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Abstract: In this paper, we develop a method to classify the stars from the Gaia Early Data
Release 3 (Gaia EDR3) in order to distinguish the Large Magellanic Cloud stars from the Milky
Way stars. To do so, several machine learning algorithms have been adapted, tested and applied.

I. INTRODUCTION

The European Space Agency (ESA) Gaia [1] astromet-
ric mission is mapping the positions and motions of al-
most two billion stars in our galaxy and neighbouring
galaxies, producing the most detailed 3-D map of our
cosmos ever made. The data is being used to study
the structure, evolution, and characteristics of the Milky
Way (hereinafter MW), as well as other galaxies.

However, in order to do so, the application of analysis
methods adapted to the large data volume is required.
In this work, we start from the paper [2], in which the
Magellanic Clouds – the Large Magellanic Cloud (LMC)
and the Small Magellanic Cloud (SMC) – are studied.
The first step for the analysis of these objects is to char-
acterize which stars in this region of the sky are in fact
from the Magellanic Clouds and which are foreground
stars belonging to the Milky Way. This process in [2] is
done following a movement-based approach in the ortho-
graphic plane (proper motion analysis). This criterion,
however, is applied with the aim of removing only stars
clearly belonging to MW. It is therefore more focused
on completeness (do not lose LMC and SMC stars) than
on purity (have a minimum presence of MW stars in the
samples).

In this context, this work seeks to define an optimal
method of star classification, which allows us to select a
purer sample of LMC stars (we leave the study of the
SMC for future work) without losing many in doing so.
To this end, different classifiers based on Machine Learn-
ing are applied and tested, and the best performing al-
gorithm is identified.

For the application of these classifiers, a training
dataset representative of the problem is needed. In this
case, we have used the data provided by the Gaia Object
Generator simulator [3] (hereinafter GOG).

Once we have selected and trained a classification algo-
rithm, we apply it to our Gaia dataset [4] and we verify
the results by comparing them with previous indepen-
dent classifications made with other authors (StarHorse
[5], RR Lyrae [6], and Cepheids [7]).

II. DATASETS

LMC Base Sample

The base sample we will be working with is a 10º
circular selection of the EDR3 catalogue [4] centred at
(α, δ) = (81.28o,−69.78o) and with a limit G magnitude
of 20.5 obtained by querying the Gaia EDR3 archive us-
ing the following ADQL query.

SELECT ∗
FROM gaiaedr3 . g a i a s ou r c e as g
WHERE 1=CONTAINS(POINT( ’ ICRS ’ , g . ra , g . dec )
CIRCLE( ’ ICRS ’ , 81 . 28 , −69 .78 , 10 ) )
AND g . pa ra l l ax IS NOT NULL
AND g . phot g mean mag < 20 .5

The resulting sample contains 15.501.760 stars. It
slightly differs from the one used in [2] because the larger
selection radius of 20º used in that paper includes a part
of the SMC, and we are interested in avoiding it in order
to specifically study the LMC.

Simulation

To carry out the training process and comparison of
the different classifiers, we will use data provided by A.C.
Robin et al. 2012: Gaia Universe Model Snapshot [8].
The Gaia Simulator was developed to simulate the

huge amount of data provided by Gaia. This simulator
is organized around one tool box called GaiaSimu, which
contains a template universe, an instrumentation model,
numerical methods, astronomical tools, etc.
We will use a specialized component called Gaia Object

Generator (GOG) to generate realistic EDR3-like simu-
lations.
This is very useful to us, as GOG is specifically de-

signed to simulate catalogue data and provides objects
with position, kinematics, photometry, and spectrum, as
in the Gaia EDR3 (Early Data Release 3) archive.

StarHorse

As presented in [5], taking advantage of the improve-
ments in accuracy and number of objects, this paper re-
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fines the StarHorse code previously used by StarHorse
Gaia DR2 [9].

This code uses the Gaia observables and seeks to ob-
tain additional parameters of the EDR3 stars such as the
distance d, the age τ , the effective temperature Teff , the
metallicity [M/H], the AV extinctions (at λ = 542nm)
and the surface gravity log g from isochronal fitting. We
will use this catalogue to verify our classification results,
we will use the StarHorse distances to define an LMC vs
MW separation based on a cut-off distance. To determine
this threshold distance, we use the distance histogram
to define a value that correctly separates two the MW
from the LMC based on its spatial distribution (Fig.1).
We can see an approximately Gaussian form centred on
50kpc corresponding to LMC and a decreasing exponen-
tial distribution identified as the MW. The chosen thresh-
old distance is 25kpc.

FIG. 1: Star distance distribution of StarHorse dataset in
LMC sky section. In blue, stars treated as MW and in orange
those treated as LMC according to the threshold distance.

RR Lyrae and Cepheids

Two additional catalogues will be used to verify the
classification results, one containing RR Lyrae stars and
the other containing Cepheids. Taking advantage of the
physical properties of these variables (the existence of
period-luminosity relations, described below), the au-
thors can accurately and independently determine stellar
distances, and thus build samples that only contain LMC
objects. Therefore, we can use these samples as “pure
LMC samples” for our verification.

Cepheids stars are variable stars that change in bright-
ness periodically, a fact that we observe as changes in
their luminosity. The period of change of a Cepheid star
is related to its luminosity; with this relationship, the ab-
solute magnitude of these stars can be obtained. By mea-
suring their apparent magnitude, the distance at which
it is located can be calculated from the relation between

magnitudes. We can compute the distance by applying
the following formula: Eq. 1.

d = 10
m−M+5+Ao

5 (pc) (1)

Where M is the absolute magnitude, Ao is the inter-
estellar absorption, m the apparent magnitude and d is
the distance in parsecs.
RR Lyrae variable stars are also undergoing changes

in their radius, and are stars of spectral type between
A and F. They are abundant in the spherical region of
galaxies and in globular clusters.
These stars are located on the horizontal branch of the

HR diagram and have all a similar absolute magnitude,
close to 0.50 (also defined by a period-luminosity rela-
tion). In the same way that with the Cepheids, known
the absolute magnitude and by measuring the apparent
magnitude the distance can also be calculated with the
Eq.1.
Proceeding in the same way as with StarHorse data,

these Cepheid and RR-Lyrae datasets contain only stars
that belong to LMC. That allows us checking if the clas-
sifier has characterized them correctly.

III. CLASSIFIERS

Parameters Selection

In order to differentiate between the stars belonging
to the MW and those belonging to the LMC, a set of
parameters must be selected that can be used for the
classification. Based on the available EDR3 data, we
have chosen the orthographic projection both in position
and velocity (x, y, µx, µy) – calculated from the celestial
coordinates (α, δ) and proper motions using Eq.(2) and
(3) —, parallax π, magnitudeG and colour (GBP−GRP ).

x = cos(δ) · sin(α− αc)

y = sin(δ) · cos(δc)− cos(δ) · sin(δc) · cos(α− αc)
(2)

µx = µα · cos(α− αc)− µδ · sin(δ) · sin(α− αc)

µy = µα · sin(δc) · sin(α− αc) +

+ µδ · (cos(δ) · cos(δc) +

+ sin(δ) · sin(δc) · cos(α− αc))

(3)

With αc = 81.28o, δc = −69.78o as the LMC’s centre
coordinates.

Random Forest

Random Forest (RF) is a supervised Machine Learn-
ing algorithm that is used in classification and regression
problems. It consists of a set of decision trees; each tree
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is trained with one of the subsets of the training data.
The classifier is formed by combining the results of these
trained decision trees, which are then weighted in a way
that minimizes error, this technique is called Bagging.
In our case, the criterion that determines the result is
Majority Voting.
We use the Scikit-learn library [10] to build our

model. The parameters of the algorithm selected are:
n estimators = 100, max depth = 2 and random state =
0. The other parameters are set to the default.
In order to determine how good the classifiers work

on the simulation, we will use a metric called Confusion
Matrix. The results are compared one on one with the in-
put (simulated) data; as in the simulation we know which
stars are MW or LMC, the amount of correctly or incor-
rectly predicted results of each class can be measured.
These results are presented in a matrix, the Confusion
Matrix. The Confusion Matrix for the results obtained
with Random Forest on the GOG simulation is shown in
Fig.2.

FIG. 2: Confusion Matrix for RF classification applied to
GOG data.

K-Nearest Neighbors

The K-nearest Neighbors (KNN) is an instance-based
machine learning algorithm. It follows a supervised
learning model, in which the input is a sample that rep-
resents a percentage of the data to be studied and which
it is used to later classify the data we pass on to it. The
classifier works in three stages. [11]

First, it reads the training dataset and then, stores the
D parameters and class of each element, which it places
in a D-dimensional space. With this step, the trained
classifier is created.

Next, a new dataset will be introduced with the ob-
jects that one wants to classify. The classifier will place
each element in a D-dimensional space and identify its k
nearest neighbors among the training points.

Finally, it uses the types of these k neighbors that it has
identified to determine the type of each element, using

a voting scheme based on majority rule. All neighbors
could have uniform weight or could have weights inversely
proportional to their distance to the element one wants
to identify.
One of the features to keep in mind for this classifier is

that it requires a calculation of the distance between all
points in D-dimensional space. This calculation scales as
O[DN2], so it is inefficient for large datasets.
The confusion matrix of the results obtained with KNN

classifier on the GOG simulation is shown on Fig.3.

FIG. 3: Confusion Matrix for KNN classification applied to
GOG data.

Neural Network

ANeural Network (NN) is a type of supervised learning
algorithm that builds a nonlinear function from a set of
training data that determines from the parameters what
is the type of an element we want to characterize.
The structure of the neural network is made up of a

number of neurons arranged in layers. The first layer
(called input layer) contains D neurons that represent
the input parameters and are connected to each one of
the neurons in the next layer. The layers between the
input layer and the output layer are called hidden lay-
ers, the value of each neuron in these layers is a linear
combination of the values of the neurons in the previous
layer.
With this configuration, however, only linear adjust-

ments could be made. Therefore, the result of each
neuron goes through an activation function, which al-
lows it to make nonlinear adjustments. The activation
function used is the default one: the function ’relu’,
f(x) = max(0, x). This function is the usual recom-
mendation for classification problems. The value of each
neuron ai in the first hidden layer will have the value:

ai = f

 D∑
j

ωijxj + bi

 (4)
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This recurrence formula is used in every layer of the
neural network. The coefficients ωij and bi are those
that are adjusted during the training phase of the model
based on the selected data.[12]

The structure of the hidden layer used is (6,3,2), where
the numbers represent the number of neurons in each
layer. This configuration has been chosen after some dif-
ferent tries and keeping the one with better results and
gives a confusion matrix on the GOG simulation that is
shown on Fig. 4.

FIG. 4: Confusion Matrix for NN classification applied to
GOG data.

IV. RESULTS ON GAIA’S DATASET

Using the algorithms trained with the simulation data,
we classify the stars of the Gaia dataset in the selected
region, obtaining for each star a probability of being MW
and a (complementary) probability of being LMC; as we
focus on LMC, we keep only the probabilities of being
LMC. A cut-off probability must be chosen to complete
the classification. The higher the cut-off probability, the
higher the purity of LMC, but at the same time, the lower
the completeness. After studying different values and as
we are more interested in purity, a cut-off probability
P = 0.5 has been chosen. It is also the optimal cut-
off value based on the Receiver Operating Characteristic
curve (ROC curve), a graph showing the performance of
a classification model at all classification thresholds.

The results obtained with the NN classifier are shown
in receiver operating characteristic Fig.5, the ones ob-
tained with KNN are shown in Fig.6 and the results of
the RF in the figure Fig.7.

V. COMPARISON OF RESULTS

In order to verify the results obtained with the clas-
sifier, we have compared them with the catalogues de-
scribed in Section II, doing a crossmatch and evaluating

FIG. 5: Density map of LMC (right) and MW (left), clas-
sification made with NN. Obtained 8075976 LMC stars and
7425784 MW stars.

FIG. 6: Density map of LMC (right) and MW (left), classi-
fication made with KNN. Obtained 9131253 LMC stars and
6370507 MW stars

FIG. 7: Density map of LMC (right) and MW (left), clas-
sification made with RF. Obtained 8849906 LMC stars and
6651854 MW stars

the resulting completeness, purity, and accuracy. The
first thing that is needed is the number of coincidences:
for a given number of stars predicted as LMC, the amount
of them that are characterized as LMC in the SH, RR
Lyrae and Cepheids catalogues. These are considered as
True LMC. The ones predicted as MW by the classifier
but characterized as LMC in SH, RR Lyrae and Cepheids
are the False MW.

As SH also give us a dataset characterized as MW, it
can be used to calculate the coincidences in these results:
True MW are the predicted as MW in the classifier and
in SH, False LMC are the stars classified as LMC, but
are MW in the SH dataset.

Doing the previous calculations, the results obtained
for each classifier are:
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RF T LMC F LMC T MW F MW

RR Lyrae 14987 - - 6332

Cepheids 4081 - - 184

StarHorse 535008 338727 601768 80073

TABLE I: Crossmatch of the RF results with catalogues to
obtain coincidences as True LMC, False LMC, True MW and
False MW.

KNN T LMC F LMC T MW F MW

RR Lyrae 15646 - - 5673

Cepheids 4025 - - 240

StarHorse 494440 329568 610927 120641

TABLE II: Crossmatch of the KNN results with catalogues
to obtain coincidences as True LMC, False LMC, True MW
and False MW.

NN T LMC F LMC T MW F MW

RR Lyrae 15373 - - 5946

Cepheids 4097 - - 168

StarHorse 443606 325035 615460 171475

TABLE III: Crossmatch of the NN results with catalogues to
obtain coincidences as True LMC, False LMC, True MW and
False MW.

VI. CONCLUSIONS

After analysing the results, the Random Forest classi-
fier has been discarded, as it gives clearly worse results
than the other two. The comparative of the other two
classifiers is more even. Since the two gives good results,
we have carried out a more detailed analysis.

First, our main goal is to have a classifier that identifies
the stars that are LMC with the minimum error possi-
ble. The data we want to identify is from Gaia EDR3,
therefore, that classifier has to work well on that dataset
even if it has been trained on GOG simulation data. It is
a key point to take into account, since KNN adapts itself
so much to the training dataset that it filters parameters
(such as coordinates) too strictly, giving results with un-
desired characteristics. This can be seen in the figure 6,
where the rectangular form of the LMC training dataset
clearly shows up in the results with the EDR3.

On the other hand, even though it has been trained
by the same training dataset, the neural network seems
to be better suited to extrapolation on the Gaia data,
giving results free of these particularities. This shows
that NN is a more adaptive option and less (although
not negligibly) dependent on the shape of the training
data.

Also, something to keep in mind is the ease of use.
While NN has a relatively long training time and an al-
most instantaneous prediction time, the KNN classifier
has a very fast training time but a significantly long pre-
diction time (48 min). This means that while the NN
can be trained once, stored, and then be applied as many
times as wanted, KNN needs a large amount of time for
every application. This also makes NN a more suitable
option. Therefore, we finally discard the KNN classi-
fier and retain the NN classifier as our choice for the
MW/LMC separation.

The next step to follow to improve the results would
be to train the classifier with some LMC training data
with a cut-off shape of the coordinates equal to that of
MW, since it has turned out to strongly influence the
characterization of the stars.

Finally, as of the delivery date of this TFG (June 16,
2022), Gaia DR3 data was published 2 days ago, it would
be of great interest to investigate the operation of the
classifier on the new data.

The selected classifier: the Neural Network is being
used by my advisors in the writing of a new paper for
the kinematic analysis of the LMC using EDR3. The
MW/LMC separation provided by this classifier is essen-
tial for the study being carried out. In that paper, other
configurations, cut-off probabilities and more sophisti-
cated interpretations of the results are being developed.
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