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Abstract: The Kuramoto model is one of the most representative models of coupled phase
oscillators, commonly used in the description of synchronization phenomenon in complex systems.
The aim of this report is to study, from a mathematical and computational point of view, three
linear conversions of the Kuramoto model in the case of identical oscillators with global coupling.
A comparison with the original Kuramoto dynamics is also conducted.

I. INTRODUCTION

Synchronization is the tendency of entities to coop-
erate in unison spontaneously. This phenomenon is wit-
nessed in biological, chemical, physical, technological and
social systems. It involves populations of interacting
units, from neurons to fireflies [1], which collectively per-
form a global coherent activity.

As an illustrative case, one of the most paradigmatic
scenario yet most fascinating spectacle of nature is the
flashing in synchrony of huge congregations of fireflies ob-
served in the forests of Southeast Asia. For years, trav-
elers had witnessed these displays and reported stories
about it [2]. However, there was a generalized sense of
disbelief that some even dismissed the phenomenon as a
mere coincidence. On top of that, for decades, no one was
able to come up with a plausible theory. It was not until
the late 1960s that the pieces begin to fall into place when
an almost imperceptible clue was noticed. Synchronous
fireflies not only blinked in unison, but also blinked at a
constant tempo, in rhythm [3, 4]. This implied that each
insect must have an inner clock, some sort of oscillator,
whose timing was adjusted by advancing or delaying its
internal frequency in response to the flashes of others.

Sometimes, synchronization can be dangerous. For
instance, epilepsy is caused by the discharge in patho-
logical lockstep of millions of brain cells, which cause
the rhythmic convulsions associated with seizures. Per-
fect synchronicity could lead to extinction and, therefore,
species of the same trophic level develop different circa-
dian rhythms to increase their probability of survival.
Details about these and other cases can be found in [1].

In general, research in synchronization involves inter-
acting oscillatory elements. For example, Arthur T. Win-
free spent part of his life studying the mutual synchro-
nization of biologic oscillators, such as circadian clocks
and metabolic oscillations [5]. Not only did he realize
that synchronization can be understood as a threshold
process, but he also was able to formulate a model with
nonlinear interactions [6], except that it was hard to solve
in its full generality. Nonetheless, in 1975 Yoshiki Ku-
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ramoto brought simplicity to this problem. He produced
a model that was able to solve exactly for systems con-
taining an infinite number of globally weakly coupled
phase oscillators running at arbitrary intrinsic frequen-
cies [7]. The attractive characteristic of the Kuramoto
model is that it is mathematical treatable despite being
sufficiently complex to be nontrivial [8].
The standard formulation of the Kuramoto model on

a general network of N nodes (limit-cycle oscillators) is
as follows

θ̇i = wi +K

N∑
j=1

Aij sin(θj − θi), (1)

where the solution, θi(t), is the state (phase) of the ith
oscillator (i = 1, ..., N), wi is the intrinsic angular fre-
quency, K is the coupling constant and Aij ∈ {0, 1} is
element of the adjacency matrix, which represents the
connection between oscillators. In the absence of inter-
action, the phases are incoherently driven by the intrinsic
frequencies. Whilst the sine coupling in the interaction
term causes an attraction between the phases of two con-
nected oscillators i and j, which makes the oscillators
converge to the same phase and leads to synchroniza-
tion [9].
It was also introduced the order parameter, reiϕ, a

value that gives a measure of how synchronized the sys-
tem is at a point in time. Considering the oscillators as
running around a unit circle in the complex plane, the
order parameter is expressed as

reiϕ =
1

N

N∑
j=1

eiθj(t), (2)

where r is the amplitude of the (complex-valued) order
parameter and ϕ represents the collective phase. Notice
that the order parameter ranges from 0, meaning no syn-
chronization, to 1, which defines perfect synchronization.

II. OBJECTIVE

The dynamics of networks with many nodes and con-
nections entails difficulties in mathematical treatment.
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In particular, once nonlinearity is introduced, the analyt-
ical study of the system’s dynamics becomes extremely
difficult. For this reason, many researches have intro-
duced alternative algebraic approaches to the original
Kuramoto model. The main purpose of this bachelor the-
sis is to study three linear conversions of the Kuramoto
model and to determine the benefits and limitations that
this approaches imply with respect to the original model.

III. METHODOLOGY

To begin with, we introduce the three linear ap-
proaches under study. In terms of the computational
simulations, we consider a system of identical oscillators
and, therefore, we remove the frequency term from all
the following equations since for identical intrinsic fre-
quencies, wi = w ∀i ∈ [1, N ], we can simply change
to a rotating frame [10] and set w = 0 without loss of
generality. In this case, the system exhibit steady-state
perfect synchronization regardless of initial conditions as
we report in this work. We implement our own python
code [11] using the NumPy, SciPy and SimPy libraries.

A. Linearization

In a first approximation, when the system reaches a
state where the phase differences are small, the sine cou-
pling can be replaced by its argument, the phase differ-
ence θj − θi. Within this framework, assuming intrinsic
frequencies equal to zero, equation (1) can be written as

θ̇i = K

N∑
j=1

Aij(θj − θi) (3)

or, equivalently, applying the relation between the adja-
cency and Laplacian matrices, Lij = kiδij − Aij , where
ki is the degree of the node i,

θ̇i = −K
N∑
j=1

Lijθj . (4)

It is demonstrated [Albert Dı́az G. (unpublished)] that
this set of linear differential equations can be solved in
terms of the normal modes of the Laplacian matrix such
that the original coordinates can be written as

θi =

N∑
j=1

Uijϕj , (5)

where Uij is the matrix of the base transformation and
ϕj = e−Kλjtϕj(0) are the eigenvectors of the Laplacian
matrix associated with the eigenvalues λj .
From this solution, it is obtained that the evolution of

the average of the square phase difference is〈
(θl(t)− θk(t))

2
〉
= 2D

∑
m

(Ulm − Ukm)
2
e−2Kλmt, (6)

where D is a coefficient related to the initial fluctuations.
Hence, not only the two phases approach depending on

time as expected, but also on the difference among the
projections on the normal modes weighted by an expo-
nential decay. It is shown that the leading term corre-
sponds to m = 2, which is the second smallest eigenvalue
and usually known as algebraic connectivity [12]. So,
therefore, the slope of the asymptotic exponential decay
(the a plot is log-lin) is 1/λ2. In fact, we always look
at the asymptotic decay towards synchronization since
perfect synchronization can not be reached.

B. Linear reformulation

In 2008, the following linear reformulation of the Ku-
ramoto model of spontaneous synchronization was pro-
posed by D. Roberts [13], which permits its solution
through an eigenvalue-eigenvector problem,

ψ̇i = (iwi − γ)ψi +
∑
j ̸=i

Ωijψj , (7)

where wi is the intrinsic frequency, Ωij is the coupling
constant of this linear model and γ is the decay con-
stant, which is adjusted afterwards to bring the system
to a steady state. In a system of globally and uniformly
coupled oscillators Ωij = Ω/N ∀i ̸= j, whose value is
positive unless otherwise specified.
The solution of this linear model is

ψ =

N∑
j=1

ajvje
λjt, (8)

where aj are constants determined by the initial condi-
tions and vj and λj are, respectively, the eigenvectors
and eigenvalues associated with the matrix defined by
the right-hand side of equation (7).

In order to observe the connection between this lin-
ear reformulation and the original Kuramoto model,
it is performed a nonlinear transformation, ψm(t) =
Rm(t)eiθm(t), on equation (7), which leads to

Ṙi = γRi +
Ω

N

N∑
j ̸=i

Rj cos (θj − θi), (9)

θ̇i = wi +
Ω

N

N∑
j ̸=i

Rj

Ri
sin (θj − θi), (10)

which are the dynamic equations that the modulus and
the argument of ψm(t) satisfy.
We observe that, if Rj/Ri → 1, in the case of uniform

Ωij = Ω/N , then equation (10) becomes equation (1).
Therefore, when the steady state is reached, this linear
version maps onto the original model with an effective
coupling constant K = Ω

N .
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On the other hand, equation (7) can be written as

ψ̇i =

N∑
j=1

(Ωij − γδij)ψj , (11)

where it has been taken wi = 0 as we study the case of
identical oscillators, i.e., wi = w ∀i.

From this expression, we can identify the matrix[
Ω
N (1− δij)− γδij

]
and find the corresponding eigen-

spectrum. We observe that there are N − 1 degenerate
eigenvalues, each equal to −γ − Ω/N , and one unique
eigenvalue

λN = −γ +Ω(N − 1)/N, (12)

which has associated the eigenvector vN = (1, 1, 1, ..., 1).
Regarding the constraint underlying the constant γ,

we impose that Re(λN ) = 0 to force each Ri(t) to go to
a steady state for large times. In other words, we tune
the constant γ so that

γ = Ω(N − 1)/N, (13)

and, therefore, the phase difference
〈
(ψj(t)− ψi(t))

2
〉
de-

cays as ∼ e−2Ω to synchronization.
It should be noticed that in this analysis it has been

adopted the convention of ordering the eigenvalues by
their real part, from λ1 (least) to λN (greatest).

C. Complex-valued matrix formulation

In 2021, a complex-valued matrix formulation of the
Kuramoto model was introduced by L. Muller and
coworkers [14], whose argument is claimed to coincide
with the original Kuramoto dynamics. It is based on the
addition of an imaginary component to the coupling term
which leads to the next linear equation,

ẋ = (diag[iw] +KA)x, (14)

where x = eiθ with θi ∈ C, w is a vector that contains the
intrinsic frequencies, K is the coupling constant, and A
is the adjacency matrix. The detailed procedure followed
to obtain the above equation can be found in [14].

In this case, when dealing with homogeneous intrinsic
frequencies a scaling of the coupling strength is required
such that γ = 2K/π. So, equation (14) is written as

ẋ = γAx, (15)

whose general solution is

x = eγtAx(0). (16)

In fact, it should be mentioned that we accept the re-
lation between the coupling constant K and the new con-
stant γ since a clear explanation could not be found.
It is also established that since the decomposition of

θ into its real and imaginary parts can be written as

θ = θre + iθim, then θre must be the argument of the
analytical solution of x. In particular, it is taken θre ∈
[−π, π].
With the aim of reversing the change, following the

procedure presented in the last model, we perform a non-
linear transformation of the form xi(t) = Ri(t)e

iαi(t) on
equation (15) and find the dynamic equations that the
modulus and the argument of xi(t) obey,

Ṙi = γ

N∑
j=1

AijRj cos (αj − αi), (17)

α̇i = γ

N∑
j=1

Aij
Rj

Ri
sin (αj − αi). (18)

IV. PARTICULAR CASE

In this case, if Rj/Ri → 1, then equation (18) becomes
equation (1) as long as Ri(t) never diverges, given that if
we compare the transformation realized of xi(t) with the
decomposition of θi(t) in the complex plane we observe
that

Ri(t) = e−iIm(θi(t)), (19)

αi(t) = Re (θi(t)) . (20)

Therefore, the argument of xi(t) corresponds to the real
part of the phase of the oscillator only if Ri(t) converges
to a finite value.
In this study, we consider a system of three identical

oscillators, i.e., all with the same natural frequency. Tak-
ing into consideration that the oscillators are uniformly
coupled, the corresponding adjacency matrix is

A =

0 1 1
1 0 1
1 1 0

 . (21)

Then, the Laplacian matrix with its corresponding
eigenvalues and eigenvectors is

L =

 2 −1 −1
−1 2 −1
−1 −1 2

 ;


λ1 = 0 ; v1 = (1, 1, 1)

λ2 = 3 ; v2 = (−1, 0, 1)

λ3 = 3 ; v3 = (−1, 1, 0)

(22)

(a) (b) (c)

FIG. 1: Dynamical evolution of three interacting identical oscilla-
tors with coupling constant K = 1 in a unit circle. Results from
the forth order Runge-Kutta method with a time step dt = 0.0001 s
and initial conditions θ0 = (π,−π/5, π/2). (a) Initial state. (b)
Intermediate state. (c) Final state.
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FIG. 2: Time evolution of the phases for
a system of three identical oscillators cou-
pled with K = 1. Results obtained by the
RK4 integration method with a time step
dt = 0.0001 and initial conditions θ0 =
(π,−π/5, π/2) rad.

FIG. 3: Evolution of the phases for three
identical oscillators coupled with K =
1 under the linearized equations of mo-
tion. RK4 with dt = 0.0001 and θ0 =
(π/10,−π/10, π/5) rad. An amplification of
the first steps is depicted in the insert.

FIG. 4: Evolution of the average of the
square phase difference for three identical os-
cillators following the linearized equations of
motion. It is adjusted an exponential fitting.
Notice that the y-axis is in logarithmic scale
while the x-axis in linear scale.

V. RESULTS AND DISCUSSION

In order to study the linear approaches, we first ob-
tain the original Kuramoto dynamics (showed in figures
1 and 2) via the numerical integration of equation (1)
using the forth order Runge-Kutta (RK4) method. From
this simulation we can observe that the phases arrive to
synchronization after some transient time as expected.
Another remarkable fact is that with the integration of
the linearized equations of motion (3) we are able to ap-
proximately reproduce the same behavior (see figure 3).
It should be noticed that, as a consequence of the approx-
imation taken, in order to guarantee the convergence of
the phases it is necessary to impose restrictions to the
initial conditions; indeed, we take initial values of the
phases next to zero. Furthermore, if we represent the
evolution of the average of the square difference (figure

4), calculated as 1
N

∑N
j>i(θj(t)− θi(t))

2, we observe that

decays as ∼ e−6t. Therefore, it coincides with what was
predicted by the theory (equation (6)) since in the case
of three oscillators the second smallest eigenvalue of the
Laplacian matrix is λ2 = 3.

FIG. 5: Time evolution of the phases for a system of three iden-
tical oscillators coupled with K = 1/3 (Ω = 1) under the linear
reformulated equations of motion. Simulation realized with time
step dt = 0.0001 s and initial conditions θ0 = (π,−π/5, π/2).

Meanwhile, for the linear reformulations of the Ku-

FIG. 6: Eevolution of the phases for a system of three identical
oscillators coupled with K = 1 under the complex-valued formula-
tion of the equations of motion. Simulation realized with time step
dt = 0.0001 and initial conditions θ0 = (π,−π/5, π/2) rad.

ramoto model (equation (1)) we obtain that the phases
evolve as showed in figures 5 and 6. In both cases, we also
observe the convergence of the phases. However, it can be
seen that synchronization is reached before in the context
of the complex-valued formulation than with the linear
reformulation. This can be understood by taking into
account that what sets the time scale to attain full syn-
chronization is the coupling strength; in fact, the smaller
the coupling constant is, the longer the time scale.

In an effort to do a further study of this linear models,
we solve the system of coupled equations composed by
equations (9)-(10) and equations (17)-(18), respectively
to obtain the dynamical evolution for the modulus of the
variable defined in each linear formulation. First, we an-
alyze figure 7 and observe that for large times all the
modulus of ψi(t) tend to the same value. Therefore, it
is satisfied the condition Rj/Ri → 1. Said otherwise, it
is true that equation (7) maps onto equation (1) once a
steady state is reached. So, consequently, the proposed
linear reformulation reproduces the original Kuramoto
dynamics as long as all Ri(t) go to a steady state. Nev-
ertheless, in the case of the complex-valued formulation
(figure 8), we observe that the modulus of xi(t) grows
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FIG. 7: Evolution of the modulus of ψi(t) for a system of three
identical oscillators coupled with K = 1/3. Results from the RK4
method with time step dt = 0.0001 and initial conditions R0 =
(1, 2, 1.25) and θ0 = (π,−π/5, π/2) rad.

FIG. 8: Time evolution of the modulus of ψi(t) for a system of
three identical oscillators coupled with K = 1. Results from the
RK4 method with time step dt = 0.0001 and initial conditions R0 =
(1, 2, 1.25) and θ0 = (π,−π/5, π/2) rad. An amplification of the first
time steps is depicted in the insert.

exponentially and, therefore, diverges. In other words,

since Ri(t) does not converge we can not guarantee that
the argument of xi(t) corresponds to the real part of the
phase of the oscillator.

VI. CONCLUSIONS

From the studied linear conversions of the Kuramoto
model, we have observed that a simple first approxima-
tion of the sinus coupling when the phase differences are
small is good enough to show the decay towards syn-
chronization. On the other hand, the proposed linear
reformulation although it is completely solvable, it is
only capable of reproducing the original dynamics when
steady state is reached, in general for large times. Fi-
nally, the complex-valued formulation should be further
studied with more detail. Even though at first seems
that presents the same dynamical behavior as the origi-
nal Kuramoto model, the necessary condition to establish
the relation between the proposed variable and the origi-
nal coordinates is not satisfied and, therefore, we can not
guarantee that the reproduction of the original dynam-
ics is completely correct. Notwithstanding all the above
mentioned, it should be bear in mind that linear approx-
imations to nonlinear dynamics is still of great advantage
since it permits a less complex analytical insight into the
Kuramoto model.
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