
PHYSICAL REVIEW E AUGUST 1997VOLUME 56, NUMBER 2
Asymptotic analysis of the Gunn effect with realistic boundary conditions

L. L. Bonilla
Escuela Polite´cnica Superior, Universidad Carlos III de Madrid, Butarque 15, 28911 Legane´s, Spain

I. R. Cantalapiedra
Departament de Fı´sica Aplicada, Universitat Polite´cnica de Catalunya, Gregorio Maran˜ón 44, 08028 Barcelona, Spain

G. Gomila and J. M. Rubı´
Department de Fı´sica Fonamental, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain

~Received 13 March 1997!

A general asymptotic analysis of the Gunn effect inn-type GaAs under general boundary conditions for
metal-semiconductor contacts is presented. Depending on the parameter values in the boundary condition of
the injecting contact, different types of waves mediate the Gunn effect. The periodic current oscillation typical
of the Gunn effect may be caused by moving charge-monopole accumulation or depletion layers, or by low- or
high-field charge-dipole solitary waves. A new instability caused by multiple shedding of~low-field! dipole
waves is found. In all cases the shape of the current oscillation is described in detail: we show the direct
relationship between its major features~maxima, minima, plateaus, etc.! and several critical currents~which
depend on the values of the contact parameters!. Our results open the possibility of measuring contact param-
eters from the analysis of the shape of the current oscillation.@S1063-651X~97!04708-9#

PACS number~s!: 05.45.1b, 72.20.Ht, 85.30.Fg
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I. INTRODUCTION

The Gunn effect appears in many semiconductor sam
presenting negative differential resistance and subjec
voltage bias conditions@1–7#. It consists of a periodic shed
ding of pulses of the electric-field at the injecting conta
which then progress and are annihilated at the receiving c
tact. As a result there appears a periodic oscillation of
current through a passive external circuit attached to
semiconductor. Under different conditions, the current s
sustained oscillation may be caused by the motion of cha
accumulation layers~charge monopoles! @2#, not by the usual
electric-field pulses which are charge dipoles. Most of
experiments on the Gunn effect in different materials ta
place in samples with attached planar contacts, so that
wave motion may be safely assumed to be one dimensio
Despite the vast literature on the Gunn effect, it is surpris
that many basic questions remain poorly understood. For
ample, given a description of the charge transport in the b
semiconductor~say at the level of drift-diffusion and rat
equations!, which are the proper boundary conditions f
given contacts and how they affect the self-sustained cur
oscillations. The first question has been addressed in a c
panion paper, Ref.@8#, while the second will be answere
here.

Until recently, when confronted with the Gunn effec
theorists resorted to computer simulations of more or l
complicated models~which were supposed to reflect th
physics of a given semiconductor!, and would then explain
qualitatively their numerics. Special solutions valid for in
nite semiconductors at constant current bias conditions@3#,
or extrapolations of Kroemer’s nonlinear~NL! criterion @9#
were often used to interpret the simulation results. This
the processes of generation and annihilation of domain
the contacts~and in fact it also left out the dynamics of wav
561063-651X/97/56~2!/1500~11!/$10.00
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fronts and pulses! outside theoretical considerations. Co
cerning asymptotic descriptions of the Gunn effect wh
delve deeper than just numerical simulations of dr
diffusion models, some progress has been made rece
@10–13#. These works propose asymptotic descriptions of
Gunn effect, exploiting the fact that this effect is seen m
clearly in semiconductors having a large value of the prod
of sample length times doping~basically a dimensionles
length!. The role of the NL product in the analysis of th
Gunn instability was already discovered b
Kroemer@2#, and exploited to study the linear stability~small
signal analysis! of stationary solutions by many authors@3#.
It was recognized only much later that in the limit of larg
dimensionless length~NL product! it is possible to describe
asymptotically both the onset@16# and the fully developed
Gunn instability@10#. In this asymptotic limit the processe
of repeatedly generating a new wave~a charge monopole o
dipole domain! at the injecting contact, the motion of th
wave and its annihilation at the receiving contact may
well separated. Then they can be analyzed and combine
fully describe the Gunn effect. In particular, the effect
contacts on these processes and in determining the sha
the current oscillation can be clearly stated. In this paper
use our asymptotic theory to study Kroemer’s model
n-type GaAs under boundary conditions~BC’s! correspond-
ing to ideal metal-semiconductor~MS! contacts. We find that
these BC’s give rise to a multivalued control current-fie
characteristic at the injecting contact. The asymptotic ana
sis shows that the Gunn effect can be mediated by b
charge monopole or dipole domains according to the val
of the contact parameters. Shedding of new charge dip
waves from the injecting contact is adiabatic, in clear distin
tion with what happens if the control characteristic of t
contact is single valued@12,13#. In the latter case~analyzed
for a p-type Ge model in Ref.@12#! the charge dipole pulse
1500 © 1997 The American Physical Society
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56 1501ASYMPTOTIC ANALYSIS OF THE GUNN EFFECT WITH . . .
are created very rapidly at the injecting contact, and th
advance and grow simultaneously~see also@10#!, whereas
for multivalued control characteristic the boundary layer
the injecting contact grows adiabatically to a much grea
size before a new pulse can be shed. These facts may a
ciably determine the shape of the current oscillations. O
analysis could be extended to more complex models
displaying the Gunn effect@12–14#. Depending on the value
of the parameters characterizing the injecting contact an
the dc voltage bias, we find Gunn oscillations mediated
charge accumulation and depletion monopole wave fro
and high- and low-field charge dipole domains. We also fi
narrow regions in the parameter space where multiple sh
ding of dipole domains at the injecting contact occurs. W
have thus found a characterization of all possible dyna
behaviors which an ideal metal-semiconductor contact wo
give rise to in the Kroemer model for the Gunn effect. Th
opens the possibility of extracting information about the co
tacts from the analysis of the Gunn oscillations themselve
subject of considerable interest for applied researchers.

The rest of the paper is as follows. In Sec. II we pres
Kroemer’s model and the boundary conditions for met
semiconductor contacts discussed in the companion p
@8#. In Sec. III we present our asymptotic analysis
Kroemer’s model, and find that different types of Gunn
fect are possible according to the values of the bias an
certain dimensionless parameters appearing in the BC’si 0
anda0: charge monopoles~moving charge depletion and ac
cumulation layers!, high- and low-field solitary waves
~charge dipoles!, and multiple~low-field! charge dipoles are
predicted and confirmed by numerical simulations. Sectio
contains our conclusions whereas the Appendixes are
voted to different technical matters related to the main te

II. KROEMER’S MODEL AND BC’s
FOR METAL-SEMICONDUCTOR CONTACTS

The unipolar drift-diffusion model for the Gunn effec
proposed by Kroemer@2,15# is generally accepted to provid
a rather complete description of the main features of
effect. In the dimensionless units described in Ref.@8#, Kro-
emer’s model is

]E

]t
1v~E! S ]E

]x
11D2d

]2E

]x2 5J, ~1!

1

LE0

L

E~x,t ! dx5f. ~2!

Equation~1! is Ampère’s law, which says that the sum of th
displacement current and drift-diffusion current is equal
the total current densityJ(t). It can be obtained by differen
tiating the Poisson equation]E/]x5n21, with respect to
time, substituting the charge continuity equati
]n/]t1] j (x,t)/]x50 @the electron current density is of th
drift-diffusion type: j (x,t)5nv(E)2d ]n/]x#, and then in-
tegrating the result with respect tox. The electron velocity is
assumed to beN shaped. For specific numerical calculatio
we shall use Kroemer’s curve@15#
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v~E!5E
11BE4

11E4 ~3!

~it has a maximumvM.0 atEM.0 followed by a minimum
0,vm,vM at Em.EM), and assume that the electron d
fusivity d is constant. The dc biasf is the average electric
field on the semiconductor sample. Equations~1! and ~2!
need to be solved with an appropriate initial field profi
E(x,0) and subject to the corresponding b.c.’s. For an id
MS, the following mixed boundary conditions were derive
in Ref. @8#:

]E

]x
~0,t !5a0S i 02J~ t !1

]E

]t
~0,t ! D , ~4!

]E

]x
~L,t !5aLS i L1J~ t !2

]E

]t
~L,t ! D , ~5!

where i i and a i ( i 50,L) are dimensionless paramete
which are a combination of the semiconductor effective d
sity of states, contact barrier height, Richardson’s const
doping, and temperature~see Ref.@8#!. In what follows, i i
will be assumed to be positive because physically interes
phenomena~including the usual Gunn effect mediated b
high-field domains! are observed for these values ofi i ~see
the phase diagram in Ref.@8#!.

For typicaln-type GaAs data,d!1 andL@1 @10#. In this
limit, we shall find approximate solutions to the initia
boundary value problem Eqs.~1!–~5! for E(x,t) and J(t).
Strictly speaking, the simple asymptotic description that f
lows holds in the limitL→`, even whend5O(1) @13#.
Assumingd!1 just simplifies the description of the trave
ing waves of the electric field in the semiconductor throu
the use of characteristic equations and shock wa
@10,17,18#. For example, it is shown in Appendix A~by us-
ing the method of characteristics! that the boundary condi
tion Eq. ~4! implies that the electric field at the injectin
contact,E(0,t)5E0(t), obeys the following equation:

dE0

dt
5J2 j c~E0!, ~6!

j c~E!5
~11a0i 0!v~E!

11a0v~E!
. ~7!

These expressions constitute a Dirichlet boundary condi
for the electric field which contains the same information
the mixed condition Eq.~4!. The contact curve,j c(E), pre-
sents two extrema, a minimumj cm5 j c(Em) and a maximum
j cM5 j c(EM), at the same field values as the electron vel
ity curvev(E). j c(E) tends toj 0

sat5a0
211 i 0 for high electric

fields. As we shall see below, during most of an oscillati
period, j c(E0);J, and this expression yields a multivalue
contact-characteristic curve relating the field at the inject
contact to the actual value of the current density.

To take advantage of the large-length limit, we will u
the following rescaled time and length,

e5
1

L
, s5

t

L
, y5

x

L
. ~8!
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Then Eqs.~1! and ~2! become

J2v~E!5eS ]E

]s
1v~E!

]E

]y D2de2
]2E

]y2 , ~9!

E
0

1

E~y,s! dy5f. ~10!

Notice that the boundary condition~6! becomes

J2 j c~E!5e
dE0

ds
~11!

in the limit d!1.

III. ASYMPTOTICS OF THE GUNN EFFECT

In a previous paper@8# we analyzed the stationary solu
tions of Kroemer’s model with metal-semiconductor co
tacts, and discussed their stability. No stable stationary s
tion is expected for certain ranges of bias and the cath
contact parametersi 0 and a0. In these circumstances, th
Gunn effect mediated by either moving charge monopole
dipoles might appear. A rich phenomenology of propagat
waves and current oscillations has been numerically
served for these parameter ranges. Among them, we h
observed both high-~Figs. 1 and 2! and low- ~Fig. 3! field
solitary waves~moving charge dipoles!, multiple low-field
dipoles ~Fig. 4!, moving charge accumulation~Fig. 5! and
charge depletion monopoles~Fig. 6!. In Ref. @8#, we identi-
fied the critical currents determining which type of wav
mediate the current oscillation~in the limit d!1). They are
related to the boundary conditions in the following way:

~i! If j cM.vM , the Gunn effect is mediated by movin

FIG. 1. Gunn effect mediated by dipole solitary waves.~a! Di-
mensionless current densityJ(s). Parameter values areL5800,
i 050.3, a053.6, and f51.5, for which vm, j cm,J*
, j cM,vM . The minimum and maximum values ofJ(s) corre-
spond to j cm50.23 andj cM50.31, respectively, whereas the pl
teau at intermediate values ofJ(s) corresponds to the solution o
c1(J)5c2(J) and J* 50.28. ~b! The corresponding electric-field
profilesE(y,s) evaluated at the times marked in~a! of this figure.
-
u-
de

or
g
-
ve

charge accumulation monopoles (j cM and vM are the local
maxima of the contact current and electron velocity curv
both reached atE5EM).

~ii ! If j cm,vm , and j 0
sat.vm , the Gunn effect is mediated

by moving charge depletion monopoles@ j cm andvm are the
local minima of the contact current and electron veloc
curves, both reached atE5Em , and j 0

sat5a0
211 i 0 is the

value at whichj c(E) saturates at high electric fields#.

FIG. 2. Gunn effect mediated by dipole solitary waves.~a! Di-
mensionless current densityJ(s). Parameter values areL51000,
i 050.45, a0530, and f52.4, for which vm,J* , j cm, j cM

,vM . The maximum value ofJ(s) corresponds toj cM50.46,
whereas the plateau at bottom ofJ(s) corresponds to the solution o
c1(J)5c2(J) and J* 50.28. The value ofj cm is 0.41. ~b! The
corresponding electric-field profilesE(y,s) evaluated at the times
marked in~a! of this figure.

FIG. 3. Gunn effect mediated by low-field dipole solitary wave
~a! Dimensionless current densityJ(s). Parameter values ar
L51500, i 050.24, a0530, and f52.3, for which
vm, j cm, j cM,J* ,vM , whereJ* 50.28 corresponds to the solu
tion of c1(J)5c2(J). The values ofj cM50.26 andj cm50.23.~b!
The corresponding electric-field profilesE(y,s) evaluated at the
times marked in~a! of this figure.
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56 1503ASYMPTOTIC ANALYSIS OF THE GUNN EFFECT WITH . . .
~iii ! If vm, j cm, j cM,vM , moving charge dipoles medi
ate the Gunn effect~see Ref.@8# for more details!.

As shown in the figures, there are several stages in e
period of the current oscillation corresponding to the p
cesses of generation, propagation, and annihilation
electric-field domains. Each stage has its own time and sp
scales, and hence the oscillation can be suitably describe

FIG. 4. Multiple shedding of low-field domains. The parame
values areL5800, i 050.24,a0530, andf51.5. The critical cur-
rents areJ* 50.28, j cM50.26, andj cm50.23. ~a! Dimensionless
current densityJ(s). ~b! The corresponding electric-field profile
E(y,s) evaluated at the times marked in~a! of this figure. Two
pulses are formed during each period. The second shed p
reaches and overtakes the first one.

FIG. 5. Gunn effect mediated by monopole wave fronts~moving
accumulation charge monopoles!. ~a! Dimensionless current densit
J(s). Parameter values areL5800, i 051.35, a050.8, andf52,
for which j cm,vm and j 0

sat.vm , wherej 0
satcorresponds to the satu

ration currentj 0
sat5a211 i 0. The maximum and minimum values o

the oscillation correspond to the maximum and minimum values
thev(E) curve,vM50.58 andvm50.18, respectively.~b! The cor-
responding electric field profilesE(y,s) evaluated at the times
marked in~a! of this figure.
ch
-
of
ce
by

means of a matched asymptotic analysis. For instance,
annihilation of wave fronts takes place on a fast time sc
compared to that governing wave-front propagation. Thus
the time scale of wave-front propagation, the annihilation
wave fronts is a quasi-instantaneous process during w
the time derivative of the current density changes appre
bly while the current itself,J(s), does not change. On th
other hand, the generation of fronts takes place adiabatic
on a much slower time scale comparable to wave-fr
propagation. In this stage bothJ(s) and its derivative change
appreciably. This is quite different from the fast generati
of fronts and pulses observed for other types of bound
conditions@12#.

As long as these different processes take place on dif
ent time and space scales, there are different stages o
oscillation which can be analyzed separately. This happ
for certain bias ranges. We shall then construct the appr
mate electric field and current density solutions by means
matched asymptotic expansions. A detailed description o
period of the current oscillation will then be obtained. F
other bias values, several processes occur almost sim
neously ~e.g., the annihilation of a wave front may occ
during the process of detachment of another wave front fr
the injecting boundary layer for low bias values!. This com-
plicates the asymptotic description without adding much
our physical understanding, so that we will omit the deta

Note that in the limite51/L!1, the solutions of Eqs.~9!
and ~10! are piecewise constant: on most of they interval,
E is equal to one or another of the zeros ofv(E)2J ~notice
that this equation may have three zeros which we denote
E1,E2,E3), separated by transition layers that conne
them. Aty50 and 1 there are boundary layers~quasistation-
ary most of the time!, which we callinjecting and receiving
layers, respectively. It can be seen that the propagation
fronts turns out to be a quasistationary process, while
generation is not. Thus two different asymptotic approac
will be used: one for the description of the quasistation

r

lse

f

FIG. 6. Gunn effect mediated by monopole wave fronts~moving
depletion charge monopoles!. ~a! Dimensionless current densit
J(s). Parameter values areL5800, i 050.135, a050.8, and
f51.5, for which j cM.vM . ~b! The corresponding electric field
profilesE(y,s) evaluated at the times marked in~a! of this figure.
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1504 56BONILLA, CANTALAPIEDRA, GOMILA, AND RUBI´
propagation of fronts, and the other for their~nonquasista-
tionary! generation.

A. Quasistationary propagation of wave fronts

In this section we will present the asymptotics of the qu
sistationary propagation of wave fronts, and of the cor
sponding time evolution of the density current. Wave fro
are moving transition layers connecting regions of
sample where the electric field is spatially uniform. In ord
to describe their quasistationary propagation we will proc
as follows. We assume thatE(y,s) is either E1(J) or
E3(J) outside boundary layers and wave fronts. Let the wa
front located aty5Y(s) move with velocityc5dY/ds. For
each value ofJ, the wave front advances with spee
c5c1(J), if it connects E5E1(J) @y,Y(s)# to E3(J)
@y.Y(s)#, or with speed c5c2(J), if it connects
E5E3(J) @y,Y(s)# to E1(J) @y.Y(s)#. To find the inner
structure of a wave front and its speed, we introduce a co
dinatej5e21@y2Yi(s)# moving with the wave front. Then
we need to solve the following problem for the equation,

dE

dj
5F,

dF

dj
5

@v~E!2c# F1v~E!2J

d
, ~12!

obtained from Eq.~9!: Find the unique value c5c1(J)
@c2(J)# such that there is a solution of~12! with
E(2`)5E1(J) and E(`)5E3(J) @E(2`)5E3(J) and
E(`)5E1(J)#. The solution of this problem will provide
both the speed and inner structure of the wave front. In te
of the phase plane~12!, the previous problem is equivalent t
find c5c1(J), so that there is a heteroclinic orbit connecti
the saddle point (E1,0) to the saddle point (E3,0) with
F.0. Similarlyc5c2(J) corresponds to a heteroclinic orb
connecting (E3,0) to (E1,0) with F,0. The functions
c6(J) for our model are depicted in Fig. 7. Note that th
intersect whenJ5J* , given by

J* 5
1

E32E1
E

E1

E3
v~E!dE, c65J* , ~13!

FIG. 7. Velocitiesc1 andc2 of the heteroclinic wave fronts a
functions of the current density. Notice that the lines intersec
J* 50.28. We have also marked the currentsJ†5J2,150.53 at
which 2c15c2 andJ2,350.20 at which 2c153c2 .
-
-

s
e
r
d

e

r-

s

the so-called equal-areas rule@4#.
In the limit d!1, we can obtain explicit expressions fo

c6(J) and for the corresponding wave fronts, as we n
recall @10,18#. The wave front~moving depletion layer! join-
ing „E3(J),0… and „E1(J),0… may be approximated by th
exact solution of Eq.~12!,

E~j!52j, F~j!521, c2~J!5J, ~14!

which holds for any value ofd plus two corner layers of
width O(Ad) ~on thej scale! at j56(E32E1)/2. See Ref.
@18# for an explicit calculation. The width of this wave fron
on the j length scale is (E32E1)1O(Ad), which yields
y2Yi(s)5O(e) on the large length scale. The velocity o
this wave front isc2(J)5J.

The other wave fronts~moving accumulation layers! can
be constructed by matched asymptotic expansions in
limit d!1, and their velocitiesc1(J) and shapes depend o
whetherJ is larger or smaller thanJ* . These wave fronts are
composed of a shock wave joining two field valuesE2 and
E1 ~at least one of them should be equal toEi , i 51 and 3!
plus a tail region which moves rigidly with the same veloc
as the shock@10#. The inner structure of the shock wave~for
very small but not zerod) can be a quite complicated triple
deck set of boundary layers@18#. Let V(E1 ,E2) be the ve-
locity of the shock wave given by the equal-areas r
@10,17,18#

V~E1 ,E2!5
1

E12E2
E

E2

E1

v~E!dE. ~15!

We now have the following@10#:
~1! If JP(vm ,J* ), E15E3(J), whereasE2 is calculated

as a function ofJ by imposing the condition that the ta
region to the left of the shock wave moves rigidly with it:

V~E3 ,E2!5v~E2!. ~16!

Solving Eqs.~15! and ~16! simultaneously~with E15E3),
we find bothE2 and c15v(E2).J as functions ofJ. To
the left of the shock wave~in the tail region! the field satis-
fies the~approximate! boundary value problem

@v~E!2c1~J!#
dE

dj
5J2v~E!, j,0,

E~2`!5E1~J!, E~0!5E2~J!. ~17!

~2! If JP(J* ,vM), E25E1(J), whereasE1 is calculated
as a function ofJ by imposing the condition that the ta
region to the right of the shock wave moves rigidly with i

V~E1 ,E1!5v~E1!. ~18!

Simultaneously solving Eqs.~15! and ~18! ~with
E25E1), we find bothE1 andc15v(E1),J as functions
of J. To the right of the shock wave~in the tail region! the
field satisfies the~approximate! boundary value problem

t
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@v~E!2c1~J!#
dE

dj
5J2v~E!, j.0,

E~0!5E1~J!, E~`!5E3~J!. ~19!

At J5J* we haveE25E1, E15E3, andc15J* . It is not
hard to prove thatc1(J) is a decreasing function. The func
tions c6(J) are depicted in Fig. 7.

Notice that the inner structure of the shock wave h
width O(Ad) on the j scale, while the total width of the
wave front isO(1) on thej scale andO(e) on they scale.
In the limit d!1, the structure of the wave fronts is thus o
sided: the wave front is a discontinuity preceded or follow
by a tail region.

In conclusion, the propagation of a single wave front c
be described by giving the positionY(s) and velocity
c6„J(s)… of the front and the values of the electric field o
its left- and right-hand sides,Ei„J(s)…. When more than a
single wave front are comoving inside the sample, the sa
description applies to each of them. All of the magnitud
involved in this description depend on times only through
the instantaneous value of the currentJ(s). This fact, to-
gether with the fact that the voltage must remain constan
the time, can be used to derive a simple closed equa
describing the time evolution of the current density duri
the propagation stages. As an example of this result, le
consider the case a single propagating dipole~two fronts!
@see Fig. 1~b1!#. In this case, neglecting transition an
boundary layers, we have E(y,s)5E1„J(s)… for
0,y,Y1(s) and Y2(s),y,1 and E(y,s)5E3„J(s)… for
Y1.y.Y2(s). For the voltage we have

f5E1„J~s!…1@E3„J~s!…2E1„J~s!…#@Y2~s!2Y1~s!#

1O~e!. ~20!

By using the fact that the voltage is fixed, we can obtain
equation forJ(s) by differentiating the bias condition~20!
with respect tos. By noting that

v~Ei !5J⇒ dEi

dJ
5

1

v8„Ei~J!…
,

dY1

ds
5c1~J!,

dY2

ds
5c2~J!, ~21!

the following simple closed equations for the current are
tained:

dJ

ds
5A~J! @c1~J!2c2~J!#, ~22!

A~J!5
~E32E1!2

f2E1

v38
1

E32f

v18

.0, ~23!

wherev i8[v8„Ei(J)… ( i 51 and 3!. This equation forJ holds
as long as the electric-field profile consists of a single pro
gating dipole. A simple analysis of Eq.~22! demonstrates
that J tends toJ* @for which c1(J)5c2(J)# exponentially
fast, starting from a certain value of the currentJ(0). This
s

d

n

e
s
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n

us

n

-

-

result explains, in particular, why the solitary wave respo
sible for the Gunn effect moves at an approximately cons
velocity c65J* and a constant current far from the contac

A similar procedure can be applied to derive the cor
sponding closed equation for the current when differ
types of propagating domains are present. In general we
have n1 fronts moving at velocityc1 and n2 moving at
c2 , with un12n2u50,1. For these cases the current evolv
following the equation

dJ

ds
5A~J!@n1c1~J!2n2c2~J!#. ~24!

As before, this equation holds as long as the propaga
profile consists ofn1 fronts propagating atc1 and n2 at
c2 . Two typical cases can be considered in analyzing
~24!: ~i! either n1 or n2 are equal to zero; and~ii ! n6Þ0,
and both numbers are different from zero. In the first ca
we have either

dJ

ds
5A~J!c1~J!, n151,n250 , ~25!

or

dJ

ds
52A~J!c2~J!, n150,n251 , ~26!

and the current will either increase@Eq. ~25!#, or decrease
@Eq. ~26!#, with time. In the second situation, the curre
follows the general relation Eq.~24! with the corresponding
values of n6 : the current evolves toward the fixed poi
J5Jn1 ,n2

, satisfying n1c1(Jn1 ,n2
)2n2c2(Jn1 ,n2

)50,
when such a point exists. A particular example of this beh
ior was explained above forJ1,15J* .

These results describe the quasistationary propagatio
fronts and the corresponding time evolution of the curr
density during these stages. We will use them to interpret
results of the numerical simulations.

B. Generation of fronts

As mentioned above, for our b.c.’s an appreciable par
a period of the current oscillation may be spent genera
new fronts nonadiabatically. Fronts of dipole domains a
generated at the cathode, whereas monopole wave front
pear somewhere in the middle of the sample. In what f
lows, we will focus on the description of dipole domain
Monopole wave fronts have recently been described in de
elsewhere@11#.

A simple rule concerning generation of dipole domai
can be formulated: when the current densityJ(s) crosses the
maximum~minimum! of the contact curvej cM ( j cm), a front
moving with speedc2 (c1) starts being formedwhen its
generation is compatible with the field value at the bulk af
the injecting contact.

Let us now show why the previous rule holds. Suppo
that the current reaches adiabatically one of the critical v
ues mentioned above, let us sayj cM , in the slow time scale
s. Then the field atx50, given by Eq.~6!, can no longer be
quasistationary, and the injecting layer becomes unstable
starts shedding a new solitary wave. Lets1 now be the ear-
liest time at which J5 j cM , and the boundary field
E05EM . After this time, the disturbancesJ2 j cM5O(e)
causeE0 to evolve to the third branch ofj c(E) on a time of
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orders2s15O(e). The field in the injecting layer, in turn
increases until a moving wave front moving with speedc2 is
formed. To describe this process, we adapt ideas develo
for the analysis of the trap-dominated Gunn effect
p-type Ge@12# to the present situation. An important diffe
ence is that the sharp increase in the contact fieldE0 helps to
create the new wave front, but a new pulse is not shed on
fast time scales5(s2s1)/e: after the wave front is created
the contact field varies on the third branch ofj c(E) and the
current has to decrease slowly@according to Eq.~24!, on the
s time scale# until E0 can jump back to values on the fir
branch ofj c(E) whenJ5 j cm .

To leading order, the field in the injecting layer solves t
following semi-infinite problem, whose derivation can b
found in Appendix B:

]E

]s
1v~E!S ]E

]x
11D5J, x.0, 2`,s,1`, ~27!

E~0,s!5E0~s!, ~28!

where E0 solves Eq. ~6! with J5 j cM1eJ(1)(s) and
J(1)(s) is given by

S ]

]s
1b D @J~1!2h8~s!2ah#52gh, ~29!

whereh(s) is

h~s!5~E32E1!c1s2E
0

`

@E~x,s!2E1#dx

2E
2`

0

@E~j!2E1~ j cM!#dj

2E
0

`

@E~j!2E3~ j cM!#dj, ~30!

and formulas for the positive constantsa, b, andg may be
found below, in Eqs.~B10!. The functionh(s) is the area
lost due to the motion of the old front during the times
minus the instantaneous excess area under the injecting
minus the constant excess area under the old wave fro
Y5Y1(s1) @that is, under the heteroclinic orbit connectin
„E1( j cM),0… and„E3( j cM),0…#.

As s→2`, we have to impose the following matchin
condition on an appropriate overlap domain:

E~x,s!2Estat„x;J~s!…!1, ~31!

ass→2` ands→s12. HereEstat„x;J(s)… is the quasista-
tionary injecting layer solution of Eq.~12! with c50 such
that Estat„0;J(s)… satisfies Eq. ~4! and Estat„`;J(s)…
5E1„J(s)… for s,s1, J(s1)5 j cM . Notice that the term
eJ(1)(s) is needed so as to avoid that the solution of t
problem stay indefinitely in the quasistationary fie
Estat„x;J(s)….

The solution of the previous semi-infinite problem reve
the growth of the field at the contact and inside the inject
layer until ~i! E0 becomes Ec3( j cM) @Ec1(J),Ec2(J)
,Ec3(J) are the three possible solutions ofJ5 j c(E)#, ~ii !
E(x,s) increases toE3( j cM) asx increases fromx50, and
ed

he

yer
at

s

s
g

then ~iii ! has the structure of a wave front connecti
E3( j cM) to E1( j cM). This wave front advances with velocit
c2( j cM). The formation of a front whenJ crossesj cm can be
explained similarly.

C. Putting the pieces together

In the two previous subsections, we presented the b
features of an asymptotic description of the Gunn effe
namely, quasistationary front propagation and the genera
of new fronts. Now we are in a position to put all the piec
together, and describe a full period of current oscillation. W
shall distinguish three cases: high-field dipoles, low-field
poles, and monopoles.

1. Dynamics of high-field dipoles

High-field dipole domains have been observed to app
when vm, j cm and J* , j cM,vM . Then depending on the
value of j cm with respect toJ* , and of j cM with respect to
J†[J2,1, different situations may occur.

Let us start by considering the casevm, j cm,J* , j cM
,J†,vM . This situation corresponds to the propagation
high-field dipole domains as shown in Fig. 1. We will a
sume the initial electric-field configuration to correspond to
single propagating high-field domain@Fig. 1~b1!#. This con-
figuration corresponds ton151 andn251, and hence the
current satisfies Eq.~22!, evolving from an initial value
J(0)P( j cm ,J* ), toward the fixed pointJ* 5J1,1. After a
certain time, the wave front located atY2 reaches the end o
the sample and disappears, producing an abrupt chang
the time derivative of the current. We have a new stage w
n151 and n250, Fig. 1~b2!, governed by Eq.~25!. Its
solution increases until it surpasses the valuej cM . At this
point the injecting layer becomes unstable and starts sh
ding a new front. The formation dynamics was explained
detail in Sec. II. Then a new slowly varying stage begin
There are two leftover wave fronts: the old one located
y5Y1(s) @which advances towardy51 with speed
c1(J)#; and a new one located aty5Y4(s), moving with
speed c2(J), and leaving behind a quasistationary fie
E3(J) @see Fig. 1~b3!#. Again, the field configuration corre
sponds ton15n251, with J(s) following Eq. ~22!, and
decreasing exponentially fast towardJ* . Before J reaches
J* , the front located atY1 reaches the end of the sample a
disappears, thereby producing a new abrupt change in
time derivative of the current density. Then only the recen
formed front@located atY4(s)# is present on the sample@Fig.
1~b4!#, which corresponds ton150 and n251. J(s) de-
creases according to Eq.~26! until the minimum of the con-
tact curve,J5 j cm , is reached. After that, a front movin
with speedc1 is generated. The charge dipole wave th
created evolves adiabatically, and the current density is
scribed again by Eq.~22!, Fig. 1~b1!. We have come back to
the initial situation, and one period of the current oscillati
has been completed.

It is worth noting that by means of this analysis some
the most relevant features of the current oscillations, suc
the maximum and minimum currentsJmax and Jmin , have
been identified with quantities related to the contact para
etersJmax' j cM andJmin' j cm , then opening the possibility
of determining the values of contact parameters from



nu
o
o
m
s

fir

f
th
ro
g

e

o
s

gh
ca
t
ib

e

e

wo
t
or
a

d

n
d

tin
ld
n-

a

d
lo-
a
be
t
-

ing
,
lysis
tages

tart

to

e

o

our

this
-

the

ntil

e,

.

e

56 1507ASYMPTOTIC ANALYSIS OF THE GUNN EFFECT WITH . . .
analysis of the current oscillations.
Other situations involving dipole domains have been

merically identified. They are described by the same type
analysis. In what follows only the more relevant features
these situations will be considered. Let us now assu
vm,J* , j cm, j cM,J†,vM . This case again correspond
to high-field solitary waves~dipole domains, see Fig. 2!, but
the current oscillations have a different shape. The three
stages of the oscillation, Figs. 2~b1!, 2~b2!, and 2~b3!, corre-
spond to the propagation of a single dipole, annihilation o
front, and generation of new one. They are similar to
stages described above. Now, however, after the new f
has been formed, Fig. 2~b3!, and the current is decreasin
toward J* , J reaches the critical current,j cm ~because
J* , j cm). A new front moving with speedc1 is then cre-
ated. After the formation process has finished, we hav
configuration with two fronts moving atc1 and one atc2 ,
that is, withn152 andn251 @Fig. 2~b4!#. Hence the cur-
rent satisfies@see Eq.~24!#

dJ

ds
5A~J! @2c1~J!2c2~J!#, ~32!

and it starts increasing again, trying to reachJ1,2[J†. Before
this value may be attained, the old front, located atY1, ar-
rives at the receiving contact and disappears. We again
tain Eqs.~22! and~23!, and recover the initial situation. Thu
a full period of the Gunn oscillation is again completed.

There are other possible situations for propagating hi
field domains, but we have not found them in our numeri
simulations with the curvev(E) considered in the presen
work. For example, in the second case we have descr
above,vm,J* , j cm, j cM,J†,vM , after the formation of
the new front@Fig. 2~b4!#, the current density could hav
reached the valueJ† before the old front located atY1 had
arrived at the receiving contact. In such a situation, a n
front moving at c2 could be formed, giving rise to an
electric-field configuration withn15n252. In this configu-
ration the current would decrease again toJ2,25J1,15J* .
We would then have a more complicated situation with t
pulses and the dying wave front simultaneously presen
the sample. Proceeding in a similar way, we could theref
observe simultaneous coexistence of several pulses for
propriate ranges of parameters. This situation~multiple shed-
ding of high-field domains! has been numerically observe
in other models@12,13#.

2. Dynamics of low-field dipoles

Low-field dipole domains appear whe
vm, j cm, j cM,J* . Depending on the value of the applie
bias, single~high-bias values! or multiple ~low-bias values!
propagating low-field domains are obtained~see Figs. 3
and 4!.

Let us start by considering the case of single propaga
low-field dipole domains, Fig. 3. We consider an initial fie
configuration having a low-field domain far from the co
tacts. Then there is a wave front located atY1, moving with
speedc2 , and a wave front located atY2.Y1, moving with
speed c1 , that is, n15n251 @Fig. 3~b1!#, and J(0)
P( j cm ,J* ). The current increases towardJ* according to
Eq. ~22!, until Y251. ThenJ starts satisfying Eq.~26! @cor-
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responding ton150 andn151; see Fig. 3~b2!#, and it de-
creases until the valuej cm is reached. After this occurs,
new front ~moving at speedc1) is created, while the old
wave frontY1,1. We have a stage described by Eq.~22!
with n15n251 @see Fig. 3~b3!#, during whichJ increases
past j cM ( j cM,J* ). Then a new front moving with spee
c2 starts to be created. At the same time, the old front
cated atY1 reaches the end of the sample, giving rise to
complex stage in which the nonstationary effects cannot
neglected@Fig. 3~b4!#. After that stage, we recover the firs
situation@Fig. 3~b1!#, and a complete period of the oscilla
tion has been described.

Let us now consider an example of multiple propagat
low-field dipole domains~Fig. 4!. As we mentioned above
these appear for small bias values. The asymptotic ana
of this case is more complicated because there are new s
~fusion of two wave fronts inside the sample! whose detailed
description is outside the scope of this paper. Let us s
with the configuration shown in Fig. 4~b1!, for which two
low-field domains coexist. This configuration corresponds
n15n252. Following Eq.~24!, the current will evolve ac-
cording to

dJ

ds
5A~J!@2c1~J!22c2~J!#, ~33!

thereby increasing towardJ2,25J* . Before this value can be
reached, the front located atY4 reaches the end of th
sample. The resulting configuration@Fig. 4~b2!# has now
n151 andn252, and the current decreases according t

dJ

ds
5A~J!@c1~J!22c2~J!#. ~34!

If the curvev(E) were such that the fixed point of Eq.~34!
existed, the current would tend to such a value. For
choice ofv(E), this fixed point does not exist~see Fig. 7!,
and therefore the current decreases all the time. During
processj cm will be crossed. According to our previous con
siderations, a new front moving at speedc1 should then be
formed. However, this does not occur because melting of
fronts Y2 andY3 starts afterY4 reachesy51. This melting
process seems to inhibit the creation of new wave fronts u
it is completed, which happens forJ, j cm . Then a new front
moving at speedc1 is rapidly created, and we have a stag
with n15n251 @Fig. 4~b3!#, described by Eq.~22!. The
current increases untilJ5 j cM , at which time a front moving
at speedc2 appears aty50 @Fig. 4~b4!#. Then the current
decreases following Eq.~34! until J5 j cm . Another front
moving at speedc1 is then formed. We have now
n15n252 @Fig. 4~b5!#, and J increases according to Eq
~22!. WhenJ. j cM , a front moving with speedc2 is created
at y50, so thatn152, n253; see Fig. 4~b6!. Now the cur-
rent decreases towardsJ2,3 according to the equation

dJ

ds
5A~J!@2c1~J!23c2~J!#. ~35!

This stage lasts untilY151, at which time we are back at th
first stage, Fig. 4~b1!, having completed a full period of the
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oscillation. More complicated examples of multiple low-fie
domains exist, and they could be described similarly.

3. Dynamics of charge monopoles

When j cM.vM , or when j cm,vm and j sat.vm , the
Gunn effect is mediated by wave fronts which are cha
monopoles. The casej cM.vM , corresponds to moving ac
cumulation layers,~Fig. 5!, while moving depletion layers
are observed forj cm,vm and j sat.vm ~Fig. 6!. Kroemer@15#
discovered numerically the Gunn effect mediated by cha
accumulation monopoles for boundary conditions cor
sponding to the control characteristics, while its asympto
analysis~for B!1) was performed many years later@10#.
Recently a Gunn effect mediated by charge accumula
monopoles has been used to describe self-sustained os
tions of the current in GaAs/AlAs superlattices@21# in the
limit of weakly coupled, low doped, long superlattices@11#.

The complete asymptotic analysis found in Ref.@11# can
be used to describe the present situation after a few sim
changes are made. First of all, the equal-areas rule in the
of the superlattice refers to 1/v(E), not v(E) @22#. The sec-
ond important change is that of the injecting boundary c
dition in the description of the birth of a new monopol
instead of a rigid Neumann boundary conditio
]E(0,t)/]x5c, we should use Eq.~4!. These two change
can be implemented without difficulty, and the details will
omitted. An important difference from the Gunn effect m
diated by dipole solitary waves is that the amplitude of
current oscillations is larger~its largest value is approxi
matelyvM2vm for the charge accumulation monopoles, a
j cM2 j cm for the dipoles!. The monopoles ‘‘probe’’ the full
region of negative slope ofv(E), while the dipoles ‘‘probe’’
a smaller region.

IV. CONCLUSIONS

We have performed an asymptotic and numerical anal
of the Gunn effect inn-type GaAs under general bounda
conditions for metal-semiconductor contacts. We ha
shown that the Gunn effect is mediated by~i! moving deple-
tion charge monopoles,~ii ! moving accumulation charg
monopoles,~iii ! high-field dipole solitary waves, or~iv! low-
field dipole solitary waves, according to whether the critic
contact currentsj cM5 j c(EM), j cm5 j c(Em), and j 0

sat are ~i!
j cm,vm and j 0

sat.vm , ~ii ! j cM.vM , ~iii ! vm, j cm and
J* , j cM,vM , or ~iv! vm, j cm, j cM,J* , in dimensionless
units @vm andvM are the minimum and maximum values
the electron drift velocityv(E), E.0, andJ* is the solution
of c1(J)5c2(J)#. Some of these results are well known f
boundary conditions given by Kroemer’s control charact
istic. In addition, we have shown that there are new insta
ity mechanisms consisting of multiple generation of~low-
field! charge dipole solitary waves in the region near
injecting contact ifj cM is close enough toJ* , and the dimen-
sionless length is large enough. In each case we have
able to describe in detail the shape of the current oscillat
identifying some of its main features~maxima, minima, pla-
teaus, etc.! with critical currents appearing in our mode
among them the contact currentsj cm and j cM . This result
opens the possibility of determining contact parameters
e
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means of the analysis of the shape of the current oscillat
Our results might be of use in the analysis of self-sustai
current oscillations in weakly coupledn-doped superlattices
@21#, once the role of contacts and the boundary conditio
they generate are understood in these systems. Besides
our results are not restricted to the particular model of
Gunn effect studied here, but seem to hold for a general c
of models, supporting the idea of the ‘‘universality’’ of th
Gunn effect@13#.
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APPENDIX A: NONSTATIONARY FIELD
AT THE INJECTING CONTACT

We shall now prove that the fieldE0(t) at the contact
x50 obeys the equation

dE0

dt
5J2 j c~E0!. ~A1!

This can be seen from the method of characteristics app
to Eq.~1! with d50 and the boundary condition Eq.~4!. The
characteristic equations are

dE

dt
5J2v~E!, ~A2!

dx

dt
5v~E!, ~A3!

to be solved with the conditions

E~t;t!5E0~t!, ~A4!

x~t;t!50. ~A5!

Clearly,

dE0

dt
5

]E

]t
~t;t!1

]E

]t
~t;t!5J2v~E0!1

]E

]t
~t;t!.

~A6!

The last term in this equation can be obtained from
boundary condition Eq.~4! as follows. From the solution o
Eqs. ~A3! and ~A5!, we obtain (]x/]t)(t;t)52v„E0(t)….
Then the boundary condition Eq.~4! yields

]E

]t
~t;t!5

]E

]x
~0,t!

]x

]t
~t;t!

52v„E0~t!…a0S i 02J1
dE0

dt D . ~A7!

Insertion of Eq.~A7! into Eq. ~A6! yields Eq. ~A1! ~with
t5t).
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APPENDIX B: CALCULATION OF THE CURRENT
J „1…„s… DURING THE SHEDDING STAGE

To obtain the equations governing the shedding sta
we need to keep terms of ordere in our calculations, as
indicated in Ref.@12#. The outer~bulk! expansion is

E5Ei
~0!~s!1eEi

~1!~s!1O~e2!, ~B1!

J5J~0!~s!1eJ~1!~s!1O~e2!, ~B2!

wherei 51 if 0,y,Y1(s1) andi 53 if Y1(s1),y,1. Then
Ei

(0) andJ(0) solve

]Ei
~0!

]s
1v~Ei

~0!!5J~0!~s!, ~B3!

f5E1
~0!1@E3

~0!2E1
~0!#@12Y1~s1!#. ~B4!

We can obtain easilyE3
(0) andJ(0) from these equations:

E3
~0!5

f2E1
~0!Y1~s1!

12Y1~s1!
, ~B5!

J~0!~s!5v~E1
~0!!Y1~s1!1v~E3

~0!!@12Y1~s1!#. ~B6!

Now E1
(0) follows from Eq. ~B3! and these two last equa

tions. These equations should be solved with the match
conditions thatEi

(0)→Ei( j cM) ( i 51 and 3! andJ(0)→ j cM as
s→2`. These problems have the solutionsJ5 j cM and
Ei

(0)5Ei( j cM). Thus we expect that the current density do
not depart substantially fromj cM ase→0.

The O(e) correctionsEi
(1)(s) obey the equations

Q iEi
~1![

]Ei
~1!

]s
1v8~Ei !Ei

~1!5J~1!~s!, ~B7!

which immediately follow from Eq.~9!. To find J(1) we
proceed as follows. First of all, we write the bias conditi
Eq. ~10! including terms of ordere in the approximation of
the electric field and the current density:

f5E1~ j cM!1@E3~ j cM!2E1~ j cM!#@12Y1~s1!#

1eH E1
~1!1@E3

~1!2E1
~1!#@12Y1~s1!#

2@E3~ j cM!2E1~ j cM!#c1s1E
0

`

@E~x,s!

2E1~ j cM!#dx1E
2`

0

@E~j!2E1~ j cM!#dj

1E
0

`

@E~j!2E3~ j cM!#djJ 1O~e2!. ~B8!
s,

g

s

Here E(j) is the field inside the wave front atY1, and
E(x,s) is the field in the injecting layer. Since
f5E1( j cM)1@E3( j cM)2E1( j cM)# @12Y1(s1)#, we obtain

E1
~1!1@E3

~1!2E1
~1!# @12Y1~s1!#5h~s!, ~B9!

whereh(s) is given by Eq.~30!.
We now obtain the first-order differential equation~29!

for J(1)(s) by applying the operatorQ1Q3 to both sides of
Eq. ~B9! and then using Eq.~B7!:

S ]

]s
1b D @J~1!2h8~s!2ah#52gh,

where the coefficientsa, b, andg are

a5v18Y1~s1!1@12Y1~s1!#v38 ,

b5v38Y1~s1!1@12Y1~s1!#v18 , ~B10!

g5Y1~s1!@12Y1~s1!#~v182v38!2.

All functions of J in these equations are calculated
J5 j cM . Solving this equation we obtain the following func
tion:

J~1!~s!5h8~s!1ah~s!2gE
2`

s

e2b~s2t !h~ t !dt.

~B11!

The only missing function is the field at the injectin
boundary layer. This field profile is the solution of th
semi-infinite problem Eqs. ~27!–~31!, with J(s;e)
5 j cM1eJ(1)(s) given by Eq. ~B11!. We can write Eq.
~B11! in another form that suggests a more transparent in
pretation:

J~1!~s!5
a

bH J8~s1!~s2s0!2I 8~s!2E
0

`

@aI 8~s2s8!

1v18v38I ~s2s8!#e2bs8ds8J , ~B12!

I ~s!5
b

aE0

`

@E~x,s!2E1#dx, ~B13!

s052
v

3

82
Y1~s1!1v

1

82
@12Y1~s1!#

v18v38b
1$@E3~ j cM!

2E1~ j cM!#c1%21H E
2`

0

@E~j!2E1~ j cM!#dj

1E
0

`

@E~j!2E3~ j cM!#djJ . ~B14!

The terms on the right-hand side of Eq.~B12! clearly display
the balance between the area lost by the motion of the
wave front atY1(s) and the excess area under the injecti
layer.J(1)(s) increases linearly withs until the excess area
under the injecting layer increases withs at least linearly.
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