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Abstract: Ecosystems, influenced by a large number of factors, are in constant evolution. Cli-
mate, seasonal changes and anthropogenic interactions, for example, can induce changes that play a
fundamental role while studying an ecosystem’s stability. Evolution, on the other hand, is a funda-
mental feature of ecosystems’ dynamics, as the appearance of fitter species may drastically alter how
species interact with each other, which, consequently, may induce relevant changes in the ecosys-
tem’s composition and structure. We propose a simple evolutionary model using the generalized
Lotka−Volterra equations, and compare analytical results in the steady state with results obtained
by simulating a competitive two species system altered by the presence of a new evolved species.

I. INTRODUCTION

Understanding how an ecosystem stabilizes itself
through time is not a trivial matter and still remains
a major open research challenge. Studying this process
could help us, among other things, to quantify the ef-
fects of invasive species in an already stable ecosystem,
or to characterize the mechanisms used by some species
to gain a dominant role in an ecosystem, thus deepening
our current understanding of natural selection rules and
the theory of evolution.

Many mathematical models have been proposed in or-
der to explain an ecosystem’s dynamics [1, 2]. Some of
these models are deterministic, others are stochastic or
mixed. Deterministic models apply to systems in which
no randomness is involved, so that future states depend
only on the initial condition and can be certainly pre-
dicted. On the other hand, stochastic models apply to
systems in which randomness is involved. The future
states now follow a random probability distribution that
may be analysed statistically. Future states cannot be
precisely determined in this case. Mixed models are just
a mix of both.

Complex networks have also been used with the aim of
portraying the natural complexity of ecosystems due to
the species’ interactions [2, 3]. Quantification of results
in the shape of analysable data in real ecosystems is not
an easy task to do. Although not easy, experiments have
been carried out in order to verify mathematical and the-
oretical models of ecology [3, 4].

The Lotka−Volterra equations need a special mention,
since they have been studied deeply in order to under-
stand ecosystem dynamics [1–9]. These equations are
said to have a linear functional response, since they as-
sume that individuals of a given species reproduce or die
in a linear way when interacting with another species of
the ecosystem [5, 6].

The complexity and highly coupled interactions in an
ecosystem make these models hard to solve analytically.
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Thus, the numerical implementation is the usual ap-
proach. Throughout this project we attempt to study the
effect of the introduction of a new species into an ecosys-
tem in order to understand the relevant parameters for
an evolutionary theory model, considering the introduced
species as the evolved of a previous species already living
in the ecosystem. With that purpose in mind, we make
use of generalized Lotka−Volterra equations including
intra-specific, self-regulating, interactions and stochastic
inter-species interactions. Our report is organized as fol-
lows: In section II we introduce the Lotka−Volterra equa-
tions and explain their main terms and the parameters
involved. In section III we present our evolution model
and derive some analytical stationary results, while in
section IV we make simulations for a two species ecosys-
tem in order to illustrate our analytical results. We fi-
nally present our main conclusions.

II. THE LOTKA−VOLTERRA EQUATIONS

Lotka−Volterra equations have been used to study the
basic predator−prey models, as well as mutualist and
competitive environments. A generalized formulation
can be made for n interacting species. In this case we
have n coupled ordinary differential equations that read

dxi

dt
= xi

(
ri +

n∑
i=1

αijxj

)
, i = 1, . . . , n. , (1)

where xi(t) indicates the population abundance of the
i−th species, i = 1, 2, . . . , n, at a given time t, ri are the
replication rates of each species, named growth rates for
ri > 0 and death rates for ri < 0, and αij are the inter-
action coefficients. These αij make up a matrix known
as interaction matrix, A = (αij). The off−diagonal
elements, αij for i ̸= j, portray what is known as
inter−specific interactions. They quantify the interac-
tion between the j−th species and the i−th species. If
αij > 0, the existence of j benefits the growth of i (mu-
talist interaction), while if αij < 0, it disfavours it (com-
petitive interaction). The diagonal elements αii repre-
sent the intra−specific interactions. These need to be
included when one considers same−species interactions,
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which happen in a non−favourable way, αii < 0 , as pic-
tured in the logistic equation. The solutions of equation
Eq. (1) are positive, xi(t) ≥ 0, and live in what we know
as phase space Ω, xi(t) ∈ Ω. The phase space trajectories
can be drawn by taking out the dynamical parameter t.
A point x∗ = (x∗

1, x
∗
2, . . . , x

∗
n) ∈ Ω such that

dxi(t)/dt = 0, ∀ i = 1, . . . , n, or, samewise,

x∗
i

ri +

n∑
j=1

αijx
∗
j

 = 0, i = 1, . . . , n. , (2)

is called fixed point or steady state, since it makes the
dynamics freeze. The fixed points, or steady states, are
known as equilibrium solutions of equation Eq. (1). The
stability of a fixed point with respect to small perturba-
tions can be studied by linearizing the equations around
the fixed point as stated in the Hartman-Grobman theo-
rem [6]. This is done by computing the Jacobian at the
fixed point, J(x∗). The eigenvalues of J(x∗) characterize
the stability of the fixed point. Fixed points, in this case,
are also positive, x∗

i ≥ 0 ∀i.
One can go further and study the behaviour of ecolog-

ical models when parameters take randomly distributed
values. This idea was pioneered by May [7]. In this
particular case, randomly distributed interaction matri-
ces A are useful to understand local stability in large
ecological communities and have been of huge interest
in recent studies [8]. The most usual approach is taking
αii = −d, d > 0, and sampling random interaction matri-
ces in which the off−diagonal elements (with probability
C) follow a normal distribution, αij ∼ N (µ = 0, σ), with
zero mean (and zero otherwise), thus mixing competitive
and mutualistic interactions.

Sampling with normal distributions helps with analyt-
ical results, which otherwise are hard to deal with. In
this case, May proved that for n large the probability of
existence of stable attractors is close to zero when the
complexity, K = σ

√
nC > d. This is useful to study the

maximum size of ecological communities [6, 7].
For our evolutionary theory model, we use the gener-

alized Lotka−Volterra equations. In order to do so, we
consider a competitive ecosystem (αij < 0 ∀i, j), and a
species we shall name primitive, i.e. xp with 1 ≤ p ≤ n.
This species is selected as one that does not play a dom-
inant role in the ecosystem (weak species). We have
to understand a dominant species as one that prospers
with advantage with respect to weak or primitive ones.
This means, in this context, that it has a smaller stable
population density, and a rather small replication rate,
rp < ri, x∗

p < x∗
i for i ̸= p. With the purpose of under-

standing evolution, we introduce a new, evolved species,
i.e. xe, into the system of equations and make the sys-
tem evolve until its new steady state to study whether
the evolved species adapts to the ecosystem or not. We
consider xe to be the evolved species from xp, and so fit-
ter to the new environment, and thus with re > rp and
smaller autoregulation term, |α̃ee| < |αpp|. In the fol-
lowing, we compare analytical results in stationary con-

ditions with simulations made for the particular case of
two competitive species, a weak and a dominant species,
which face the introduction of a third, fitter version of
the weak species. Since we use a competitive ecosystem,
the growth of the species is always bounded by logistic
growth terms, so we avoid possible divergences.

III. INVASIVE DYNAMICS AND EVOLUTION

Consider an ecosystem made up of n−interacting
species, governed by the Lotka−Volterra equations intro-
duced in Sec. II. Let A be the interaction matrix associ-
ated to this ecosystem, which for practical purposes we
shall name Ω from now on. For our competitive system,
we will consider a symmetrical interaction, αij = αji.
Let r = (r1, . . . , rn)

T be the reproduction rates of each
species. Thus, the ecosystem’s dynamics is governed by(

dxi

dt

)
Ω

= xi

(
ri +

n∑
i=1

αijxj

)
, i = 1, 2, . . . , n. , (3)

where αij are the elements of the interaction matrix
(A)ij = αij , and the subindex Ω denotes the equation
governs the evolution of xi in the ecosystem Ω. Let xp,
with 1 ≤ p ≤ n, be the primitive species which will later
on be replaced, or not, by its evolved analogue.
Once the ecosystem has reached the steady state,

{x∗
1, x

∗
2, . . . , x

∗
p, . . . x

∗
n} ∈ Ω, and since we have taken

the primitive species xp as non−dominant, we will have
x∗
p < x∗

j for a certain j ̸= p. At this point, we introduce
the evolved species, xe, to the ecosystem Ω. We shall
call this new ecosystem, the one including xe, Ω̃. The
introduction of xe to the new ecosystem plays a relevant
role. Now we have a set of n + 1 coupled differential
equations. This means the reproduction rate vector r′

is n + 1 dimensional, and the interaction matrix A′ is
(n+ 1)× (n+ 1) dimensional.
One can make a few assumptions on what values r′

and A′ take. If we consider the ecosystem Ω is abun-
dant in resources, one may acknowledge that the repro-
duction rates of the species living in Ω may not be al-
tered by the introduction of xe into the system. Thus,
r′ = (r1, r2, . . . , rp, . . . , rn, re)

T , where re is the reproduc-
tion of the evolved species, re > rp, and the remaining ri
ones, i ̸= e, are the ones we had in Ω.
For the new interaction matrix, A′, one may assume

that the interactions between species of the old ecosystem
Ω do not change with the introduction of xe, as done
in [5]. A new interaction arises when xe is introduced,
the interaction of xi with xe, ∀ i ̸= e. Thus, the new
interaction matrix shall be

A′ =


α̃1e

A ...

α̃ne

α̃e1 . . . α̃en α̃ee

 , (4)
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where A is the interaction matrix of the old ecosystem,
A = (αij). The dynamics of the Ω̃ ecosystem will be
described by

(
dxi

dt

)
Ω̃

= xi

ri +
∑
xj∈Ω̃

(A′)ijxj

 . (5)

Note that Eq. (5) is analogous to Eq. (3), However, the

last one runs over all the species living in Ω̃.

Given the dynamical evolution portrayed by Eq. (5),
we study how the new steady state, including xe, looks
like. More specifically, we will focus on the steady states
x∗
p, x

∗
e ∈ Ω̃. The new steady state for xp and xe will be

given by the system of equations(
dxp

dt

)
Ω̃

∣∣∣
x∗
p

= 0,

(
dxe

dt

)
Ω̃

∣∣∣
x∗
e

= 0, (6)

which can be rewritten, using Eq. (5), as
x∗
p

rp + αppx
∗
p + α̃pex

∗
e +

∑
j ̸=p,e

αpjxj

 = 0 (7a)

x∗
e

re + α̃eex
∗
e + α̃epx

∗
p +

∑
j ̸=p,e

α̃ejxj

 = 0 (7b)

(7)
The solutions to this system can be a set of zero and
non−zero values for x∗

p and x∗
e, depending on the inter-

action matrix elements, the densities xj , j ̸= p, e and
r′.

A. Coexistence of primitive and evolved species

Let the steady state {x∗
1, . . . , x

∗
p, . . . , x

∗
n, x

∗
e} ∈ Ω̃, be a

set of zero and non−zero values. The coexistence of the
primitive and the evolved species implies that their popu-
lation densities in the steady state are greater than zero,
x∗
p, x

∗
e > 0. Plugging this into Eqs. (7) manifests that

the terms in brackets must be zero. Thus, the non−linear
system of equations becomes a linear one. If we now sub-
tract the in−bracket terms and assume (for practical and
formal purposes) αpp = α̃pe = α̃ep, we get

x∗
e = − 1

αpp − α̃ee

rp − re +
∑
j ̸=p,e

(αpj − α̃ej)x
∗
j

 . (8)

We will use this approximation along the model. Im-
posing that x∗

e > 0, the condition

rp − re +
∑
j ̸=p,e

(αpj − α̃ej)x
∗
j > 0, (9)

must be fulfilled, since |α̃ee| < |αpp|. In the same direc-

tion, one can find x∗
p, to obtain

x∗
p = − 1

αpp(α̃ee − αpp)

[
α̃eerp − αppre

+
∑
j ̸=p,e

(α̃eeαpj − αppα̃ej)x
∗
j

 ,

(10)

from which the condition

α̃eerp − αppre +
∑
j ̸=p,e

(α̃eeαpj − αppα̃ej)x
∗
j > 0 (11)

must be fulfilled. The coexistence of xp and xe re-
lies on these two strong boundaries, which get harder
as we consider that the steady states x∗

j do depend
on the interaction matrix and the reproduction rates,
x∗
j = x∗

j (A
′, r′), ∀j ̸= p, e.

B. Extinction of the primitive species

Another possible solution of the system of equations
Eqs. (7) is the extinction of the primitive species and
the incorporation of the evolved one, so that x∗

p = 0,
x∗
e > 0. Solving Eqs. (7) for this case returns as with

x∗
e = − 1

α̃ee

re + ∑
j ̸=p,e

α̃ejx
∗
j

 . (12)

Note that if x∗
j = 0 for all j ̸= p, e, we get the steady state

of a logistic equation, x∗
e = −re/α̃ee. Imposing x∗

e > 0
this time, we get ∑

j ̸=p,e

|α̃ej | x∗
j < re, (13)

since the interaction matrix elements are strictly nega-
tive for our competitive system (| · | denotes the absolute
value). Condition (13) is easily fulfilled when the compe-
tition between the evolved species and the environment
excluding the primitive one, |α̃ej |, j ̸= p, e, is relatively
small, when re is big enough, and/or when the ecosys-
tem is not strongly populated with biodiversity, i.e. when
not many terms x∗

j contribute to the sum. In this case,
we say xe has incorporated itself to the ecosystem. Not
fulfilling the condition, i.e. strong competition with rela-
tively small re and strong biodiversity, would benefit xp,
which would jump out of extinction.

C. Failure of the evolved species

If the evolved species disappears in the steady state,
i.e. x∗

e = 0, we say it has failed to incorporate itself
into the ecosystem. The steady state is governed by the
dynamics portrayed in Eq. (5),

x∗
i

ri +
∑
x∗
j∈Ω̃

(A′)ijx
∗
j

 = 0, i = 1, . . . , n, e. (14)
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FIG. 1: Heatmaps of the average steady state abundance for each species in the space of parameters (δ, re).
Left: Weak species. Middle: Dominant species. Right: Evolved species.

Imposing x∗
e = 0, the terms of the sum including the in-

teraction between xi and xe vanish, and since A′ has the
shape portrayed in equation Eq. (4), for i, j = 1, . . . , n,
we have (A′)ij = (A)ij = αij . Thus, the last one becomes

x∗
i

ri +

n∑
j=1

αijx
∗
j

 = 0, i = 1, . . . , n , (15)

which is actually the system of equations for the steady
state of the ecosystem Ω, governed by equation Eq. (3).
Hence, the failure of xe to introduce itself to the ecosys-
tem leaves unaltered the steady state of the old one,
{x∗

1, . . . , x
∗
n} ∈ Ω. Once reached the steady state in Ω,

the introduction of xe, if it fails, alters the population
densities just for them to travel back to their original
steady state. Thus, the new steady state cannot depend
on re or α̃ej .

IV. SIMULATION OF TWO SPECIES
ECOSYSTEMS

To analyze the formal stationary results derived in
Sec. III, we numerically integrate the equations for a
two species ecosystem using a simple Euler method. We
let the system evolve until it reaches its steady state, and
then introduce the evolved species.

With this aim, we first generate a symmetric, random
interaction matrix A for our two species ecosystem, tak-
ing αii = −1/ri, so that only the competitive term is a
randomly distributed variable, which follows a uniform
distribution between 0 and −1, αij ∼ U(0,−1).
We select the random interaction matrix A such that

the achieved steady state consists of two non−negative
values, x∗

w, x
∗
d > 0 that verify x∗

w < x∗
d when we fix rp = 1

and rd = 1.5. We can identify the weak species xw as the
primitive one, and xd as the dominant. We let them
evolve from their initial condition up until they reach
their steady state and then introduce the evolved species
xe with reproduction rate re ∈ (1, 2). In order to gener-
ate the new interaction matrix, we take into account the
assumptions made in Sec. III. Thus the new interaction
matrix becomes

A′ =

 w b w

b d δ

w δ e

 ,

where w = −1/rw, d = −1/rd, e = −1/re and b is
randomly distributed. Note that the parameter δ cor-
responds to the terms α̃ej , j ̸= p, e. Here, we consider
δ ∈ [−1, 0]. We let the new system evolve until it reaches
a new stationary regime and report the average behaviour
after 75 realizations of the dynamics for each value of the
model parameters re and δ.

Heatmaps in Fig. 1 show the averaged steady state
abundances of xw, xd and xe for different values of δ and
re. We can see the survival of xw is granted for strong
enough competition |δ| as re gets bigger. The condition
relaxes when re is fairly small. Oppositely, xw goes ex-
tinct for small |δ| when re is small, and the condition
relaxes as re gets bigger, going extinct for a wider range
of |δ|, just as mentioned in Sec. III B. Fluctuations in the
weak species steady state abundance are very apparent
in this case. Moreover, one can see that at the extinc-
tion transition boundary, there is a linear relationship
between re and |δ|. On the other hand, we can see that
fluctuations in the steady state abundance of the domi-
nant species xd for big |δ| and re are much smaller. We
shall also emphasize that for re < rd it seems to be almost
constant, whereas for re > rd the steady state starts to
decrease. Particularly we can see how it decreases as re
gets higher and, surprisingly, when |δ| ∼ 0.5 and re ∼ 2,
the dominant species can even go extinct. This tells us
the introduction of xe cannot only replace xw, but also
make other, more dominant, species go extinct. Finally,
we can see how the survival of xe is granted, as men-
tioned in Sec. III B, for small competition |δ|, and the
condition relaxes as re gets bigger. The failure of xe,
as we can see takes a wide range of values. The extinc-
tion transition boundary again seems to imply a linear
relation between the two parameters. However, another
transition can be appreciated which seems to be linear
for small |δ|, and ends up curving itself. The bright spot
in Fig. 1 (right) corresponds to a peak of the popula-
tion density xe around (re ∼ 2, |δ| ∼ 0.5). This tells us
that the xe is responsible for the relevant decrease of the
former dominant species’ abundance, replacing it in its
dominant role in this range of parameter values.

As mentioned in Sec. II, we can also see that the
growth of every species involved is limited by its cor-
responding logistic term, ⟨x∗

i ⟩ ≤ −ri/αii = r2i . Likewise,
note that for our parameter range, we can’t see the si-
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FIG. 2: Average steady state abundance for each species in the space of parameters (δ, re).
Left: Weak species. Middle: Dominant species. Right: Evolved species.

multaneous extinction and failure of both xw and xe.
Between the extinction of xw and the failure of xe we
can see a transition region that exhibits large fluctua-
tions. Indeed, in this region, some repetitions take us to
extinction of xw, while the others to the failure of xe,
hence the fluctuations on the average steady state.

In Fig. 2 we also represent the average steady state of
each species as a function of δ, for certain values of re, as
well as its standard deviation. As shown in Fig. 1, we see
that in order for xw to survive, |δ|, i.e. the competition
between the evolved and the dominant species, needs to
be stronger as re grows. Then its population density
seems to increase in the linear way we already mentioned
before, to reach a stable steady state, that, apparently
does not depend on re nor on δ, as mentioned in III C.
Likewise, when xe fails to introduce itself for large enough
|δ|, the steady state abundance x∗

d does not depend on re,
nor on δ. The dashed lines (left and middle) represent the
theoretical average steady state and have been calculated
using results from Sec. III C. The adjusted theoretical
curves for small |δ| values have also been obtained from
the results of Sec. III B, for the extinction of the primitive
species, xw, in this case. Theoretical curves have also
been calculated in this case for xe. Here we can see there
is a little bump for re = 1.75, and around |δ| ∼ 0.5. As
discussed above, this behaviour signals the extinction of
the original dominant species at large enough values of
re.

V. CONCLUSIONS

Following previous work on synthetic biological com-
munities and invasion dynamics [5], we have implemented
a model to study the evolution and coexistence of primi-

tive and evolved species in a competitive ecosystem. We
have determined the conditions under which (i) both
species coexist, (ii) the weaker species extinguishes or (iii)
the evolved species fails to incorporate itself, as a func-
tion of the relevant parameters characterizing the ecosys-
tem interactions. Strong biodiversity seems to disfavour
the inclusion of new species into the ecosystem, as re-
ported in [9], and stochasticity plays a major role on the
steady state abundances giving rise to important fluctua-
tions. We have also seen how our formal results describe
the behavior of a two species ecosystem that faces the
introduction of an evolved species, giving us accurate es-
timations of the regions corresponding to the extinction
of xw and the failure of xe as a function of the model
parameters re and δ.

In conclusion, our model, relying on a few assumptions,
is able to reproduce the rich variety of behaviors observed
in diverse ecological communities, and is able to give rise
to extinction and integration failure phenomena reported
in real invasive dynamics. Future work could be done
with the aim of studying the influence of the size of the
community in order to extract more information from
our analytical results, and to characterize more deeply
the transition between extinction and failure.
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