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A general asymptotic analysis of the Gunn effecinitype GaAs under general boundary conditions for
metal-semiconductor contacts is presented. Depending on the parameter values in the boundary condition of
the injecting contact, different types of waves mediate the Gunn effect. The periodic current oscillation typical
of the Gunn effect may be caused by moving charge-monopole accumulation or depletion layers, or by low- or
high-field charge-dipole solitary waves. A new instability caused by multiple sheddifigweffield) dipole
waves is found. In all cases the shape of the current oscillation is described in detail: we show the direct
relationship between its major featur@saxima, minima, plateaus, etand several critical currentsvhich
depend on the values of the contact paramgt€ar results open the possibility of measuring contact param-
eters from the analysis of the shape of the current oscillaf®h063-651X97)04708-9

PACS numbg(s): 05.45:+b, 72.20.Ht, 85.30.Fg

I. INTRODUCTION fronts and pulsesoutside theoretical considerations. Con-
cerning asymptotic descriptions of the Gunn effect which
The Gunn effect appears in many semiconductor sampledelve deeper than just numerical simulations of drift-
presenting negative differential resistance and subject tdiffusion models, some progress has been made recently
voltage bias conditiongl—7]. It consists of a periodic shed- [10-13. These works propose asymptotic descriptions of the
ding of pulses of the electric-field at the injecting contact,Gunn effect, exploiting the fact that this effect is seen most
which then progress and are annihilated at the receiving corelearly in semiconductors having a large value of the product
tact. As a result there appears a periodic oscillation of thef sample length times dopingasically a dimensionless
current through a passive external circuit attached to théength. The role of the NL product in the analysis of the
semiconductor. Under different conditions, the current selfGunn instabilty = was  already  discovered by
sustained oscillation may be caused by the motion of charg§roemer[2], and exploited to study the linear stabiligmall
accumulation layer&charge monopole$2], not by the usual signal analysisof stationary solutions by many authdi3.
electric-field pulses which are charge dipoles. Most of thdt was recognized only much later that in the limit of large
experiments on the Gunn effect in different materials takedimensionless lengtfNL produc) it is possible to describe
place in samples with attached planar contacts, so that thesymptotically both the ons¢16] and the fully developed
wave motion may be safely assumed to be one dimensionakunn instability[10]. In this asymptotic limit the processes
Despite the vast literature on the Gunn effect, it is surprisingdf repeatedly generating a new wafgecharge monopole or
that many basic questions remain poorly understood. For exdipole domain at the injecting contact, the motion of the
ample, given a description of the charge transport in the bulkvave and its annihilation at the receiving contact may be
semiconductor(say at the level of drift-diffusion and rate well separated. Then they can be analyzed and combined to
equationy which are the proper boundary conditions for fully describe the Gunn effect. In particular, the effect of
given contacts and how they affect the self-sustained currermontacts on these processes and in determining the shape of
oscillations. The first question has been addressed in a corthe current oscillation can be clearly stated. In this paper we
panion paper, Refl8], while the second will be answered use our asymptotic theory to study Kroemer's model for
here. n-type GaAs under boundary conditiofBC'’s) correspond-
Until recently, when confronted with the Gunn effect, ing to ideal metal-semiconduct@S) contacts. We find that
theorists resorted to computer simulations of more or lesthese BC’s give rise to a multivalued control current-field
complicated modelgwhich were supposed to reflect the characteristic at the injecting contact. The asymptotic analy-
physics of a given semiconducjpand would then explain sis shows that the Gunn effect can be mediated by both
qualitatively their numerics. Special solutions valid for infi- charge monopole or dipole domains according to the values
nite semiconductors at constant current bias conditj@fs of the contact parameters. Shedding of new charge dipole
or extrapolations of Kroemer’'s nonline@L) criterion[9]  waves from the injecting contact is adiabatic, in clear distinc-
were often used to interpret the simulation results. This leftion with what happens if the control characteristic of the
the processes of generation and annihilation of domains aontact is single valuefil2,13. In the latter cas€analyzed
the contactgand in fact it also left out the dynamics of wave for a p-type Ge model in Ref.12]) the charge dipole pulses
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are created very rapidly at the injecting contact, and they 1+BE*
advance and grow simultaneouglsee alsd10]), whereas v(E)=E =
for multivalued control characteristic the boundary layer at

the injecting contact grows adiabatically to a much greateyjt has a maximunw,,>0 atE,,>0 followed by a minimum
size before a new pulse can be shed. These facts may appP=y <u,, at E,>E,), and assume that the electron dif-
ciably determine the shape of the current oscillations. Oufusivity 8 is constant. The dc biag is the average electric
analysi_s could be extended to more complex models alsfeg|d on the semiconductor sample. Equatidas and (2)
displaying the Gunn effe¢.2—14. Depending on the values peeq to be solved with an appropriate initial field profile
of the parameters characterizing the injecting contact and CE(X,O) and subject to the corresponding b.c.’s. For an ideal

the dc voltage bias, we find Gunn oscillations mediated byg " the following mixed boundary conditions were derived
charge accumulation and depletion monopole wave front§, Ref. [8]:

and high- and low-field charge dipole domains. We also find

narrow regions in the parameter space where multiple shed- JE

ding of dipole domains at the injecting contact occurs. We a—X(OI)=ao<io—J(t)+g(01)>, 4
have thus found a characterization of all possible dynamic

behaviors which an ideal metal-semiconductor contact would E

give rise to in the Kroemer model for the Gunn effect. This —(L,)=a
opens the possibility of extracting information about the con- IX

tacts from the analysis of the Gunn oscillations themselves,

a . . . .
subject of considerable interest for applied researchers. whgre i and o .(' :.O’L) are d|m9n5|onless parameters
The rest of the paper is as follows. In Sec. Il we presenf’Vh'Ch are a combination of the semiconductor effective den-

Kroemer's model and the boundary conditions for metal-Sity of states, contact barrier height, Richardson’s constant,
semiconductor contacts discussed in the companion pap8PPing, and temperatursee Ref[8]). In what follows,i;
[8]. In Sec. Il we present our asymptotic analysis of Will be assumed to be positive because physically interesting
Kroemer's model, and find that different types of Gunn ef-Phenomendincluding the usual Gunn effect mediated by

fect are possible according to the values of the bias and djigh-field domainsare observed for these valuesiofisee
certain dimensionless parameters appearing in the Bg's, ("€ Phase diagram in ReB]). _
anda,: charge monopolegnoving charge depletion and ac- . FOr typicaln-type GaAs dataj<1 andL>1[10]. In this
cumulation layers high- and low-field solitary waves limit, we shall find approximate solutions to the initial
(charge dipoles and multiple(low-field) charge dipoles are Poundary value problem Eqgl)—(5) for E(x,t) and J(t).
predicted and confirmed by numerical simulations. Section \Pt1Ctly speaking, the simple asymptotic description that fol-
contains our conclusions whereas the Appendixes are d&ws holds in the limitL—ce, even whené=0(1) [13].

voted to different technical matters related to the main text/ASSUmingé<1 just simplifies the description of the travel-
ing waves of the electric field in the semiconductor through

the use of characteristic equations and shock waves
Il. KROEMER’S MODEL AND BC's [10,17,18. For example, it is shown in Appendix &y us-
FOR METAL-SEMICONDUCTOR CONTACTS ing the method of characteristjcthat the boundary condi-
tion Eqg. (4) implies that the electric field at the injecting
contact,E(0t) =Eq(t), obeys the following equation:

()

_ IE
|L+J<t>—E<L,t>), ®)

The unipolar drift-diffusion model for the Gunn effect
proposed by Kroemd2,15] is generally accepted to provide
a rather complete description of the main features of this dE,
effect. In the dimensionless units described in R&f, Kro- —=J—j(Ep), (6)
emer’s model is dt

S2E jC(E):(1+ao|0)U(E)

JE
— tv(B) (&4—1)—6?:\], (1) 1+agu(E)

@)

These expressions constitute a Dirichlet boundary condition
for the electric field which contains the same information as

1 (L

—f E(x,t) dx= ¢. 2 the mixed condition Eq(4). The contact curvej.(E), pre-

LJo sents two extrema, a minimupg,,= j .(E,,) and a maximum
iem=1c(Em), at the same field values as the electron veloc-

Equation(1) is Ampee’s law, which says that the sum of the ity curvev (E). j(E) tends toj 3= ay "+, for high electric

displacement current and drift-diffusion current is equal tofields. As we shall see below, during most of an oscillation
the total current density(t). It can be obtained by differen- period,j.(Ep)~J, and this expression yields a multivalued
tiating the Poisson equatiofE/dx=n—1, with respect to contact-characteristic curve relating the field at the injecting
time, substituting the charge continuity equationcontact to the actual value of the current density.

anlat+ dj(x,t)/9x=0 [the electron current density is of the  To take advantage of the large-length limit, we will use
drift-diffusion type:j(x,t)=nv(E)— & dn/dx], and then in- the following rescaled time and length,

tegrating the result with respect xo The electron velocity is
assumed to bdl shaped. For specific numerical calculations

1 t X
we shall use Kroemer's cunjd5] U STr y=r ®)
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FIG. 1. Gunn effect mediated by dipole solitary waves.Di-
mensionless current densit}(s). Parameter values are= 800,
ip=0.3, @y=3.6, and ¢=1.5, for which v, ,<jm<JI*
<jem<vm . The minimum and maximum values d{s) corre-
spond toj.,=0.23 andj.=0.31, respectively, whereas the pla-
teau at intermediate values ds) corresponds to the solution of
c,(J)=c_(J) andJ*=0.28. (b) The corresponding electric-field
profilesE(y,s) evaluated at the times marked (@ of this figure.

Then Egs(1) and(2) become
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FIG. 2. Gunn effect mediated by dipole solitary waves.Di-
mensionless current densid(s). Parameter values ate= 1000,
ip=0.45, a;=30, and ¢=2.4, for which v, <J*<j.m<icm
<vy - The maximum value ofi(s) corresponds tq.y=0.46,
whereas the plateau at bottomX{k) corresponds to the solution of
c,(J)=c_(J) and J*=0.28. The value ofj, is 0.41.(b) The
corresponding electric-field profilés(y,s) evaluated at the times
marked in(a) of this figure.

charge accumulation monopoleg.; andvy, are the local
maxima of the contact current and electron velocity curves,

JE JE 5E both reached aE=E,).
J—U(E)=€<E+U(E) 3_) - EZF, (9) (i) If jem<vm, andj$®>v,,, the Gunn effect is mediated
y y by moving charge depletion monopolgs, andv, are the
1 local minima of the contact current and electron velocity
f E(y,s) dy=¢. (10)  curves, both reached &#=E,,, and j5*=aq'+i, is the

0 value at whichj.(E) saturates at high electric fields

Notice that the boundary conditid) becomes
@ o3
. dE,
I-je(B)=e4o 11
J(s)
in the limit 5<1.
. ASYMPTOTICS OF THE GUNN EFFECT s
In a previous papef8] we analyzed the stationary solu-  ® 5 : 15 :

tions of Kroemer's model with metal-semiconductor con- g, 10 £ E(y) 1° L @)
tacts, and discussed their stability. No stable stationary solu- 5 ‘—\ ] 5 L—]
tion is expected for certain ranges of bias and the cathode o v, Y, 1 % Y, 1
contact parameteriy, and aq. In these circumstances, the y y
Gunn effect mediated by either moving charge monopoles or :z F(3) ' :z @) ' 1
dipoles might appear. A rich phenomenology of propagating E¥ '} Ew ]
waves and current oscillations has been numerically ob- 0 . 0 [_

served for these parameter ranges. Among them, we have
observed both high¢Figs. 1 and 2 and low- (Fig. 3) field

solitary waves(moving charge dipolgs multiple low-field FIG. 3. Gunn effect mediated by low-field dipole solitary waves.

dipoles (Fig. 4), moving charge accumulatiofFig. 5 and
charge depletion monopolé€Big. 6). In Ref.[8], we identi-

(@) Dimensionless current density(s). Parameter values are
L=1500, i¢y=0.24, @¢,=30, and ¢=2.3, for which

fied the critical currents determining which type of waves, <  <j..,<J*<uv,,, whereJ* =0.28 corresponds to the solu-

mediate the current oscillatiofin the limit 5<1). They are
related to the boundary conditions in the following way:
(i) If jom>vwm, the Gunn effect is mediated by moving

tion of ¢, (J)=c_(J). The values 0if.,,=0.26 andj.,=0.23.(b)
The corresponding electric-field profilds(y,s) evaluated at the
times marked in@) of this figure.
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FIG. 4. Multiple shedding of low-field domains. The parameter  FIG. 6. Gunn effect mediated by monopole wave frgntsving
values ard. =800,i7=0.24,a¢=30, and¢=1.5. The critical cur-  depletion charge monopoles(a) Dimensionless current density
rents areJ*=0.28, j.y=0.26, andj.,=0.23. (8) Dimensionless J(s). Parameter values ar&=800, i;=0.135, a;=0.8, and
current densityd(s). (b) The corresponding electric-field profiles ¢=1.5, for whichj.y>vy . (b) The corresponding electric field
E(y,s) evaluated at the times marked {a) of this figure. Two  profilesE(y,s) evaluated at the times marked (@ of this figure.
pulses are formed during each period. The second shed pulse
reaches and overtakes the first one. means of a matched asymptotic analysis. For instance, the

_ . _ _ _annihilation of wave fronts takes place on a fast time scale

(iii) If v<jem<Jem<wwm, moving charge dipoles medi- compared to that governing wave-front propagation. Thus on
ate the Gunn effedtsee Ref[8] for more details ~ the time scale of wave-front propagation, the annihilation of

As shown in the figures, there are several stages in eaGave fronts is a quasi-instantaneous process during which
period of the current oscillation corresponding to the pro+he time derivative of the current density changes apprecia-
cesses of generation, propagation, and annihilation ofjy while the current itselfJ(s), does not change. On the
electric-field domains. Each stage has its own time and spacgher hand, the generation of fronts takes place adiabatically
scales, and hence the oscillation can be suitably described By, a much slower time scale comparable to wave-front

propagation. In this stage bodlis) and its derivative change

@ o8 appreciably. This is quite different from the fast generation
) ' ' ' ' of fronts and pulses observed for other types of boundary
0.6 conditions[12].
J(s) g4l As long as these different processes take place on differ-
ent time and space scales, there are different stages of the
02} v " ; :
@) m oscillation which can be analyzed separately. This happens
0.0 — ' 6.5 ' 10 for certain bias ranges. We shall then construct the approxi-
s mate electric field and current density solutions by means of
b . 12 ' matched asymptotic expansions. A detailed description of a
Ey) ) { ey 5F @ ] period Qf the current oscillation will then be obtamed.. For
sl [_ al r other bias values, several processes occur almost simulta-
05 | 05 / neously (e.g., the annihilation of a wave front may occur
y v during the process of detachment of another wave front from
12 y 12 ' the injecting boundary layer for low bias valje$his com-
E(y) 2 F @ 1 Ew) j @ ] plicates the asymptotic description without adding much to
o i 0 ] our physical understanding, so that we will omit the details.
0 v 1 0 y 1 Note that in the limite=1/L<1, the solutions of Eqg9)

and (10) are piecewise constant: on most of thenterval,

FIG. 5. Gunn effect mediated by monopole wave frqntsving Eis equal to one or another of the zerOSvQE_) —J (notice
accumulation charge monopoleg) Dimensionless current density that this equation may have three zeros which we denote by
J(s). Parameter values ate=800,i,=1.35, ¢;=0.8, andp=2, E1<E»<Ej), separated by transition layers that connect
for which j m<vm andj>v,,, wherej$* corresponds to the satu- them. Aty=0 anq 1 ther.e are bour!df':lry _|ayéfﬁ1a3|3ta.“9n'
ration curren$*= &1+ i,. The maximum and minimum values of ary most of the timg which we callinjecting and receiving
the oscillation correspond to the maximum and minimum values ofdyers respectively. It can be seen that the propagation of
thev(E) curve,v,,=0.58 andv,,=0.18, respectively(b) The cor-  fronts turns out to be a quasistationary process, while the
responding electric field profile&(y,s) evaluated at the times generation is not. Thus two different asymptotic approaches
marked in(a) of this figure. will be used: one for the description of the quasistationary
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0.6

05 [

the so-called equal-areas ruig.

In the limit §<1, we can obtain explicit expressions for
c.(J) and for the corresponding wave fronts, as we now
recall[10,18. The wave fron{moving depletion layerjoin-

ing (E5(J),0) and (E{(J),0) may be approximated by the

ol exact solution of Eq(12),

. L
03 \& -

c(J)
E(H)=-¢& F(&=-1, c_(JI)=J, (14

I 7 e
e i which holds for any value ob plus two corner layers of
o2 rc. ! 1 width O(\/3) (on the& scalg at é= * (Ez—E,)/2. See Ref.
: : [18] for an explicit calculation. The width of this wave front
o4 A . . L. on the ¢ length scale is E3—E;)+0O(/8), which yields
0.15 0.25 0.35 0.45 0.55

y—=Y;(s)=0(e) on the large length scale. The velocity of
this wave front isc_(J)=J.

FIG. 7. Velocitiesc, andc_ of the heteroclinic wave fronts as The other wave frontsmoving accumulation layeysan
functions of the current density. Notice that the lines intersect abe constructed by matched asymptotic expansions in the
J*=0.28. We have also marked the curredfs=J,,=0.53 at limit <1, and their velocities , (J) and shapes depend on
which 2c, =c_ andJ,s=0.20 at which 2, =3c_ . whether] is larger or smaller thad* . These wave fronts are

composed of a shock wave joining two field valles and
propagation of fronts, and the other for thémonquasista- E. (at least one of them should be equaBg i=1 and 3
tionary) generation. plus a tail region which moves rigidly with the same velocity
as the shock10]. The inner structure of the shock watfer
very small but not zer@) can be a quite complicated triple-
deck set of boundary layef48]. Let V(E, ,E_) be the ve-

In this section we will present the asymptotics of the quaqocity of the shock wave given by the equal-areas rule
sistationary propagation of wave fronts, and of the corref19 17 1§

sponding time evolution of the density current. Wave fronts
are moving transition layers connecting regions of the
sample where the electric field is spatially uniform. In order V(E, ,E_)= f
to describe their quasistationary propagation we will proceed E.—-E Je
as follows. We assume th&E(y,s) is either E{(J) or

E5(J) outside boundary layers and wave fronts. Let the wavaVe now have the following10]:
front located aty=Y(s) move with velocityc=dY/ds. For @) 1fJe(wy,J*), EL=E3(J), wherea€ _ is calculated
each value ofJ, the wave front advances with speed as a function of] by imposing the condition that the tail
c=c,(J), if it connects E=E;(J) [y<Y(s)] to E3(J) region to the left of the shock wave moves rigidly with it:
ly>Y(s)], or with speed c=c_(J), if it connects

E=E3(J) [y<Y(s)] to E;(J) [y>Y(s)]. To find the inner V(E3,E_)=v(E_). (16)
structure of a wave front and its speed, we introduce a coor-

. _ _1 . .
dinate§=e y—Yi(s)] moving with the wave front. T_hen Solving Egs.(15) and (16) simultaneously(with E . =Egj),
we need to solve the following problem for the equation, we find bothE_ andc, =v(E_)>J as functions of]. To

the left of the shock wavén the tail region the field satis-
(12) fies the(approximate boundary value problem

A. Quasistationary propagation of wave fronts

E+v(E)dE. (15)

dE dF_ [v(E)—c] F+u(E)—J
d¢ 0 dé 8 ’

obtained from Eq.(9): Find the unique value €c(J)
[c_(J)] such that there is a solution of12) with
E(-»)=Ei(J) and E=)=E;(J) [E(-»)=E;(J) and
E()=E;(J)]. The solution of this problem will provide E(—«)=E;(J), E(0)=E_(J). (17
both the speed and inner structure of the wave front. In terms

of the phase plan€l2), the previous problem is equivalentto  (2) |f 3 (J* v,,), E_ =E,(J), wherea<, is calculated
find c=c. (J), so that there is a heteroclinic orbit connecting 55 5 function ofJ by imposing the condition that the tail

the saddle point &;,0) to the saddle pointHz0) with  region to the right of the shock wave moves rigidly with it:
F>0. Similarlyc=c_(J) corresponds to a heteroclinic orbit

connecting E3,0) to (E1,0) with F<0. The functions V(E. E))=0v(E 18
c..(J) for our model are depicted in Fig. 7. Note that they (E+ B)=v(E,). (18
intersect wherd=J*, given by

dE
[v(E)—C+(J)]d—§=J—v(E), £<0,

Simultaneously solving Egs.(15 and (18) (with

£ E_=E,), we find bothE, andc,=v(E,)<J as functions

J*= j 3v(E)d E, c.=J%, (13 of J. To the right of the shock wavén the tail region the
=] field satisfies th€approximate¢ boundary value problem
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E result explains, in particular, why the solitary wave respon-
[v(E)—c ()] 5z=J-v(E), £&>0, sible for the Gunn effect moves at an approximately constant
dé e g
velocity c.. =J* and a constant current far from the contacts.
_ _ A similar procedure can be applied to derive the corre-
E(0)=E.(J), E(=)=Es(J). (19 sponding closed equation for the current when different
At J=J* we haveE_=E,, E, =E,, andc, =J*. It is not types of propagating domains are present. In general we will

hard to prove that, (J) is a decreasing function. The func- haven_+ fronts mo_vmg at velocityc, andn_ moving at
tions c..(J) are depicted in Fig. 7. c ", W_|th |tnh+—n,|?0,1. For these cases the current evolves

Notice that the inner structure of the shock wave has0 owing fthe equation
width O(+/8) on the ¢ scale, while the total width of the
wave front isO(1) on the¢ scale andD(e) on they scale. 35 AQINn.c.(I)—n_c_(I)]. (24)
In the limit 6<1, the structure of the wave fronts is thus one
sided: the wave front is a discontinuity preceded or followedAs before, this equation holds as long as the propagating
by a tail region. profile consists ofn, fronts propagating at, andn_ at

In conclusion, the propagation of a single wave front cant- - TWo typical cases can be considered in analyzing Eq.
be described by giving the positiol(s) and velocity (24) (i) eithern, orn_ are equal to zero; andi) n.. #0,
c.(J(s)) of the front and the values of the electric field on and both numbers are different from zero. In the first case,
its left- and right-hand side;(J(s)). When more than a we have either
single wave front are comoving inside the sample, the same
description applies to each of them. All of the magnitudes s~ AQe:(d), ny=1n_=0, (25
involved in this description depend on tinseonly through
the instantaneous value of the currg{s). This fact, to- or
gether with the fact that the voltage must remain constant all
the timg, can b.e used to_derive a simple cIose(_:i eque}tion —~=—AJ)c_(J), n,=0,n =1, (26)
describing the time evolution of the current density during ds
the propagation stages. As an example of this result, let ug

consider the case a single propagating dipFeo fronts [Eq. (26)], with time. In the second situation, the current

[see Fig. 1bD)]. In this case, neglectTg transition and 10,5 the general relation E424) with the corresponding

boundary layers, we haveE(y,s)=E;(J(s)) for yajues ofn. : the current evolves toward the fixed point

0<y<Y4(s) and Y,(s)<y<1 andE(y,s)=E3(J(s)) for J=J, . , satisfying n,c.(J, ,)-n_c_(J, ,)=0,
L L L

Y1>Y>Y(8). For the voltage we have when such a point exists. A particular example of this behav-

nd the current will either increag&q. (25)], or decrease

_ _ _ ior was explained above fat; ;=J*.
¢=E1(0()+[Bs(J(8)) = B1((SPILY2(S) = Ya(s)] These results describe the quasistationary propagation of
+0(e). (200  fronts and the corresponding time evolution of the current

density during these stages. We will use them to interpret the
By using the fact that the voltage is fixed, we can obtain arresults of the numerical simulations.
equation forJ(s) by differentiating the bias conditio(R0)

with respect tcs. By noting that B. Generation of fronts
As mentioned above, for our b.c.’s an appreciable part of
v(E-)=J:>E= 1 a period of the current oscillation may be spent generating
! dJ v'(EJ))’ new fronts nonadiabatically. Fronts of dipole domains are
generated at the cathode, whereas monopole wave fronts ap-
dy, dy, pear somewhere in the middle of the sample. In what fol-
gs ¢+ g e, (21)  lows, we will focus on the description of dipole domains.

Monopole wave fronts have recently been described in detail
the following simple closed equations for the current are ob&lséwherg11].
tained: A simple rule concerning generation of dipole domains
can be formulated: when the current dengifg) crosses the
J maximum(minimum) of the contact curve.y (jem), a front
d—S=A(J) [ci(J)—c_(I)], (220  moving with speedc_ (c,) starts being formedvhen its
generation is compatible with the field value at the bulk after
the injecting contact

_E\2
A(J)= M>O' (23) Let us now show why the previous rule holds. Suppose
$—E, N Es—¢ that the current reaches adiabatically one of the critical val-

vg vy ues mentioned above, let us s@y;, in the slow time scale

s. Then the field ak=0, given by Eq.(6), can no longer be
wherev{ =v'(E;(J)) (i=1 and 3. This equation fod holds  quasistationary, and the injecting layer becomes unstable and
as long as the electric-field profile consists of a single propastarts shedding a new solitary wave. Isgtnow be the ear-
gating dipole. A simple analysis of E¢22) demonstrates liest time at which J=j.y, and the boundary field
thatJ tends toJ* [for which ¢, (J)=c_(J)] exponentially E,=E, . After this time, the disturbanced—j.y=0(¢)
fast, starting from a certain value of the currd0). This  causeE, to evolve to the third branch gf(E) on a time of
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orders—s;=0(€). The field in the injecting layer, in turn, then (iii) has the structure of a wave front connecting
increases until a moving wave front moving with speedis  E3(jcm) t0 E1(jcm)- This wave front advances with velocity
formed. To describe this process, we adapt ideas developed (j.\)- The formation of a front whed crosseg.,, can be

for the analysis of the trap-dominated Gunn effect inexplained similarly.
p-type Ge[12] to the present situation. An important differ-

ence is that the sharp increase in the contact figltielps to C. Putting the pieces together
create the new wave front, but a new pulse is not shed on the ] ] ]
fast time scaler=(s—s,)/e: after the wave front is created, !N the two previous subsections, we presented the basic

the contact field varies on the third branchjofE) and the ~features of an asymptotic description of the Gunn effect,
current has to decrease slowhccording to Eq(24), on the namely, quasistationary fro_nt propagation and the generation
s time scal@ until E, can jump back to values on the first of new fronts. Now we are in a position to put aII_the_p|eces
branch ofj(E) whenJ=j .. togeth(.ar,.and_descrlbe a full pepod pf cur_rent oscnlatlpn. We
To leading order, the field in the injecting layer solves theshall distinguish three cases: high-field dipoles, low-field di-

following semi-infinite problem, whose derivation can be POl€S, and monopoles.

found in Appendix B: 1. Dynamics of high-field dipoles

&E+ E
Jo v(E)

8E+1
IX

High-field dipole domains have been observed to appear
when v, <jem and J* <j.y<vm. Then depending on the
value of j.,, with respect toJ*, and ofj.y with respect to

E(0,0)=Eq(0), (28)  J'=J,,, different situations may occur.
] ) w Let us start by considering the casg<j:m<J* <jem
where Eo solves Eq. (6) with J=jcy+e) ™ (o) and  jt<y . This situation corresponds to the propagation of

=J, x>0, —ow<g<+x, (27

I8 (o) is given by high-field dipole domains as shown in Fig. 1. We will as-
3 sume the initial electric-field configuration to correspond to a
(—+.3) [JY—h'(g)—ah]=— yh, (29)  single propagating high-field domajfig. 1(b1)]. This con-
Jo figuration corresponds to, =1 andn_=1, and hence the

current satisfies Eq(22), evolving from an initial value
J(0) e (jem,J*), toward the fixed poinl*=J;,. After a
o certain time, the wave front located 4 reaches the end of
h((r)=(E3—E1)C+a'—f [E(X,0)—E ]dx the sample and disappears, producing an abrupt change in
0 the time derivative of the current. We have a new stage with
0 n,=1 andn_=0, Fig. Ab2), governed by Eq(25). Its
—J [E(&)—Eq(jem)]dE solution increases until it surpasses the valyg. At this
’°° point the injecting layer becomes unstable and starts shed-
w ding a new front. The formation dynamics was explained in
—J [E(&)—Es(jem)]dé, (30 detail in Sec. Il. Then a new slowly varying stage begins.
0 There are two leftover wave fronts: the old one located at
y=Y;(s) [which advances towardy=1 with speed

whereh(o) is

and formulas for the positive constants 8, andy may be

found below, in Eqs(B10). The functionh(o) is the area c.(J)] and a new one Iocateq FE=Ya(9), _mov_ing With.
lost due to the motion of the old front during the tise SP€€dCc-(J), and leaving behind a quasistationary field
N ﬁ?(\]) [see Fig. 1b3)]. Again, the field configuration corre-

minus the constant excess area under the old wave front ponds _ton+=n_=1,. with J(s) following Eq. (22), and
Y=Y,(s,) [that is, under the heteroclinic orbit connecting 4€Créasing exponentially fast towaid. Before J reaches
(E1(j o) 0 and (Ex(jep). 0], J*, the front located a¥, reaches the end of the sample and

disappears, thereby producing a new abrupt change in the
time derivative of the current density. Then only the recently
formed front[located aty,(s) ] is present on the samglEig.
E(X,0) — Equ(X;J(S))<<1, (31)  1(b4], which corresponds tm, =0 andn_=1. J(s) de-
creases according to E@®6) until the minimum of the con-
aso— —» ands—s;—. HereEq,(x;J(s)) is the quasista- tact curve,J=j.n, is reached. After that, a front moving
tionary injecting layer solution of Eq12) with c=0 such  with speedc, is generated. The charge dipole wave thus
that Eg,(0;J(s)) satisfies Eq. (4) and Ega(*;J(s))  created evolves adiabatically, and the current density is de-
=E;(J(s)) for s<s;, J(s1)=j.m. Notice that the term scribed again by Eq22), Fig. 1(bl). We have come back to
eJM(o) is needed so as to avoid that the solution of thisthe initial situation, and one period of the current oscillation
problem stay indefinitely in the quasistationary field has been completed.
EqiafX;J(S)). It is worth noting that by means of this analysis some of
The solution of the previous semi-infinite problem revealsthe most relevant features of the current oscillations, such as
the growth of the field at the contact and inside the injectinghe maximum and minimum current,,, and J,,, have
layer until (i) Ey becomesEcz(jem) [Ec1(J)<Eco(J) been identified with quantities related to the contact param-
<E.3(J) are the three possible solutions df j.(E)], (i) etersdna~icm andJnin=jcm, then opening the possibility
E(x,0) increases td&;(j.) asx increases fronx=0, and of determining the values of contact parameters from the

As o0— —, we have to impose the following matching
condition on an appropriate overlap domain:
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analysis of the current oscillations. responding tan, =0 andn;=1; see Fig. &2)], and it de-
Other situations involving dipole domains have been nucreases until the valug,, is reached. After this occurs, a
merically identified. They are described by the same type ohew front (moving at speed.) is created, while the old
analysis. In what follows only the more relevant features ofwave frontY,<1. We have a stage described by E22)
these situations will be considered. Let us now assumeith n,=n_=1 [see Fig. 83)], during whichJ increases
Vn<J*<jem<jem<JI'<vy. This case again corresponds pastj.y (jo.u<J*). Then a new front moving with speed
to high-field solitary wavegdipole domains, see Fig),2out  c_ starts to be created. At the same time, the old front lo-
the current oscillations have a different shape. The three firstated atY, reaches the end of the sample, giving rise to a
stages of the oscillation, Figs(i#), 2(b2), and 2b3), corre-  complex stage in which the nonstationary effects cannot be
spond to the propagation of a single dipole, annihilation of aneglectedFig. 3(b4)]. After that stage, we recover the first
front, and generation of new one. They are similar to thesituation[Fig. 3(b1)], and a complete period of the oscilla-
stages described above. Now, however, after the new fronfon has been described.
has been formed, Fig.(23), and the current is decreasing  Let us now consider an example of multiple propagating
toward J*, J reaches the critical current,.,, (because low-field dipole domaingFig. 4). As we mentioned above,
J*<jm). A new front moving with speed. is then cre- these appear for small bias values. The asymptotic analysis
ated. After the formation process has finished, we have af this case is more complicated because there are new stages

configuration with two fronts moving at, and one at_, (fusion of two wave fronts inside the sampiehose detailed
that is, withn, =2 andn_=1 [Fig. 2b4)]. Hence the cur- description is outside the scope of this paper. Let us start
rent satisfiegsee Eq.(24)] with the configuration shown in Fig.(d1), for which two
43 low-field domains coexist. This configuration corresponds to
e _ n,=n_=2. Following Eq.(24), the current will evolve ac-
gs—AW) [2¢.(I)—c-(I)], (32) cording to
and it starts increasing again, trying to redqQEJT. Before dJ
this value may be attained, the old front, locatedvat ar- gs-A2c. () —2¢ ()], (33

rives at the receiving contact and disappears. We again ob-
tain Eqs.(22) and(23), and recover the initial situation. Thus
a full period of the Gunn oscillation is again completed.
There are other possible situations for propagating hig
field domains, but we have not found them in our numerica
simulations with the curve (E) considered in the present
work. For example, in the second case we have described
above,um<J*<jcm<jcM<J*<vM, after the_ formation of E:A(J)[C+(J)_207(J)]_ (34)
the new front[Fig. 2(b4)], the current density could have ds
reached the valud' beforethe old front located a¥, had
arrived at the receiving contact. In such a situation, a newf the curvev(E) were such that the fixed point of E(B4)
front moving atc_ could be formed, giving rise to an existed, the current would tend to such a value. For our
electric-field configuration witm, =n_=2. In this configu- ~ choice ofv(E), this fixed point does not exigsee Fig. 7,
ration the current would decrease againJig,=J; ;=J*. and therefore the current decreases all the time. During this
We would then have a more complicated situation with twoprocess ¢, will be crossed. According to our previous con-
pulses and the dying wave front simultaneously present iiderations, a new front moving at speed should then be
the sample. Proceeding in a similar way, we could thereforéormed. However, this does not occur because melting of the
observe simultaneous coexistence of several pulses for affonts Y, andYj starts afterY, reachesy=1. This melting
propriate ranges of parameters. This situatimaltiple shed- process seems to inhibit the creation of new wave fronts until
ding of high-field domainshas been numerically observed it is completed, which happens fdxj .. Then a new front

thereby increasing toward), ,= J*. Before this value can be
preached, the front located af, reaches the end of the
Isample. The resulting configuratidfrig. 4(b2)] has now

n,=1 andn_=2, and the current decreases according to

in other model§12,13. moving at speed, is rapidly created, and we have a stage,
with n,=n_=1 [Fig. 4b3)], described by Eq(22). The
2. Dynamics of low-field dipoles current increases until=j .y, at which time a front moving

Low-field dipole domains appear when &t speecc_ appears ay=0 [Fig._ 4(b4)_]. Then the current
vm<Jem<jew<J*. Depending on the value of the applied decrgases following Eq(.34) until J=j.,. Another front
bias, single(high-bias valuesor multiple (low-bias values moxlng _at speedc+ IS then_ formed. We h_ave nhow
propagating low-field domains are obtain¢see Figs. 3 N+=Nn-=2 [Fig. 4b9], andJ increases according to Eq.
and 4. (22). WhenJ>j.u, a front moving vv_lth speed_ is created

Let us start by considering the case of single propagatingty =0, S0 than, =2, n_=3; see Fig. £6). Now the cur-
low-field dipole domains, Fig. 3. We consider an initial field 'eNt decreases towardg ; according to the equation
configuration having a low-field domain far from the con- 43
tacts. Then there is a wave front locatedvrat moving with ADI2c. (D =3¢ (I 3
speedc_, and a wave front located &% >Y 1, moving with ds (D¢, () -1 (35
speedc,, that is, n,=n_=1 [Fig. 3bl)], and J(0)
€ (jem.J*). The current increases towadd according to  This stage lasts untf, =1, at which time we are back at the
Eq. (22), until Y,=1. ThenJ starts satisfying Eq.26) [cor- first stage, Fig. 1), having completed a full period of the
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oscillation. More complicated examples of multiple low-field means of the analysis of the shape of the current oscillation.

domains exist, and they could be described similarly. Our results might be of use in the analysis of self-sustained
current oscillations in weakly couplegtdoped superlattices
3. Dynamics of charge monopoles [21], once the role of contacts and the boundary conditions

they generate are understood in these systems. Besides this,
Qour results are not restricted to the particular model of the
Gunn effect studied here, but seem to hold for a general class

cumulation layers(Fig. 5, while moving depletion layers of models, supporting the idea of the “universality” of the
are observed fof.,.<v, andj s> v m (Fig. 6). Kroemer{15] Gunn effecq13].

discovered numerically the Gunn effect mediated by charge

accumulation monopoles for boundary conditions corre- ACKNOWLEDGMENTS
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The complete asymptotic analysis found in Rdfl] can

be used to describe the present situation after a few simple
changes are made. First of all, the equal-areas rule in the case
of the superlattice refers tod(E), notv(E) [22]. The sec-

ond important change is that of the injecting boundary con- We shall now prove that the fiel&y(t) at the contact
dition in the description of the birth of a new monopole: x=0 obeys the equation

instead of a rigid Neumann boundary condition

JE(0t)/9x=c, we should use Eq4). These two changes ﬁ_\]_. = (A1)

can be implemented without difficulty, and the details will be dt Je(Eo).

omitted. An important difference from the Gunn effect me-

diated by dipole solitary waves is that the amplitude of thelhis can be seen from the method of characteristics applied
current oscillations is largefits largest value is approxi- t0 Ed.(1) with 6=0 and the boundary condition Egt). The
matelyv y — v, for the charge accumulation monopoles, andcharacteristic equations are

iem—lem for the dipole$. The monopoles “probe” the full

When jou>vy, or when jon<vy, and je>vm, the
Gunn effect is mediated by wave fronts which are charg
monopoles. The casgy>vy, corresponds to moving ac-

APPENDIX A: NONSTATIONARY FIELD
AT THE INJECTING CONTACT

region of negative slope af(E), while the dipoles “probe” d_E =J—v(E), (A2)
a smaller region. dt
dx
IV. CONCLUSIONS qi=v (), (A3)

We have performed an asymptotic and numerical analysig be solved with the conditions
of the Gunn effect im-type GaAs under general boundary

conditions for metal-semiconductor contacts. We have E(r7)=Eo(7), (A4)
shown that the Gunn effect is mediated (fpymoving deple-
tion charge monopoles(ii) moving accumulation charge X(7;7)=0. (AS)

monopoles(iii) high-field dipole solitary waves, div) low-
field dipole solitary waves, according to whether the critica
contact current§cy=]j(Em), jem=1c(Em), andj are (i) dE. oE IE

jem<vm and j'(s)at>vm’ (it) jem>vm, (i) vp<jem and _0:_(T;T)+_(T;T):J_U(EO)+ ——(7;7).
J*<jem<vm, Of (iV) v <jem<iem<J*, in dimensionless dr  at IT IT (A6)
units[v, andvy are the minimum and maximum values of

the electron drift velocity (E), E>0, andJ* is the solution  The |ast term in this equation can be obtained from the
of ¢, (J)=c_(J)]. Some of these results are well known for houndary condition Eq(4) as follows. From the solution of
boundary conditions given by Kroemer’s control character€qs. (A3) and (A5), we obtain ¢x/d7)(7;7)=—v(Eo(7)).
istic. In addition, we have shown that there are new instabilThen the boundary condition E¢d) yields

ity mechanisms consisting of multiple generation (tfw-

field) charge dipole solitary waves in the region near the JE E X

injecting contact ifj ;) is close enough td*, and the dimen- E(T? 7)= 5(0’7) 5( 7,7)

sionless length is large enough. In each case we have been

able to describe in detail the shape of the current oscillation, . 0

identifying some of its main featurémaxima, minima, pla- - _U(EO(T))QO( lo=J+ F) - (A7)
teaus, etg. with critical currents appearing in our model,

among them the contact currerjts, and j.y. This result Insertion of Eq.(A7) into Eq. (A6) yields Eq.(Al) (with
opens the possibility of determining contact parameters by=t).

(Clearly,
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APPENDIX B: CALCULATION OF THE CURRENT Here E(¢) is the field inside the wave front at,, and
J® (o) DURING THE SHEDDING STAGE E(x,0) is the field in the injecting layer. Since

E1(jem) T[Es(jem) —Ei1(icm) ] [1—Y1(s1)], we obtain

EV+[ESY—EM] [1-Yi(s)]=h(a), (B9

To obtain the equations governing the shedding stageéi,)_
we need to keep terms of orderin our calculations, as
indicated in Ref[12]. The outer(bulk) expansion is

whereh(o) is given by Eq.(30).
_ (0 1 2 We now obtain the first-order differential equati
E=E”(0)+€E"() +0(e?), BY for JY) (o) by applying the operato® ;0 to botﬂ sidgiezf
Eqg. (B9) and then using EqB7):
J=J90)+ V(o) +0(€?), (B2)

[J—h'(0)—ah]=—yh,

17
wherei =1 if 0<y<Y,(s,) andi=3 if Y,(s,)<y<1. Then 25 TP
E® andJ© solve .

where the coefficients, 8, andy are

&Ej:) +v(Ei(O))=J(O)(U), (B3) a=v1Y(S)+[1-Y(s)]v3,
B=v3Y1(s1)+[1-Y1(s)]vy, (B10)
¢=EL +[EL —EL N1~ Ya(s1)]. (B4)

y=Y1(s)[1-Yi(s)](vi—v3)?

All functions of J in these equations are calculated at
J=j.m. Solving this equation we obtain the following func-
tion:

We can obtain easiIEgo) andJ(® from these equations:

©0_ $—EPYi(s)

3 T I V(s (B5)

IV (g)=h' (o) + ah(o) — yf e Bl (1) dt.

(B11)
JO(o)=v(EY”)Ya(s1) +v(EP)[1-Ya(s1)]. (BE)

The only missing function is the field at the injecting
Now E{? follows from Eq.(B3) and these two last equa- boundary layer. This field profile is the solution of the
tions. These equations should be solved with the matchingemi-infinite  problem Egs. (27)—(31), with J(o7€)

conditions thaE(® - E;(j.y) (i=1 and 3andJ@—j ,as —demt eJV(o) given by Eq.(B11). We can write Eq.

o— —® TheseI problems have the solutiods:j.y and (B11) in another form that suggests a more transparent inter-
: . in a

E(©=E(j o). Thus we expect that the current density does” 210"

not depart substantially fror,, ase—0.

The O(€) correctionsE{!)(o) obey the equations IY(g)= %[J'(Sl)(a—oo)—l’(a)— fo [al’(c—0")
ﬂE(l) 1! ’ —lBa—' ’
@iEi(l)E 07' +U’(Ei)Ei(1)=J<l)(O'), (B7) +v103|(0—0' )]e do'}, (B12)
g
which immediately follow from Eq.9). To find J® we B (=
proceed as follows. First of all, we write the bias condition 1(o)= ;fo [E(x,0) —Eq]dx, (B13)
Eq. (10) including terms of ordek in the approximation of
the electric field and the current density: o o
v,Y1(s)+v, [1-Y4(sy)] (o)
. . . op=— I +
$=Ea(jom) + [Ealicw) ~ Ea(jom) 11— Ya(sp)] ° viv3B e
0
+e EYV+[ESY—EVI[1-Ya(sy)] —E1<jcM>]c+}—1[ f [E(&)—Eq(jew)]dé
—[Es(jem) —Ea(jem)]c o+ fo [E(X,0) + Jo [E(f)_Es(jcM)]dg]- (B14)
0 . . .
—Ed(i d +f E(&)—E(i d The terms on the right-hand side of E§12) clearly display
ilJem) Jdx —oo[ (&)= EalJom) 1 the balance between the area lost by the motion of the old

wave front atY,(s) and the excess area under the injecting
+0(€). (B9) Iayer.J(l)(q)_ inc.reases Iin.early witlor u_ntil the excess area
under the injecting layer increases withat least linearly.

+ f TE(8)—Esljom) 1dé
0
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