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Conventionally, odours emitted by different sources present inwastewater treatment plants (WWTPs) aremeasured by
dynamic olfactometry, where a human panel sniffs and analyzes air bags collected from the plant. Although the
method is considered the gold standard, the process is costly, slow, and infrequent, which does not allow operators
to quickly identify and respond to problems. To better monitor and map WWTP odour emissions, here we propose a
small rotary-wing drone equipped with a lightweight (1.3-kg) electronic nose. The “sniffing drone” sucks in air via a
ten-meter (33-foot) tube and delivers it to a sensor chamber where it is analyzed in real-time by an array of 21 gas sen-
sors. From the sensor signals, machine learning (ML) algorithms predict the odour concentration that a human panel
using the EN13725methodologywould report. To calibrate and validate the predictivemodels, the drone also carries a
remotely controlled sampling device (compliant with EN13725:2022) to collect sample air in bags for post-flight dy-
namic olfactometry. The feasibility of the proposed system is assessed in a WWTP in Spain through several measure-
ment campaigns covering diverse operating regimes of the plant and meteorological conditions. We demonstrate that
training the ML algorithms with dynamic (transient) sensor signals measured in flight conditions leads to better per-
formance than the traditional approach of using steady-state signals measured in the lab via controlled exposures to
odour bags. The comparison of the electronic nose predictions with dynamic olfactometry measurements indicates a
negligible bias between the two measurement techniques and 95 % limits of agreement within a factor of four. This
apparently large disagreement, partly caused by the high uncertainty of olfactometricmeasurements (typically a factor
of two), is more than offset by the immediacy of the predictions and the practical advantages of using a drone-based
system.
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1. Introduction

Odour monitoring is routinely performed in wastewater treatment
plants (WWTPs) to verify the efficiency of odour abatement systems
(Munoz et al., 2010), identify fugitive emissions within the plant
(Zarra et al., 2008), and predict and minimize off-site odour impact
(Naddeo et al., 2012; Stuetz and Frechen, 2001). Even when present at
low concentrations, unpleasant odorous compounds featuring very
low olfactory threshold can induce significant discomfort in residents
of neighbouring areas. Additionally, a variety of health effects have
been associated with exposure to odorous compounds in plant
employees(Martí et al., 2014). These health effects include headaches,
nausea, vomiting, dizziness, and eye and respiratory irritation. The
perception of unpleasant smells is a form of indication of potential
human health risks (Carrera-Chapela et al., 2014), and some authors
have reported a significant correlation between odour concentration
and the health hazard index (HI) (Byliński et al., 2019).

Currently, quantitative and qualitative characterization of odours can
only be properly assessed via standardized protocols involving human
panels (e.g., dynamic olfactometry as per standard EN13725:2022)
(“EN13725: Stationary source emissions - Determination of odour
concentration by dynamic olfactometry and odour emission rate,” 2022).
The main practical issue with these methodologies is the high cost and dis-
continuity of each measurement, as samples must be collected on site and
analyzed in a certified laboratory. This leads to infrequent and spatially
sparse measurements that are insufficient to characterize odour emissions
in a complex plant.

It has been long recognized that wastewater treatment plants emit a
large number of odorous compounds including (not exhaustive) Hydrogen
sulfide, organic sulfur compounds, aldehydes and ketones, ammonia and
amines and chlorinated VOCs. While these compounds are present in
most odour emissions, their relative concentration and contribution to the
final odour perception will widely vary across sites, water influx quality,
processes, etc. Several studies have found that while H2S concentration is
a good marker of the overall odour concentration the correlations are
only moderate: in the range 0.3 to 0.7 (Stuetz and Frechen, 2001; Devai
and DeLaune, 1999; Dincer and Muezzinoglu, 2008; Sivret et al., 2016).
This suggests that the inclusion of additional chemical sensors and proper
data processing may be necessary to improve the final prediction of the
odour concentration.

Instrumental Odour Monitoring Systems (IOMS) or, more colloqui-
ally, electronic noses (e-noses) are currently the most promising instru-
ments to quantify and classify odours (Bax et al., 2020). Electronic noses
deployed in fixed locations within WWTPs, landfills, ports, composting
plants, farms and petrochemical plants, among others, have obtained
promising results for odour classification and quantification (Capelli
et al., 2014; Staerz et al., 2020). While static e-noses are perfect for mon-
itoring specific points of an industrial plant with high temporal resolu-
tion, the highly localized information provided by these units is not
sufficient for characterizing odour events in a complex site with multi-
ple foci, such as WWTPs. Not only because of the high number of poten-
tial emission sources but also because many of these sources are area
sources (e.g., buffer tank domes, bioreactors, anaerobic digesters, set-
tlers) that are difficult to access or monitor from a single location. A
proper spatial coverage with fixed measurements would require the de-
ployment of many instruments within a potentially vast area, which is
infeasible due to the high acquisition and maintenance costs of each
unit (Schwarzböck, 2012).

IOMS are today the object of an intense standardization effort within
CEN TC264/WG41. While no standard has been officially issued, these sys-
tems provide predictions of odour concentration that can be directly com-
pared to the values obtained by dynamic olfactometry according to
EN13725 (same scale). Today, ouE/m3 is reserved for olfactometric evalu-
ations carried out according to EN13725 methodology. The use of such
units for IOMS predictions in not yet accepted, indicating that IOMS is a sur-
rogate method that cannot fully replace EN13725 evaluations. However,
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since both evaluations are in the same scale, we will use the term predicted
odour concentration in equivalent ouE/m3.

A promising approach for obtaining spatially dense odour measure-
ments in WWTPs (and other industrial sites) is the use of a drone-
mounted electronic nose. Despite the application of drones for environ-
mental chemical sensing has grown exponentially in the last decade
(Burgués and Marco, 2020), their use for odour monitoring has been
largely ignored. Current state of the art mostly focuses on the measure-
ment of greenhouse gases (e.g., CH4, CO2) or in indoor experiments
using nano-drones (Burgués et al., 2019; Duisterhof et al., 2021;
Shigaki et al., 2018). Only very recently the suitability of small drones
(<10 kg) for odour monitoring has been assessed in WWTPs (Burgués
et al., 2021b) and oil refinery plants (Serta et al., 2021) using commer-
cial drones equipped with electrochemical sensors for odorous com-
pounds such as hydrogen sulfide (H2S) or ammonia (NH3). To bypass
the “downwash” problem (air disturbance created by the drone's propel-
lers that can affect gas concentration measurements), the sensors were
either suspended at a safe distance underneath the drone via a 4-m
cable (Serta et al., 2021) or connected to a pumped system with a 10-
m sampling tube (Burgués et al., 2021b). While these two preliminary
works represent an important first step in assessing the feasibility of
drones for measuring odours, it is well known that measuring odour
concentration (as humans perceive it) is much more complex than mea-
suring the concentration of individual gases (Thomas-Danguin et al.,
2014). A formidable challenge is to obtain electronic nose based
odour concentration estimation systems that could model these interac-
tions (Yan et al., 2017; Hudon et al., 2000; Szulczyński et al., 2017).

In this paper we present a drone equipped with an electronic nose able
to predict the odour concentration of WWTP emission sources with moder-
ate correlation to dynamic olfactometry results (ouE/m3) and provide
spatially dense maps of predicted odour concentration. The core of the
SNIFFDRONE prototype is an electronic nose recently developed by our
research group as a payload for commercial drones (Burgués et al.,
2021a, 2021b; Burgués et al., 2021c; Burgués et al., 2020). The 1.3-kg
(2.9-lb) instrument, which was initially calibrated and validated in the
laboratory via controlled exposures to odour bags collected on a test
WWTP, achieved a 72 % correlation with dynamic olfactometry when
mounted on a small rotary-wing drone during preliminary field measure-
ments in the same WWTP. This correlation level was obtained with
13 blind samples spanning the range 100–7000 ouE/m3. One main ques-
tion we want to address in the present work is if this field performance
can be improved by calibrating the instrument with transient sensor signals
measured in flight conditions (dynamic calibration) rather than with
steady-state sensor signals measured in the lab (static calibration). Fig. 1
illustrates this concept. Dynamic calibration has the theoretical advantage
that the signals used for calibration and operation of the instrument are
exactly of the same nature, potentially leading to a better performance
than static calibration. However, a priori it is not trivial how to build a
predictive model using fluctuating sensor signals.

The SNIFFDRONE proposal goes beyond the state of the art in several
aspects (Table 1). Instead of monitoring single gases like existing drone-
based systems, SNIFFDRONE analyzes the odour mixtures as a whole
using an array of 21 chemical sensors and machine learning (ML)
algorithms. A remotely controlled odour sampling device installed on the
drone provides ground truth for the calibration and validation of the predic-
tivemodels in operational conditions. Second, while current environmental
drones use univariate calibration models to convert individual sensor sig-
nals into concentration units (e.g., parts-per-million), SNIFFDRONE uses
multivariate calibration models to convert time-varying patterns of sensor
array signals into odour concentration units (ouE/m3). Third, to best of
our knowledge odour mapping and source localization using drones has
not been accomplished or even attempted in realistic scenarios such
as WTTPs. Here we will show for the first time the complexity of this type
of operating conditions by flying over a WWTP for model development
and validation, including four full days of plant monitoring in different
operating and meteorological conditions.
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Fig. 1. Diagram illustrating two calibration methodologies (steady-state vs dynamic calibration) for an electronic nose used for real-time odour measurements in a WWTP.
Steady-state calibration leads to more robust models, however signals measured in the field are of transient nature. Dynamic calibration uses transient signals to build the
calibration model, so it can potentially lead to better field performance.
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2. Materials and methods

2.1. Drone and payload

The prototype built in this project uses the DJI M600 rotary-wing drone
(DJI International, China) and a custom payload (Fig. 2) consisting of the
RHINOS e-nose (Burgués et al., 2021a, 2021b, 2021c) and an odour sam-
pling device compliant with EN13725 standard (Olfasense GmbH,
Germany). The latter is used to collect odour bags for post-flight dynamic
olfactometry, which enables the calibration and validation of the IOMS pre-
dictivemodels in operational conditions. A custom support was designed to
attach both instruments underneath the drone without affecting its center
of mass and preventing any collision during take-off or landing. The e-
nose and the sampler have their own dedicated sampling system. In both
cases, aspiration of the sample is achieved by vacuum pumps and PTFE tub-
ing of 10-m length connected to the inlet of the instruments. The open ends
of both tubes are tied together to ensure sampling from the exact same lo-
cation. In this way, the contents of the sampling bag are a mirror of the
gas composition reaching the sensing chamber, so that the e-nose signals
and the dynamic olfactometry measurements can be properly compared.
A plumb bob of 150 g is attached to the end of the tubing to keep them as
straight as possible during flight and reduce oscillations due to wind. The
chosen length of the tubing allows that in flight conditions the sample is
taken from a region underneath the drone not disturbed by the propellers'
downwash. It should be made clear that the e-nose does not analyze the
contents of the bag, but the sample aspirated through its dedicated tube.
Table 1
Comparison of SNIFFDRONE with state-of-the-art environmental drones (Serta
et al., 2021; Burgués and Marco, 2020; Sassi et al., 2018).

State of the art SNIFFDRONE

Sensing system Electrochemical sensors
for H2S, NH3, SO2, …

Hybrid electronic nose with 21
chemical sensors (MOX, EC, NDIR)

Signal / data
processing

Measurement of single
gases (ppm)

Estimation of odour concentration
(ouE/m3)

Calibration model Univariate calibration Multivariate predictive models
Calibration
conditions

In the laboratory In the field
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This allows it to work regardless of the presence of the sampler. The
delay in the sample transport through the tubing (~5 s) was used by the
e-nose firmware to synchronize the sensor measurements with the GPS
position. The total weight of the payload including the mounting plate
and the tubing is ~6.2 kg.

The RHINOS e-nose is a lightweight (~1.3 kg) and portable e-nose
designed for real-time monitoring of WWTP odours. It contains all the
necessary elements required for stand-alone operation (i.e., battery, GPS,
Fig. 2. Schematic illustration of the payload. The payload consists of the RHINOS e-
nose (1) and an odour sampling device compliant with EN13725 standard (2). Two
independent tubes of 10 m length are used to deliver sample air to the on-board
instruments while avoiding the downwash of the drone (3, 4). A wired connection
between the e-nose and the odour sampler allows its remote activation from the
ground station (5). The battery and vacuum pump of the odour sampler are
located in the back side of the instrument (6).
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radio link, microcontroller, datalogger, etc.). The core of the system is an
array of 21 chemical sensors, including 16 metal oxide (MOX) sensors
with broadband sensitivity to different VOCs, 4 electrochemical cells for
H2S, NH3, SO2 and CO, and 1 non-dispersive infrared (NDIR) sensor for
CO2. Additional sensors for temperature, humidity, pressure, and flow
rate are also included. All these sensors (except the flow rate sensor) are
hosted in a miniaturized sensing chamber (91 cm3 internal volume) driven
by a vacuummicropumpwith high flow rate (1.8 L/min), ensuring a filling
time of ~10 s. Due to the high-power dissipation of the MOX sensors, the
temperature and relative humidity inside the sensing chamber are rela-
tively stable. For example, in ourfield experiments at ambient temperatures
between 24 and 34 °C and relative humidity between 30 and 55 % r.h. (see
Appendix A.2), the temperature and humidity inside the sensing chamber
remained at 54 ± 2 °C and 10 ± 2.5 % r.h., respectively. The measured
sensor signals and GPS data are transmitted every 6 s to a base station
using a ZigBee radio link. A detailed description and characterization of
the e-nose is provided elsewhere (Burgués et al., 2021a, 2021b, 2021c).

The odour sampling device (Olfasense GmbH, Germany) is made with a
sealed PVC containerwith capacity for 10-litre gas sampling bags. A power-
ful vacuum pump (10 L/min) integrated in the device evacuates the
container in ~1 min, filling the bag with the odour sample. Although this
device is designed as a hand-held unit that must be activated manually
via a button on its handle, wemodified it to allow its activation via a digital
signal. This allowed us to remotely control the activation of the device by
simply sending a command from the base station to the e-nose.

2.2. Test site and data collection

A medium-sized WWTP with an extension of 35,000 m2 and located in
the south of Spainwas used for fieldmeasurements (Fig. 3). The immediate
surroundings of the WWTP are farmland and a natural area, being the
closest residential area at a distance of 4.5 km. Due to its location, approx-
imately 30 % of the input flow has an industrial origin, mainly manufac-
tured products from the agri-food sector, with noteworthy activity of the
canning industry. Its architecture includes a preliminary treatment, a
double-stage secondary treatment composed by two bioreactors and two
settlers in cascade, a tertiary treatment, and a dedicated sludge line. Air
tanks are open air. The plant is designed to treat an input flow of
25.000 m3/day, however the average flow is of 18.279 m3/day. The plant
design could provide service to a total of 292.000 inhabitants. The outward
flow rate of the chemical deodorization system is 20.000 m3/h. The total
emission surface of the settlers and bioreactors is 1080 m2 and 440 m2,
respectively. The deodorisation strategy of the plant included a wet scrub-
bing system that filters the fumes from different parts of the plant with a
two-phase system involving NaClO and NaOH scrubbing (González-
400

Effluent
water

Water line
Sludge line
Biogas line

Biogas geTerciary treatment

Seco

Fig. 3. Schematic representation of the WW
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Sánchez et al., 2008). The filtered air is released to the atmosphere through
an exhaust chimney located on the ceiling of the sludge dehydration
building.

Two measurement campaigns were carried out in the summer sea-
son, when odour-related problems are exacerbated by the high ambient
temperatures. Within each campaign, measurements were performed in
two consecutive days to capture different operating and weather condi-
tions (see sections A.1 and A.2 of the Appendix). A total of 73 measure-
ments were completed at the end of the two campaigns (42 odour
measurements + 31 blank samples). The odour measurements were
focused around the four most problematic odour sources (according to
the plant operators): (1) pretreatment building, (2) settlers, (3) bioreac-
tors, and (4) deodorisation chimney. Each source was sampled from
various heights (1–6 m distance between the inlet of the sampling
tube and the surface of the emission source) to capture a wide range of
odour concentrations. Blank measurements were performed in the
perimeter of the plant with the inlet of the system at 10 cm from the
ground. Under these conditions no odour from the WWTP was perceiv-
able by the members of the team and the sensors were able to recover
their baseline level. These blank measurements will be used to assess
the baseline drift of the sensors between measurement campaigns, and
eventually compensate it during data analysis. Table 2 summarizes the
measurement plan.

To perform an odour measurement, the drone is flown to the desired
measurement location where it is kept hovering for approximately 5 min
(Fig. 4). During this process, the IOMS ismeasuring continuously to capture
a sufficiently long time series of sensor signals that would allow us to assess
the variability of the emissions from the studied source. In themiddle of the
hovering period (t = 2 min), the sampling device on the drone is remotely
activated for 1 min to capture an odour sample into the 10-L Nalophan bag.
At the end of the hovering period (t = 5 min), the drone is landed in a
convenient location to remove the odour bag from the sampling device
and replace it with a new one. The odour bags removed from the drone
are stored in an opaque container and sent to a certified laboratory where
they are analyzed by dynamic olfactometry in <30 h, complying with
EN13725 standard. Dynamic olfactometry is carried out using a T08 olfac-
tometer (Odournet GmbH) configured with the “yes/no” method and four
panelists.

The maximum allowable confidence interval according to EN13725
(“EN13725: Stationary source emissions - Determination of odour
concentration by dynamic olfactometry and odour emission rate,” 2022)
for a single measurement value with a coverage factor of k = 2 is x/
2.21< x< 2.21, based on the intermediate precision value (expressed as re-
peatability, r) of 0.477. Regarding the accuracy of the odour concentration
measurement Aod), the standard defines a limit of 0.217. Based on the most
 m
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Table 2
Number of samples collected in each source during the four measurement days.

Day Date Settler Bioreactor Pretreatment Chimney Total (odour) Blanks Total

1 24/06/2020 3 3 2 2 10 7 17
2 25/06/2020 2 2 2 2 8 6 14
3 14/07/2020 3 3 3 3 12 11 23
4 15/07/2020 3 3 3 3 12 7 19
Total 11 11 10 10 42 31 73

J. Burgués et al. Science of the Total Environment 846 (2022) 157290
recent n = 12 measurements of the reference gas n-butanol, included dur-
ing the measurement session, the accuracy Aod and the intermediate preci-
sion value r met the EN13725 criteria mentioned above. This implies that
the actual confidence interval in the olfactometry laboratory for a single
measurement value x, including predilution, is within the range stated
above. It is assumed that this uncertainty and precision, based on
verification with reference gases, are transferable to environmental
samples.

2.3. Electronic nose calibration and validation

2.3.1. Signal pre-processing
The goals of signal pre-processing are to improve the signal-to-noise

ratio (SNR) of some sensors, remove measurement artifacts (e.g., spikes)
and correct the drift of the sensors baseline. Not all sensors required the
same pre-processing. For example, MOX sensor signals showed periodic
spikes that we filtered out with a median filter (window size = 3 samples).
Electrochemical sensors were more affected by baseline drift, which we
noticed by looking at the reference blank samples captured at the beginning
of each measurement campaign. To correct this drift, we subtracted an off-
set from each sensor response to ensure that the baseline at the beginning of
themeasurement campaignmatches the reference background levels of the
target gases (see Appendix A.3). We did not check for any potential drift in
sensitivity.

2.3.2. PLS modelling
Partial least squares (PLS) regression (Wold et al., 2001) was chosen to

predict the odour concentration y (n×1) based on the features X (n×m)
Fig. 4. Photos of the drone during sampling of the bioreactor at 1 m distance (center pict
drone in these two examples was 13 m a.g.l. and 25m a.g.l., respectively. The left picture
sampling tube.
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extracted from the sensor signals, where n is the number of samples andm is
the number of features. PLS is particularly well suited for datasets where
m > n,i.e. the matrix X has more predictors (columns) than observations
(rows), and there is multicollinearity among the features in X (Mehmood
et al., 2012). The PLS model equation is as follows:

y ¼ Xβþ e ð1Þ

where β (m×1) is the vector of regression coefficients and e (n×1) is the
residual error. The matrices X and y are logarithmically transformed and
mean-centered prior to PLS modelling. The reference values where 1
Siemens for MOX sensors, 1 ppm for electrochemical and NDIR sensors,
and 1 ouE/m3 for odour concentration., The log transformation reduces
the dynamic range and linearizes the relationship between X and y.

2.3.3. Feature extraction and selection
The pre-processed sensor signals and the olfactometry measurements

were used to derive X and y, respectively. The columns of X are the concat-
enation of signal segments (each of duration T min) from the 21 sensors,
whereas the rows are the different samples measured with the drone
hovering over the selected emission sources. Fig. 5 illustrates with
artificially generated data how X and y could look like. Initially, the sensor
signals during the whole measurement (i.e. T = 5 min) are included in X.
This results in a matrix with dimensions 73 (samples) × 945 (features),
where 945 is the product of the 21 sensors by the 45 samples/sensor
recorded by the IOMS in 5 min. The response vector y (73 × 1) contains
the odour concentration (ouE/m3) measured by dynamic olfactometry for
each sample (odour bag).
ure) and the deodorisation chimney at 6 m distance (right picture). The height of the
shows close-up views of (a) the drone and payload and (b) the inlet of the weighted



Fig. 5. Schematic representation of the feature matrix X and response vector y (odour concentration). The provided values have been artificially generated for exemplary
purposes.

Table 4
Data splitting for model estimation or training (T) and internal validation (V) of
Model 1. The letters below each Day indicate the emission source (S: Settler; B:
Bioreactor; P: Pretreatment; C: Chimney). Each cell represents all the measurements
performed at that emission source in a given day (typically 3 measurements/source
in each day, see Table 1).
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To understand the importance given by the model to the predictors in X
and reduce the number of features, we used the variable importance in pro-
jection (VIP)method (Chong and Jun, 2005). The idea behind this measure
is to accumulate the importance of each predictor j, being reflected by the
loading weights, w, for each component of the model. The VIP measure
for the jth predictor, vj, is defined as

vj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p∑A

a¼1 SSa waj= wak k� �2h i
=∑A

a¼1SSa;
r

ð2Þ

where p is the number of predictors, SSa is the sum of squares explained by
the ath component of themodel, and (waj/‖wa‖)2 represents the importance
of the jth predictor in the ath component. A predictor with a VIP score >1
(one) can be considered important in a PLSR model (Chong and Jun,
2005), therefore we used VIP = 1 as a threshold to discard irrelevant
features. The resulting matrix Xred (n × m′) contains the same number of
samples than the original matrix X (n × m), but a smaller number of fea-
tures (m′ < m).

2.3.4. Calibration model development and validation
Calibration model development encompasses model estimation and

complexity control. In the case of a PLS model, complexity control (also
known as model selection) means selecting the best number of latent
variables (LVs) to ensure the model generalizes well from the training
data to data not seen during model development. This model validation
must be performed in an independent set of samples that were not used
for model development (external validation set). For that, we have chosen
a resampled data partition according to a double leave-one-block-out
cross-validation (CV) scheme in which data from three days (i.e., blocks)
are used for model development and the remaining day is used for external
(blind) validation (Filzmoser et al., 2009). As illustrated in Table 3, this
CV scheme makes the most efficient use of a small dataset because all
measurements participate in external validation for unbiased performance
assessment. The only practical inconvenience of this approach is that four
models are obtained at the end of the process (one model for each
Table 3
Data splitting for calibrationmodel development (C) and external validation (X).

6

validation day), so it is important to verify that the models are comparable
with each other before drawing general conclusions.We did that by looking
at the regression coefficients βi and the complexity LVi of the four models
(i = 1, …, 4).

Regarding complexity control, we use a “leave one sample out” (LOO)
scheme within each of the calibrations sets (Table 4). In each iteration,
PLS models with different number of LVs (1, …, 10) are built using all the
optimization samples except for one sample that is reserved for estimating
the prediction error (internal validation). The process is repeated N times,
each time with a different internal validation sample. Once the N iterations
are completed, the root mean squared error (RMSE) is computed for the ten
models (Eq. (3)):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
∑N

j¼1 y j− ŷ j

� �2
;

r
ð3Þ

where yj and byj are the real and predicted odour concentration of the j-th
internal validation sample. We call this figure of merit the RMSE in cross
validation (RMSECV). The “knee” in the plot of the RMSECV versus the
number of LVs indicates which could be an optimum number of LVs for
that model (i = 1, …, 4).

Once the optimal number of LV has been selected, the n PLS models are
refit using all calibration samples (see Table 3). These models are then used
to predict the odour concentration of the external validation samples. The
RMSE of the predictions (i.e. RMSEP) is computed as in Eq. (3). We also
computed the bias and 95 % limits of agreement (LoA) as per the Bland-
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Altmanmethodology (Bland andAltman, 1999). The Bland-Altmanmethod
was developed to overcome the difficulties in comparing a new measure-
ment technique (e.g., e-nose) with a reference technique that is not free
of error (e.g., dynamic olfactometry). A plot of the mean differences
between the output of the two measurement techniques versus the average
of both measurements allows identification of any systematic difference
between the measurements (i.e., fixed bias) or possible outliers. The
mean difference is the estimated bias, and the SD of the differences mea-
sures the random fluctuations around this mean. It is common to compute
95 % LoA for each comparison, which tells us how far apart measurements
by two methods are more likely to be for most samples.

2.4. Odour concentration mapping

An odour concentration map is a spatial representation of the e-nose
predictions (ouE/m3) in a 2D plane covering an area of interest. Drones pro-
vide the possibility to have a dense grid of measurement points over the
area of interest from which to estimate chemical maps. The visual inspec-
tion of those maps allows identifying the major directions in which the
odorant components propagate, and how fast the estimated odour concen-
tration decreases when the drone moves away from the emission sources.
We can also observe how the different odour sources interact and how
their contributions overlap at specific points of the plant.

As a proof of concept for this functionality, a specific flight over a large
area of the plant was performed at the end of the 2nd measurement cam-
paign. For this flight, the drone was equipped only with the IOMS
(i.e., without the odour sampling device) to increase the flight time.
Using a sweeping flight pattern, the drone scanned a region of approxi-
mately 200 × 100 m2 centered around the secondary treatment (settlers
and bioreactors) but also including the pretreatment building and the
deodorisation chimney. The drone speed was set to ~0.5 m/s to finish
the mapping in a reasonable time (~25 min) and at the same time give
enough time for the sensors to react to the sample. The map is built with
approximately 225 measurement points (25 min flight × 9 samples/min)
spatially distributed over a region of approximately 200 × 100 m2. This
is a resolution of 3 m (0.5 m/s × 6 s/sample).

The altitude of the drone was continuously adjusted to keep the inlet of
the sampling system as close as possible to the WWTP infrastructure. To
produce a continuous and smoothmap, we used a natural neighbor interpo-
lator (Sibson, 1981) based on the Delaunay triangulation (Amidror, 2002).
We chose this interpolator because it does not infer trends and will not pro-
duce artifacts (e.g., peaks, ridges, or valleys) that are not present in the
input data.

3. Results and discussion

3.1. Raw sensor signals

As an illustrative example, Fig. 6 shows the sensor signals during the 1st
day of measurements. The vertical red bars indicate the moments in which
the odour bags were collected, and the number on top the bars indicates
their odour concentration (ouE/m3). As can be seen, there is a rich pattern
of sensor signals with an intensity and fluctuations that depend strongly on
the monitored source, sampling distance, local wind conditions and addi-
tional factors as temperature and humidity. The strongest responses of all
sensors occurred during close-range sampling of the deodorisation chim-
ney, bioreactor, and sludge hoppers, with peak concentrations of 50–80
ppm NH3 and >40 ppm H2S (sensor saturation). Odour concentrations for
these measurements ranged from 215 to 7298 ouE/m3. Above-
background levels of CO, SO2 and CO2 were recorded in these sources as
well. On the other hand, the settlers and the pretreatment building had
the lowest concentration of all measured gases, e.g. <10 ppm of H2S and
NH3.

We observed a fast decay in gas and odour concentration with increas-
ing distance between the sampling inlet and the emission source. For exam-
ple, the H2S and NH3 peak concentrations recorded at the bioreactor
7

decreased by a factor of 2 for every 1 m increase in sampling height
(Fig. 7). A factor of two dilution was also observed in the odour concentra-
tion, which decreased from 7298 to 4096 to 1993 ouE/m3 when increasing
the sampling height from 2 to 3 to 4 m, respectively.

However, it is not always easy to fill an odour bag exactly during a peak
in the odour emissions, even with real-time visual feedback from the IOMS
signals. As illustrated in Fig. 8, the activation of the odour sampling device
can happen during a valley in the emissions. This occurs more frequently in
point sources emitting a plume than in area sources because in the former
case it may be difficult to keep the inlet of the sampling tube inside the
plume during the sampling process. Sudden changes in wind direction not
only shift the plume away from the sampling tube, but also make the tube
oscillate. When the tube gets out the plume, the concentration sharply
drops to the background level and the result is a highly diluted odour
sample. In the example of Fig. 8, high NH3 concentrations of 60–80 ppm
were recorded at the deodorisation chimney in certain moments in which
the inlet of the sampling tube was positioned inside the plume, however
the sampling device was often activated when the tube was outside of the
plume (due to wind). This led to unrealistically low odour concentrations
of 215 and 431 ouE/m3 in some bags. Clearly, the odour concentration
would have been much higher if the odour bag was filled slightly earlier
or later. Even the sample with 5468 ouE/m3 can be considered too diluted
if compared with the odour concentration that would have been measured
2 min later, i.e., during the peak of 80 ppm NH3.

3.2. Feature extraction and selection

An illustrative example of the feature matrix X colored by the odour
concentration vector y is shown in Fig. 9. It can be observed that six sensors
(H2S, NH3, CO,M3,M6 andM7) outstand from the others in terms of signal
variance. Not all points along the measurement cycle are equally correlated
with the odour concentration. The beginning of the measurement
(i.e., when the hovering period just started) typically shows little correla-
tion whereas the second half of the measurement seems to carry more
relevant information. The role of the calibration model will be to identify
those features (i.e., sensors and measurement points) that exhibit high
variance in X correlated with y.

Using the VIP scores, we identified the most important features for
odour prediction (Fig. 10). As it was expected from previous experience
in the analysis of WWTP odours and from the signals shown in Fig. 9, the
H2S and NH3 sensors are the most relevant for the model. Regarding the
other sensors, only the CO sensor and three MOX sensors (M3: TGS
2600 at 4.06 V, M6: TGS 2602 at 3.25 V, and M7: TGS 2602 at
4.06 V) were considered important for odour concentration prediction.
This agrees quite well with the results we obtained in our previous study
where we used steady-state signals to build the predictive models
(Burgués et al., 2021a). The VIP scores also indicate that, for nearly all
sensors, the features corresponding to the central 1-min period in which
the odour bag is filled (red lines) are important for odour prediction.
However, the optimum prediction band is delayed by ~30 s or, equiva-
lently, 5 samples (see insets). This is probably due to the time required to
fill the sensing chamber and get stable sensor responses, which we empiri-
cally estimated as 30 s (see Fig. 8 in (Burgués et al., 2021a)). Intuitively, this
could mean that to fully synchronize the sensor responses with the contents
of the odour bags it is not enough to compensate for the sample transport
time through the tubing but also for the response time of the sensors and
the dynamics of the sensor chamber.

3.3. PLS model optimization

Using only the data from the top-five relevant sensors (H2S, NH3, M3,
M6 and M7) and the most predictive signal features of the measurement
cycle, we optimized the PLSR models as explained in Section 2.3.4. We
excluded the CO sensor despite having some of its VIP scores higher than
1. This is because those relevant VIP scores correspond to features located
at the end of the measurement cycle, which is not consistent with the



Fig. 6. Gas sensor signals during the 1st experimental day. The vertical shaded bars indicate the sampling moments, and the labels on top of them indicate the source,
sampling distance, and odour concentration (ouE/m

3). The x-axis indicates the timestamp (hh:mm).
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pattern observed in the rest of the sensors (relevant features located in the
middle of the measurement period) and would require a longer measure-
ment time. The RMSECV vs LV curve (Fig. 11a) had a similar trend for
the four PLS models, with increasing RMSECV as more LVs were added to
the model. Therefore, 1 LV was selected for all of them. At LV = 1, the
RMSECV across the four models ranges between 1.6 and 2.0 (factors),
with an average value of 1.8. This means that, on average, the predicted
value will be within 1.8 times of the dynamic olfactometry measurement,
which is a good result considering that the uncertainty of dynamic
olfactometry is close to a factor of 2 (95 % CI). This simple PLS model
Fig. 7.H2S and NH3 sensor signals during measurements above the bioreactor at multipl
the labels above them indicate the filling of the odour bag and the measured odour conc
corresponds to Day 1.
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built with 5 sensors and a reduced feature set improved slightly the results
obtained with a full PLS model built with all sensors and all features. The
latter required a higher number of LVs (1 or 2 depending on the model)
and yielded worse RMSECV values (1.9–2.1).

The fact that the optimum PLS models only require 1 LV deserves addi-
tional comments. For example, this could indicate that the sensor array is
not sensitive to the odour variability from the different sources; instead,
for the PLS algorithm the different odours look like scaled versions of the
same pattern. The selected experimental design and model complexity
control allowed the PLS algorithm to find a common signature for the
e sampling distances (indicated on top of the figure). The red shaded rectangles and
entration (ouE/m3), respectively. The x-axis indicates the timestamp (hh:mm). Data



Fig. 8.H2S and NH3 sensor signals during measurements above the Chimney at different sampling distances (indicated on top of the figure). The red shaded rectangles and
the labels above them indicate the filling of the odour bag and the measured odour concentration (ouE/m

3), respectively. The x-axis indicates the timestamp (hh:mm). Data
corresponds to Day 1.

Fig. 9. Feature vectors corresponding to the first three day of measurements, colored by odour concentration (y). The shown signals were mean-centered with respect to the
calibration data, after applying the log transformation. The vertical bars separate the features of the different sensors.
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WWTP odours that is enough for odour concentration estimation. Regard-
ing the similarity between the four models, Fig. 11b confirms that the
four regression vectors are very similar to each other, with Model 4 having
a slightly different pattern of coefficients than the other threemodels. In all
cases, the NH3 sensor seems to have the greatest importance for prediction,
followed by the H2S sensor and the three MOX sensors. The higher impor-
tance of the NH3 sensor versus the H2S sensor can be unexpected from a
theoretical point of view but is reasonable from a pure technical perspec-
tive. The reason is that the H2S sensor used in the e-nose had a lower
measurement range (0–40 ppm) than the NH3 sensor (0–100 ppm),
which led to saturation of H2S sensor in some extreme conditions such as
Fig. 10. VIP scores as a function of the feature vector. The x-axis is divided in 21 blocks
sensor response during the 5 min measurement (Fs = 9 samples/min). The red bars hig
sensors with VIP > 1 selected for model building are indicated with letters (a)-(e). The
vertical rectangle labelled with an asterisk (*) indicates the optimum 1-min measureme
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measuring close the deodorization chimney, whereas the NH3 sensor
never saturated in our experiments.

3.4. PLS model validation

The optimized PLS models were validated against external (blind)
samples (c.f. Table 3). A scatter plot of the predicted versus real odour
concentration reveals a relatively high correlation (rho = 0.86)
between the predictions and the reference values (Fig. 12). The four
emission sources are predicted with similar errors and the RMSEP is
approximately a factor of 2. The bias between the predicted and real
(sensors) of 45 features. The 45 bars (features) within each block correspond to the
hlight the features measured during the 1-min filling of the odour bag. Five relevant
two insets show a close-up view of the VIP scores for the NH3 and M7 sensors. The
nt band where the VIP scores are maximized.



Fig. 11. (a) RMSECV versus number of latent variables and (b) Regression coefficients for the four PLS models (blue: Model 1, red: Model 2, yellow: Model 3, purple: Model 4).
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values is negligible and the 95 % limits of agreement (LoA) are [0.25×,
3.91×]. Table 5 compares these results with (a) our previous study in
which the IOMS was calibrated and validated in the lab using steady-
state signals (Burgués et al., 2021a) and (b) the calibration model devel-
oped in the lab with steady-state signals but applied to the validation
dataset captured in the current study (transient signals). The best possi-
ble predictions are obtained with the calibration model developed and
validated in the lab under controlled conditions and using odour bags
(1st column of the table, RMSEP = 1.8×). This methodology is how-
ever not practical in the intended application. When the steady-state
calibration model is fed with transient signals measured in the field
(2nd column of the table), the RMSEP degrades from 1.8× to 2.46×,
the LoA increases from approximately a factor of 2 to approximately a
factor of 6, and the correlation between the predictions and dynamic
olfactometry decreases from 97 % to 75 %. Under the same validation
conditions, the dynamic calibration model (3rd column of the table)
achieves an RMSEP of approximately a factor of 2, a LoA of approxi-
mately a factor of 4, and a correlation between the predictions and dy-
namic olfactometry of 86 %. This confirms the initial hypothesis of the
study, i.e. calibration with transient signals measured in the field
improves the performance of the drone-based system.
Fig. 12. Validation of dynamic PLS model predictions in external validation (blind)
samples measured with the drone. The marker colour indicates the odour source
(Settler: red, Biological: green, Chimney: cyan, Desander: purple). The ideal
prediction line (1:1) and the upper and lower limits of agreement (LoA) are
shown as a dotted line. LoA and RMSEP values are provided as factors (ratios).
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3.5. Odour concentration mapping

Fig. 13 shows the interpolated odour concentrationmap built according
to the protocol described in Section 2.4. As expected, the highest odour
emissions were concentrated on the southwest side of the plant, which
contains the deodorisation chimney and primary treatment elements that
receive the influent water, such as the stage A bioreactors and the primary
settlers. The northern side of the plant is less odorous because it contains
secondary treatment elements that receive cleaner wastewater that has
been already pre-treated. This map is shown only for illustrative purposes.
An analysis of odour dispersion within the map is out of the scope of this
project as the wind information that we collected does not have enough
temporal resolution to perform a detailed analysis of odour dispersion.

3.6. Limitations of the study and of the proposed technology

The current version of the SNIFFDRONE systems is probably not robust
against harsh environmental conditions. We foresee that in the presence of
rain, snow, hail, moderate to strong wind intensity (higher than 30 km/h),
freezing temperatures or dust clouds, the system will not operate properly.
A more extensive validation is needed to characterize the ruggedness of the
system in regards larger excursions of temperature and humidity. Measure-
ments were carried out in summer season because of the higher odour
emissions. While the system components are qualified in the range −20
to 60 °C, we expect that the prediction accuracy will degrade in other
weather seasons due to temperature cross-sensitivities and differences in
chemical composition of the emissions. To characterize the performance
of the system in an extended temperature and humidity range we would
need to run measurement campaigns in other weather seasons, especially
winter, which was out of the scope of this project.

On the other hand, to understand the impact of sensor drift in the
system performance, the device performance needs to be assessed during
extended periods increasing the time distance between calibration and
Table 5
Comparison of predictive performance between static calibration (RHINOS paper)
and dynamic calibration (SNIFFDRONE paper). In all cases, a PLS regression model
with 1 LV is used and external (blind) samples are used for validation.

RHINOS (Burgués et al., 2021a) SNIFFDRONE

Calibration Lab (odour bags) Lab (odour bags) Field (drone)
Validation Lab (odour bags) Field (drone) Field (drone)
RMSEP 1.8× 2.46× 1.98×
Correlation 0.97 0.75 0.86
Bias 0 0.01 0.01
LoA [0.41×, 1.97×] [0.17×, 6.10×]. [0.25×, 3.91×].



Fig. 13. Interpolated map of odour concentration predictions of a 200 × 100 m2 region of the plant. The main odour sources are indicated with colored circles. Data was
collected with the drone-mounted e-nose during a specific flight at the end of the 2nd campaign. The ambient temperature was 30 °C, relative humidity of 45 %, and
wind speed of 12.5 km/h with south-east (SE) direction.
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operation. The current system integrates a baseline correction mechanism,
but it is not clear from the present study if this measure will be sufficient to
provide stability in the long term. Sensitivity drift will require periodic
system recalibrations to keep satisfactory performance.

The current calibration protocol is still immature and needs further
development. The high cost of each dynamic olfactometry determination
limits the number of calibration points, while the high uncertainty associ-
ated to EN13725 degrades the quality of the calibration model. Calibrating
with few data points necessarily leads to an underrepresentation of the
complexity of the problem, most notably ignoring the short- and long-
term variability of the emissions due to changing operating conditions,
meteorological factors, seasonal trends, etc. Also, the training of non-
linear models requires a denser sampling of the plant conditions due to
well-known non-linearities in intensity of odour perception. Additionally,
as we have already mentioned, the requirement to keep systems calibrated
implies to consider not only the initial calibration phase but also the
standard operation protocols for system recalibration. The associated cost
should be taken into account as well. Finally, the transfer of calibration
across units to avoid individual device calibration has not been considered
in the present work. Similarly, the transfer of calibration models across
plants requires further investigations and it is outside the scope of the
present investigation.

Moreover, in its current form, the system assumes that the major
contributors to the odour at any measurement location are the sources
that were considered in the calibration dataset. This is a common problem
in machine learning based prediction models. The algorithm learns to
predict the odour concentration from a set of examples. The presence of
additional odour sources, not considered in the calibration, will introduce
errors in the odour estimation. The magnitude of this error will depend
on the intensity of the neglected odour sources and the difference in chem-
ical composition.We should also remark that the performance of the system
has been mostly tested in the odour range 100–7000 ouE/m3. Outside of
this range, the system will extrapolate, and errors have not been properly
quantified. In other words, odour measurements outside of this range
may have relative errors bigger than the stated for the explored range.
From the current study, we cannot infer the performance of the system at
the location of sensitive receptors, when the odour concentrations are
lower than 100 ouE/m3.

4. Conclusions

In this paper we have shown how a flying electronic nose able to
measure odour concentration in real time has been calibrated and validated
in a WWTP. The developed prototype worked reliably in the field during
several weeks and under slightly different operating and weather
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conditions. The slight degradation in prediction accuracy as compared to
the gold standard (dynamic olfactometry) is more than offset by the ex-
tremely low measurement cost, portability of the instrument and immedi-
acy of results, which allows taking many measurements on site and
evaluate the results directly in the field. This is an important practical ad-
vantage for plant managers, which no longer need to carefully plan
olfactometric measurement campaigns and wait several days to get and an-
alyze the results. In contrast, the SNIFFDRONE prototype allows them to
routinely take as many odour measurements as needed in almost any loca-
tion in their plants, get the results immediately and display them in an
odour map. This improves their capability to detect and mitigate potential
odour problems before they produce a negative impact outside of the plant.

The results presented in this work and their discussion is also a big step
forward to understand the challenges associated to machine olfaction in
field conditions.While current research has beenmostly based in terrestrial
robots aiming at the detection of single odorants in simplified exploration
areas of limited size, absence of obstacles, and uniform wind conditions
(Monroy and Gonzalez-Jimenez, 2018), we carried out field experiments
in realistic conditions, i.e. flying over a real WWTP for model development
and validation. For the first time, the complexity of this type of operating
conditions is addressed. Specifically, we (i) compared two calibration strat-
egies (static and dynamic) for the electronic nose, concluding that dynamic
calibration with transient signals measured in flight conditions led to
higher prediction accuracy than the traditional steady-state calibration;
(ii) analyzed the impact of wind into the sampling system and the sensor
signals, revealing a higher impact in point-like sources than in area sources;
(iii) discussed the challenges associated to calibrating odour predictive
models with real-time sensor signals, proposing a feature extraction and
selection method to identify the most promising features along the
measurement cycle; and (iv) discussed how the sampling system and the
response time of the sensors affects the feature selection, among many
other things.

The weakest point of this study is probably the calibration protocol,
which is still immature and needs further development and documentation.
The high cost and uncertainty of each dynamic olfactometry determination
limited the quantity and quality of the calibration points, degrading the
quality of the calibration model. Calibrating with few data points leads to
an underrepresentation of the complexity of the problem, most notably
ignoring the short- and long-term variability of the emissions due to chang-
ing operating conditions, meteorological factors, seasonal trends, sensor
drift, etc. Also, the training of non-linear models requires a denser sampling
of the plant conditions due to well-known non-linearities in intensity of
odour perception. Calibrating an instrument with a reference technique
that is not free of error hinders the application of standard regression
models which assume that the independent variables have been measured
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exactly. Additionally, the requirement to keep the system calibrated over
time implies to consider not only the initial calibration phase but also:
(i) Temporal validation of calibration models (stability and robustness
studies); (ii) Periodic re-calibration; (iii) Automatic detection of component
failure; (iv) Transfer of calibration models across plants. All these steps
need further investigation, and they should be thoroughly documented
for future use of the proposed systemby plant operators without continuous
support from R&D teams.

The high potential demonstrated by the SNIFFDRONE prototype
encourages its further development until reaching a pre-commercial stage
and extending its application to other sectors in which odour emissions
have a strong impact (landfills, farms, composting plants, …). Moreover,
the spatially-dense odour measurements that this platform can provide
will open new possibilities to fuse sensor data and atmospheric dispersion
models(Ravina et al., 2020; Nebenzal et al., 2020). All this can result in a
benefit for industrial operators by reducing the capital and operational
expenditures (CAPEX and OPEX) associated to odour emission monitoring.
This technology can also help to improve the quality of life of people living
in proximity to these facilities.
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