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Abstract: In this project, we study the dynamics of two weakly interacting Bose-Einstein con-
densates confined by a double-well potential. We obtain the two coupled equations of motion from
the Gross-Pitaevskii equation, within the mean-field framework, by using a two-mode ansatz. We
solve these equations numerically and study the tunneling dynamics of the system. We have ob-
tained two different regimes: Josephson dynamics and macroscopic quantum self-trapping. Finally,
we investigate the bifurcation between these two regimes and describe the dynamics of the system
by using a simple pendulum analogy.

I. INTRODUCTION

Bose-Einstein condensation occurs when a system of
identical bosons is cooled down at very low tempera-
tures, as Einstein predicted in 1925. It is characterized
by the macroscopic occupation of the lowest single parti-
cle state, forming the so-called Bose-Einstein condensate
(BEC). This phenomenon occurs only in bosonic many-
body systems at temperatures below a critical tempera-
ture characteristic of each system. In 1995, a 87Rb BEC
was observed for the first time using laser cooling tech-
niques to reach temperatures around nK and magnetic
trapping to confine the atoms [1].

In quantum mechanics, particles behave as waves and
are characterized by the de Broglie wavelength, λDB . It
increases when the temperature decreases, and at the
critical temperature λDB becomes of the order of the
interparticle distance. Hence, the particle waves over-
lap, losing their individuality, and behave coherently as
a single giant wave of matter, the condensate. An impor-
tant consequence is the phase coherence of the BEC [2],
which may lead to tunneling and Josephson dynamics
when two BECs are weakly linked, as was realized exper-
imentally in Ref. [3]. The Josephson effect has been also
exhaustively studied in Josephson junctions between two
superconductors, where electrons form Cooper pairs that
tunnel through the junction [4].

In this work, we investigate the tunneling dynamics
between two-weakly linked BECs by using the two-mode
approximation. To describe the dynamics, we derive
the two-coupled equations for the particle imbalance and
phase difference by assuming a two-mode ansatz. Solving
these coupled equations we investigate the two dynamical
regimes: Josephson oscillations and macroscopic quan-
tum self-trapping. Finally, we characterize the critical
point between these two regimes.

II. THEORETICAL FRAMEWORK

A. Gross-Pitaevskii equation

At zero temperature, a system composed by N identi-
cal bosons can be described by the following many-body
Hamiltonian:

H =

N∑
i=1

[
−ℏ2∇2

i

2m
+ Vext(r⃗i)

]
+

1

2

∑
i̸=j

V (r⃗i, r⃗j) , (1)

where Vext(r⃗i) is the confining potential, and V (r⃗i, r⃗j) is
the interaction potential. We can assume contact inter-
acting particles and take the expression g δ(r⃗i− r⃗j), with
g = 4πℏ2as/m the coupling constant. The latter is the
effective atomic interaction, and is proportional to the
s-wave scattering length as. We consider only repulsive
interactions (g > 0).
We can obtain the energy functional per particle by

considering all the atoms in the same single particle state.
It is a good approximation for a weakly interacting and
dilute condensate with a large number of bosons N , and
for temperatures close to zero:

E =

∫
dr⃗

[
− ℏ2

2m
|∇Ψ(r⃗)|2 + Vext(r⃗)|Ψ(r⃗)|2 + Ng

2
|Ψ(r⃗)|4

]
,

(2)
where Ψ(r⃗) is the wave function of the condensate.
We arrive at the Gross-Pitaevskii equation (GPE),

which is a non-linear Schrodinger equation, by minimiz-
ing the energy functional under variations of Ψ(r⃗). The
time-dependent GPE takes the form:

iℏ
∂Ψ(r⃗)

∂t
=

[
− ℏ2

2m
∇2 + Vext(r⃗) +Ng|Ψ(r⃗)|2

]
Ψ(r⃗) ,

(3)
with the wave function normalized as

∫
dr⃗ |Ψ(r)|2 = 1.

B. Two mode approximation

Now we consider two weakly interacting BECs within
the above description. This can be obtained by confining
the system with a double-well symmetric potential [3].
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Since we have two weakly interacting BECs, one on
the left (L) well and the other on the right (R), we can
approximate the total wave function as the superposition
of left and right [5]:

Ψ(r⃗, t) = ψL(t)ΦL(r⃗) + ψR(t)ΦR(r⃗) , (4)

with ΦR(L), the time-independent wave function, mainly
located on the right (left) side of the trap. This ansatz
provides a good approximation if the barrier of the double
well is high enough to allow weak interactions but low
enough to ensure tunneling between the two BECs.

Since a condensate is a coherent state, each BEC has
a well defined phase ϕi with (i = L,R). Then, ψi(t) =√
Ni(t) e

ϕi(t), being Ni the number of particles on each
side of the trap. Moreover, one can assume that Φi are
real functions. Inserting Eq. (4) in the GPE (3) and
projecting it into each mode, it follows the two coupled
equations:

iℏ
∂ψL(t)

∂t
= [εL + ULNL]ψL(t)− κLRψR(t) ,

iℏ
∂ψR(t)

∂t
= [εR + URNR]ψR(t)− κRLψL(t) ,

(5)

where we have neglected the overlapping terms ΦRΦL,
and

εi =

∫
dr⃗

[
ℏ2

2m
|Φi(r⃗)|+ |Φi(r⃗)|Vext(r⃗)

]
,

κij = −
∫

dr⃗

[
ℏ2

2m
∇Φi(r⃗)∇Φj(r⃗) + Φi(r⃗)VextΦj(r⃗)

]
,

Ui = g

∫
dr⃗|Φ(r⃗)|4 .

(6)

Equations (5) correspond to the well known standard
two-mode approximation (S2M). They can be rewritten
in terms of two new variables:

z(t) =
NL −NR

N
,

δϕ(t) = ϕR − ϕL ,
(7)

the imbalance, and the phase difference between each side
of the barrier, respectively. These new coupled equations
are:

dz(t)

dt
= −

√
1− z2(t) sin δϕ(t)

dδϕ((t)

dt
= Λz(t) +

z(t)√
1− z2(t)

cos δϕ(t) ,
(8)

where the time is in units of the inverse of the Rabi
frequency ωR = 2κ/ℏ. Since Vext is symmetric, it fol-
lows that ε ≡ εL = εR, κ ≡ κLR = κRL, and U ≡
UL = UR. We have defined the dimensionless parameter
∆ ≡ NU/(ℏωR) that quantifies the strength of the inter-
action of particles: it is the ratio between the interaction

of the particles of the same mode and the coupling term
κ [6]. The total number of bosons is N = NR(t) +NL(t)
and it is constant in time.
One can obtain the Hamiltonian in the two-mode ap-

proximation, as a function of the new variables, from the
energy functional (2). It yields [7]:

H =
Λ

2
z(t)

2 −
√
1− z(t)

2
cos δϕ(t) . (9)

The variables z(t) and δϕ(t) behave as canonical conju-
gate variables:

∂H

∂z
=
dδϕ

dt
,

∂H

∂δϕ
= −dz

dt
. (10)

Using them, one can recover Eqs. (8). This system of
equations can be solved numerically by providing an ini-
tial set of values for the population imbalance z0 ≡ z(0),
and phase difference δϕ0 ≡ δϕ(0).

C. Josephson effect and macroscopic quantum
self-trapping

Considering repulsive interactions, then Λ > 0,
Eqs. (8) lead to two distinct dynamical behaviors depend-
ing on the strength of the interactions Λ and the initial
conditions (z0, δϕ0). These regimes are the Josephson
effect (JE) regime and the macroscopic quantum self-
trapping (MQST) regime [3].
The dynamics in the Josephson regime, is character-

ized by a fast oscillating tunneling of the bosons through
the barrier, consequently, z and δϕ oscillate sinusoidally
with time. The system evolves following closed trajecto-
ries in the (z, δϕ) plane, around a maximum or a mini-
mum point of the system. Moreover, the population im-
balance oscillates around zero, so the mean population
imbalance over time in the JE is equal to zero ⟨z⟩t = 0.
The MQST dynamics occurs when tunneling is

strongly suppressed. In this case, the particles remain a
majority on one side of the trap. In this regime ⟨z⟩t ̸= 0
and δϕ doesn’t oscillate, but increases or decreases with
time.
We can compare these two regimes with the simple

pendulum case. The simple pendulum Hamiltonian is
given by:

H =
Pθ

2

2ml2
−mgl cos θ, (11)

where m and l are the mass and the length of the pendu-
lum, g is the gravity acceleration, θ is the swing angle and
Pθ the generalized momentum. We realize a close simil-
itude between (11) and the two-mode hamiltonian (9).

Taking Pθ → z, θ → δϕ, and l ∝
√
1− Pθ

2 we can make
the analogy between the pendulum and the two weakly
interacting BECs system to understand the two regimes.
In the simple pendulum, the mass takes the role of the
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interaction parameter. Then, when H(z0, δϕ0) < H(0, π)
we have oscillations around the minimum energy, so the
BECs system is in the JE. When H(z0, δϕ0) > H(0, π)
there is enough energy to do laps without oscillations. In
this case θ (δϕ) and Pθ (z) doesn’t change their sign so
that corresponds to MQST regime. We can calculate the
critical value ΛC , between the two regimes, by imposing
H(z0, δϕ0) = H(0, π). We arrive at:

ΛC =
1 +

√
1− z02 cos δϕ0
z02/2

. (12)

When the interaction parameter exceeds the critical
value, Λ > ΛC , MQST dominates. On the contrary,
when the interaction parameter is Λ < ΛC , JE domi-
nates. These regimes have been experimentally obtained
in Ref. [6].

We can analyse the energy of the system and obtain
the stationary points [5]:

∂H

∂z

∣∣∣∣
z0,δϕ0

= 0,
∂H

∂δϕ

∣∣∣∣
z0,δϕ0

= 0 . (13)

Studying the Hessian matrix we can distinguish the sta-
tionary points between maximum, minimum and saddle
point, see the summary in Table I.

TABLE I: Stationary points and stability of the system.

(z0, δϕ0) Stationary Minimum Maximum Saddle

(0,0) ∀Λ ∀Λ − −
(0,±π) ∀Λ − Λ < 1 Λ > 1

(±
√

1− 1/Λ2, ±π) Λ > 1 − Λ > 1 −

III. RESULTS

A. JE and MQST

We solve the two coupled differential equations of mo-
tion (8) obtained within the S2M approximation, by us-
ing a Runge-Kutta method. We fix a set of initial param-
eters (z0, δϕ0), and we use different values of the interac-
tion parameter Λ to investigate the dynamical regimes.
We take the interaction parameter Λ above and below the
critical case ΛC . In order to appreciate the two regimes
clearly, we will use values of Λ far from ΛC .
Figure 1 shows the dynamics in the JE regime. It

has been obtained with the initial conditions (z0, δϕ0) =
(0.3, 0) and an interaction Λ = 1. We can appreciate the
oscillation of the particles between the two BECs around
the imbalance value z = 0, therefore ⟨z⟩t = 0. Also, we
observe the oscillation in the phase difference of the two
BECs satisfies that ⟨δϕ⟩t = 0. Thus, the phase diagram
corresponds to a closed orbit around the energy mini-
mum, (z, δϕ) = (0, 0). Under other initial conditions,

FIG. 1: Top panel: imbalance and phase difference as a func-
tion of time. Bottom panel: trajectory in the z - δϕ plane.
Initial conditions: (z0, δϕ0) = (0.3, 0) and an interaction pa-
rameter Λ = 1. Time is in dimensionless units.

the closed orbit could be around the maximum. Under
these initial conditions, the critical point corresponds to
ΛC ≈ 43 well above the value we have used for Λ. We
observe that the Josephson regime occurs for z0 close to
0 and small values of Λ, as we expected.
In JE, considering small oscillations around the min-

imum (z, δϕ) = (0, 0), we can estimate the oscillation
frequency. We can approximate sin δϕ ≈ δϕ, and consid-
ering the equations of motion (8) we arrive at d2z/dt2 =
−[1+ cos (δϕ)Λ]z(t). We recover the expression of a har-
monic oscillator with frequency ωJ = ωR

√
1 + cos δϕΛ.

We can observe MQST regime in Fig. 2. In this ex-
ample we have taken the initial conditions (z0, δϕ0) =

FIG. 2: Top panel: imbalance and phase difference as a func-
tion of time. Bottom panel: trajectory in the z - δϕ plane.
Initial conditions: (z0, δϕ0) = (0.9, 0) and an interaction pa-
rameter Λ = 20. Time is in dimensionless units.

Treball de Fi de Grau 3 Barcelona, June 2022



Two weakly interacting Bose-Einstein condensates Alèxia Martorell Granollers

(0.9, 0) and an interaction parameter Λ = 20. Under
these initial conditions, the critical point corresponds to
ΛC ≈ 3.5 ≪ Λ. The top panel shows slight oscillations
in the imbalance around a non-zero value, ⟨z⟩t ̸= 0. The
phase difference, however, increases linearly with time so
the trajectories do not correspond to closed orbits in the
z − δϕ plane. We observe that the MQST regime occurs
for z0 close to 1 (or -1) and for strong interaction between
particles. Therefore, this regime takes place when one of
the condensates is mostly populated than the other, and
the interparticle interaction is heavy enough, according
to Eq. (12).

B. Bifurcation

When the initial conditions are close to the critical
point, the behavior starts to separate from the two dy-
namical regimes shown in Figs. 1 and 2. Now, we are
going to analyze what happens near this point.

In Fig. 3, the initial conditions correspond to
(z0, δϕ0) = (0.8, 0), and the interaction parameter is the
critical one Λ = ΛC = 5. In the top panel, we observe
a particular behavior, the imbalance decreases to zero
and is maintained there for some time. Then starts to
increase until the initial value is reached and decreases
with the same behavior. Sometimes the imbalance tends
to z0 and other to −z0. We note that the phase difference
increases or decreases by 2π each time the imbalance goes
and returns to zero.

We have seen that the two regimes are characterized by
a different time average of the imbalance. It is ⟨z⟩t = 0
in JE, and ⟨z⟩t ̸= 0 in MQST. Hence we can use this to
identify the dynamical regime.

We fixe the initial conditions (z0 = ±0.9 , δϕ0 = 0) and

FIG. 3: Top panel: imbalance and phase difference as a func-
tion of time. Bottom panel: trajectory in the z - δϕ plane.
Initial conditions: (z0, δϕ0) = (0.8, 0) and an interaction pa-
rameter Λ = 5. Time is in dimensionless units.

run the numerical Runge-Kutta program for different in-
teraction parameters Λ. In Fig. 4 we show the temporal
mean value of the imbalance. For Λ <∼ 3.15, the imbal-
ance mean value is close to 0, and for Λ > 3.15 takes a
non-zero value, meaning that the dynamical regimes are
JE and MQST, respectively. We can appreciate the posi-
tive branch, which corresponds to initial value z0 = +0, 9
and the negative branch which corresponds to the initial
value z0 = −0, 9. Both of them have the same behavior
for Λ <∼ 3.15 as we expected. The critical interaction pa-
rameter calculated in analogy with the simple pendulum
corresponds to ΛC ≈ 3.55 which is in good agreement
but slightly larger than the numerical value. This is an
accordance to what we have seen in Fig. 3. Where as
we noted, in the critical point the mean value is different
from zero.

We have seen that in JE the phase difference exhibits
also sinusoidal oscillations around the zero value. Since
these oscillations vanish in MQST, we can perform an
analogous study computing now the temporal mean value
⟨δϕ⟩t. The bifurcation must be located at the same value
of Λ. In Fig. 5, we can appreciate the bifurcation at the
same point as in Fig. 4. For Λ <∼ 3.14, the temporal
mean value is ⟨δϕ⟩t = 0, hence the dynamics correspond
to JE, whereas for Λ > 3.15 to MQST. Notice that in the
latter, ⟨δϕ⟩t increases linearly with time, due to the linear
behavior of δϕ(t). In Figs. 4 and 5 we have computed the
temporal mean value for different final times. Cyan line
is calculated for a time average 10000 times larger than
the red dashed line. We have repeated the calculation
using different initial conditions (z0 ≃ ±1, δϕ0 = 0) and
we have obtained the bifurcation in the same value ΛC ≃
3.15.

FIG. 4: Imbalance mean value as a function of Λ. Initial
conditions z0 = ±0.9 , δϕ0 = 0. Cyan line is calculated for
10000 times more than red dashed line.
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FIG. 5: Phase difference mean value as a function of Λ. Initial
conditions z0 = ±0.9 , δϕ0 = 0. Cyan line is calculated for
10000 times more than red dashed line.

IV. CONCLUSIONS

In this work we have studied the tunneling dynamics
between two weakly linked Bose-Einsteins condensates
confined by a double-well trap. We have used as theo-
retical framework the GP equation. Using the standard
two mode approximation we have arrived at two coupled
differential equations of motion in terms of the imbalance
and phase difference. We have studied the two dynami-
cal regimes: Josephson effect and Macroscopic quantum

self trapping.

We have observed the oscillations around the minimum
in JE, noting the fast tunneling of the bosons trough the
barrier between the two BECs. We have observed the
imbalance slight oscillations in the MQST regime, which
occurs around a value different to 0. In MQST regime,
we have observed that the phase difference increases (or
decreases) linearly with time in contrast with JE. Also
we have analyzed what happens in the critical case be-
tween the two regimes. We have worked with the critical
interaction parameter, which depends on the initial con-
ditions, calculated with the analogy of the simple pendu-
lum system.

Finally, we have studied the bifurcation between the
two regimes. We have used the fact that in JE the oscil-
lations are around z = 0 , and δϕ = 0, whereas in MQST
not. We have used a Runge-Kutta method to solve the
two coupled differential equations with initial conditions
z0 = ±0.9 , δϕ0 = 0. Then, we have analyzed different in-
teraction parameters Λ, and calculated the average values
of z(t) and δϕ with time. With this approach we have
investigated the bifurcation between the two regimes.
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