermore,
the objective assessment of each cluster as a candidate for a rockfall improves the process,
and contributes to a better interpretation of the rock cliff evolution and the valuation of
risk mitigation activities.

Analysis of the nature of the clusters has been unable to identify any pre-deformation
process with which to create a new class. The study of the area in years prior to the
rockfall has been unproductive. The reason for this non-identification may be due to using
a temporal resolution that is too low to record this process. Possibly, the modification
of the temporal and spatial resolution during the monitoring allows the identification of
pre-deformed clusters, and therefore enables their classification with our methodology.

The time required to process the measure differences process may constitute a limita-
tion of the process, even though it is an automatic process. Several factors are involved in
controlling this step, and it may be convenient to minimize this time.

6. Conclusions

Monitoring rock cliffs to identify rockfalls with point clouds requires dataset process-
ing methods, many of which are developed by the research community. Periodic digital
capture of cliff surfaces with instruments such as TLS does not directly provide an inventory
of rockfalls. For this aim, it is necessary to process the captured data and configure the
temporal and spatial resolutions of the TLS in accordance with the dynamics of the rockfalls
from the cliff. The capture of point clouds, their alignment, the measure of the differences,
and the clustering are more highly evolved aspects. However, classification of the clusters
is a factor that is not so frequently addressed. The present work proposes a solution to this
issue based on machine learning and predictive models.

In this paper, we propose two developments, PCM and Cluster Classification appli-
cations, to automatically classify clusters with machine learning by taking advantage of
the fact that clusters that contain rockfalls have similar characteristics, a fact that facilitates
the learning stage. As observed in Degotalls N, singular rockfalls (those covering large
volumes) are the most complicated to learn. The proposed modifications of the already
existing algorithms that deal with the creation of clusters have been very useful for measure
33 features especially significant during the classification. However, the discrimination
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power of each feature introduced in the learning process has not been tested in this work,
an issue that should be addressed in future studies.

The machine learning process implies the development of 165 prediction models based
on the 11 classification models, combined with 15 resampling methods (13 undersampling
and 2 oversampling) to balance the unbalances between the number of clusters in the rock-
fall class of the non-rockfall class. A total of 11 classification models have used the balanced
data to classify the rockfalls class using 10-fold cross-validation and hyper-parameterization
techniques.

In summary, the following conclusions are derived from this work:

- Monitoring rockfalls in rock cliffs with point cloud is a difficult task that can benefit
from machine learning strategies, provided that both techniques are appropriately
combined. We validate this assumption with the attempt to identify rockfalls in the
rock cliff of the Montserrat massif (Spain).

- We have observed the difficulty of correlating classification models, trained with
clusters of rockfalls, with the best prediction model. For this reason, we use all the
combinations of prediction models to validate the most proposed candidates.

- The success of the rockfall prediction models depends on the homogeneity/heterogeneity
of the features that characterize the different categories of the rockfall clusters (large
blocks, pebbles and plates) used to train the classification models.

- Rockfalls in the Degotalls (Montserrat, Spain) are currently in a phase of stabilization,
and those that occur are of small volume and attributable to plates associated with
weathering processes. However, since 2018 a slight increase in cases has been observed.
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Appendix A

Table A1. Format point cloud.

Point coordinates
1. Coordinate X
2. Coordinate Y
3. Coordinate Z

With intensity
4. Intensity

Or RGB texture
5. Red
6. Green
7. Blue

Or intensity and texture
8. Intensity
9. Red
10. Green
11. Blue

Appendix B

Table A2. Features associated with the point cloud after calculating differences. * No computed as
features. 1 Only computer with RGB format is used. 2 Only computed with Intensity format is used.

1. n * Reference point index
2. m Compared point index
3. Coordinate X
4. Coordinate Y Point reference coordinates
5. Coordinate Z
6. Code_n * Reference index texture (0 n/a, 1 Intensity, 2 RGB, 3 RGB + Int)
7. R 1

8. G 1 Texture reference points RGB format
9. B 1

10. Intensity 2 Reference intensity texture
11. Vector_i
12. Vector_j Reference vector normal vector components
13. Vector_k
14. Orientation Reference strike azimuth (degree)
15. Dip Reference strike slope (degree)
16. Collinearity Reference point index of collinearity
17. Coplanarity Reference point index of coplanarity
18. Selected Number of points to calculate the normal vector
19. Distance Distance selected between closest and average
20. Vertical Distance Vertical distance along vector with direction (+ or −)
21. Horizontal Distance Horizontal distance component between points
22. Distance closest Shorter distance between Refer. and Comp. point
23. Coordinate X
24. Coordinate Y Point compared coordinates
25. Coordinate Z
26. Code_m * Compared index texture (0 n/a, 1 Intensity, 2 RGB, 3 RGB + Int)
27. R 1

28. G 1 Texture compared points RGB format
29. B 1

30. Intensity 2 Compared intensity texture
31. vector_i
32. vector_j Compared vector normal vector components
33. vector_k
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Table A2. Cont.

34. Orientation Compared strike azimuth (degree)
35. Dip Compared strike slope (degree)
36. Collinearity Compared point index of collinearity
37. Coplanarity Compared point index of coplanarity
38. Selected Number of points to calculate the normal vector
39. Angle Angle between Ref. and Comp. normal vectors
40. Angle_Direction Angle with direction
41. Minimal_distance Shortest distance between those inscribed in the geometric figure
42. Average_distance Average distance between those inscribed in the geometric figure
43. Maxima_distance Longest distance between those inscribed in the geometric figure
44. Dev. Stand_distance Dev.Stand distance between those inscribed in the geometric figure
45. Selected points Number of points inscribed in the geometric figure

Appendix C

Table A3. Features associated to the Clusters, format order. * No used in ML classification. 1 Only
computer with RGB format is used. 2 Only computed with Intensity format is used.

1. Cluster identification *
2. Coordinate X *
3. Coordinate Y * Coordinates of cluster centroid
4. Coordinate Z *
5. Item_number * Cluster differences number
6. Points_number Number of points
7. TotalVolume Cluster total volume
8. PositiveVolume Volume behind the reference surface and TLS
9. NegativeVolume Volume in front the reference surface and TLS
10. Area Planimetric cluster area 2D, perpendicular to TLS
11. Code * Cluster classification (Unknown, Candidate)
12. Confidence * Confidence index
13. Predominance_Mean Mean predominance (noise 0, advance 1, retreat 2)
14. Predominance _Sigma STD predominance classification (0, 1, 2)
15. Percentage_1_Mean Mean advance predominance (1)
16. Percentage_1_Sigma STD advance predominance (1) classification
17. Percentage_0_Mean Mean noise predominance (0)
18. Percentage_0_Sigma STD noise predominance (0) classification
19. Percentage_2_Mean Mean retreat predominance (2)
20. Percentage_2_Sigma STD retreat predominance (2) classification
21. OrientationSetsRef Reference cluster strike azimuth
22. OrientationSetsCom Compared cluster strike azimuth
23. IndexTextureRef * Reference texture index (0, 1 Int, 2 RGB, 3 RGB + Int)
24. R_Mean_Ref 1

25. R_Sigma_Ref 1

26. G_mean_Ref 1

27. G_Sigma_Ref 1

28. B_mean_Ref 1 Texture. Mean & Std of reference clusters.
29. B_Sigma_Ref 1

30. I_Mean_Ref 2

31. I_Sigma_Ref 2

32. IndexTextureCom * Compared texture index (0, 1 Int, 2 RGB, 3 RGB + Int)
33. R_mean_Com 1

34. R_Sigma_Com 1

35. G_mean_Com 1

36. G_Sigma_Com 1

37. B_mean_Com 1 Texture. Mean & Std dev. of compared clusters
38. B_Sigma_Com 1

39. I_Mean_Com 2
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Table A3. Cont.

40. I_Sigma_Com 2

41. AziRef_Mean Mean strike azimuth of Reference points
42. SloRef_Mean Mean strike slope of Reference points
43. AziCom_Mean Mean strike azimuth of Compared points
44. SloCom_Mean Mean strike slope of Compared points
45. CopRef_Mean Mean coplanarity of Reference points
46. CopRef_Sigma STD coplanarity of Reference points
47. ColRef_Mean Mean collinearity of Reference points
48. ColRef_Sigma STD collinearity of Reference points
49. CopCom_Mean Mean coplanarity of Compared points
50. CopCom_Sigma STD coplanarity of Compared points
51. ColCom_Mean Mean collinearity of Compared points
52. ColCom_Sigma STD collinearity of Compared points
53. ang_Mean Mean angularity between normal vectors
54. ang_Sigma STD angularity between normal vectors
55. Reference File * String
56. Compared File * String
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