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A B S T R A C T   

Ion mobility spectrometry (IMS) has proved its huge potential in many research areas, especially when hy-
phenated with chromatographic techniques or mass spectrometry (MS). However, focusing on food analysis, and 
particularly in classification and authentication issues, very few applications have been reported. In this study, 
differential mobility spectrometry coupled to mass spectrometry (DMS–MS) is presented for the first time as an 
alternative and high-throughput technique for food classification and authentication purposes using a finger-
printing strategy. As a study case, 70 Spanish paprika samples (from La Vera, Murcia, and Mallorca) were 
analyzed by DMS–MS to address their classification —using partial least squares regression-discriminant analysis 
(PLS-DA)— and authentication —through soft independent modeling of class analogy (SIMCA). As a result, after 
external validation, complete sample classification according to their geographical origin and excellent La Vera 
and Mallorca sample authentication were reached.   

1. Introduction 

In the early 20th century, the first studies using ion mobility spec-
trometry (IMS) were conducted. However, it was not until the 1970s that 
Cohen and Karasek introduced it as an analytical tool (Cohen & Karasek, 
1970; Karasek, 1974). Since then, and especially in the last two decades, 
this platform has attracted the interest of scientists as a powerful sepa-
ration technique, owing to its capacity of separating strongly related 
compounds. In IMS, ions are separated in the gas phase based on their 
mobility, which depends on their charge, size, and shape (D’Atri et al., 
2018; Dodds & Baker, 2019; Eiceman, Karpas, & Hill, 2013; Gabelica & 
Marklund, 2018; Kirk, 2019). However, the specific separation mecha-
nism differs among the different platforms (manufacturer), being 
possible to establish three different categories. (i) Time-dispersive 
techniques, which encompass drift-time ion mobility spectrometry 
(DTIMS) and traveling wave ion mobility spectrometry (TWIMS), 
separate ions based on the time they require to go through the same 
pathway. (ii) Space-dispersive techniques, such as field asymmetric 
waveform ion mobility spectrometry (FAIMS), differential mobility 
spectrometry (DMS), and differential mobility analysis (DMA), rely on 

the different trajectories that ions describe based on their mobility. (iii) 
In ion-trapping with selective release techniques, such as trapped ion 
mobility spectrometry (TIMS), the ions are trapped in a pressurized re-
gion and are selectively ejected based on their mobilities (D’Atri et al., 
2018). 

In the last years, the interest in the hyphenation of IMS with other 
techniques has spectacularly grown. In this line, ion mobility spec-
trometry coupled to mass spectrometry (IMS–MS) combines the sepa-
ration capacity based on the mobility of ions with the structural 
information provided by mass spectrometry. Beyond that, the addition 
of a third separation dimension, such as liquid chromatography (LC), 
opens excellent possibilities for analyzing complex samples. Indeed, 
IMS, as a standalone technique as well as coupled to LC and MS, has been 
extensively used in a wide range of research areas, from biomedical or 
pharmaceutical applications to environmental and security fields 
(Armenta, Esteve-Turrillas, & Alcalà, 2020; Cossoul et al., 2015; 
Hernández-Mesa, Escourrou, Monteau, Le Bizec, & Dervilly-Pinel, 2017; 
Odenkirk & Baker, 2084; To, Ben-Jaber, & Parkin, 2020). 

In food analysis, where chromatographic techniques (often hy-
phenated to MS) are still the gold standard for determining a wide range 
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of compounds, from natural components to additives or contaminants, 
IMS begins to be seen as an alternative. Although it can be used as a 
standalone technique, its combination with LC, gas chromatography 
(GC), or MS is usually preferred (Alikord, Mohammadi, Kamankesh, & 
Shariatifar, 2021; Domínguez, Frenich, & Romero-González, 2020; 
Hernández-Mesa et al., 2019). Until now, IMS has been mainly focused 
on the determination of specific compounds (targeted analysis) (Rue, 
Glinski, Glinski, & van Breemen, 2020; Wang, Harrington, Chang, Wu, & 
Chen, 2020; Will, Behrens, Macke, Quarles, & Karst, 2021), and fewer 
applications have been reported following a fingerprinting approach 
(non-targeted analysis) (Burnum-Johnson et al., 2019; Freire et al., 
2021; Paglia, Smith, & Astarita, 2021). In this regard, the -omics strat-
egy has been used basically for authentication and food integrity 
assessment, being DTIMS the preferred mode of IMS (Martín-Gómez & 
Arce, 2021). However, other separation mechanisms, such as space- 
dispersive methods, can also be exploited for fingerprinting analysis 
(Piñero et al., 2020). 

DMS separates the ions based on their differential mobility under the 
influence of a high asymmetric radiofrequency. Under these conditions, 
only those ions with the proper mobility can describe the correct tra-
jectory to traverse the DMS cell while interferences are deviated into the 
cell walls. A compensation voltage (CoV) is then applied to correct the 
trajectory of the ions letting only target ions enter the mass spectrom-
eter. The main application of this technique deals with improving the 
method sensitivity by reducing background noise and removing isobaric 
interferences (Bravo-Veyrat & Hopfgartner, 2018; Dempsey, Moeller, & 
Poklis, 2018; Su et al., 2021). However, to our knowledge, DMS, or more 
specifically differential mobility spectrometry coupled to mass spec-
trometry (DMS–MS), has not been previously used for non-targeted 
analysis in food research. The good reproducibility, speed, and high 
separation capacity of this technique offer an attractive alternative not 
only to those well-established chromatographic methods but also to 
direct MS techniques, such as flow injection analysis coupled to high- 
resolution mass spectrometry (FIA–HRMS) or ambient mass spectrom-
etry (AMS) (Campmajó, Saurina, & Núñez, 2021; Ibáñez, Simó, García- 
Cañas, Acunha, & Cifuentes, 2015). 

This manuscript aimed at evaluating the applicability of direct 
infusion DMS–MS fingerprinting for food classification and authentica-
tion purposes, using Spanish paprika samples as a case study. In this 
regard, paprika is a red powdered spice, obtained from red pepper fruits 
of the genus Capsicum (Solanaceae family), widely used because of its 
characteristic organoleptic properties. Currently, only three paprika 
products are registered in Spain with the protected designation of origin 
(PDO) status: Pimentón de La Vera, Pimentón de Murcia, and Pebre bord de 
Mallorca. Although it ensures high-quality products, it also leads to 
higher prices, making them vulnerable to food fraud practices. To date, 
several fingerprinting methods based on LC, with spectroscopic detec-
tion or coupled to HRMS, have been developed to address paprika 
classification (Barbosa, Saurina, Puignou, & Núñez, 2020; Campmajó, 
Rodríguez-Javier, Saurina, & Núñez, 2021). In this study, the DMS–MS 
fingerprints of 70 paprika samples from La Vera, Murcia, and Mallorca 
PDOs, were used for the first time to classify and authenticate them 
through partial least squares regression-discriminant analysis (PLS-DA) 
and soft independent modeling of class analogy (SIMCA), respectively. 

2. Materials and methods 

2.1. Reagents and solutions 

Regarding the sample treatment, water was purified using an Elix® 3 
coupled to a Milli-Q® system (Millipore Corporation, Bedford, MA, USA) 
and filtered through a 0.22-µm nylon membrane, while UHPLC- 
supergradient acetonitrile was purchased from Panreac (Castellar del 
Vallès, Spain). For DMS optimization, technical grade acetone and 
UHPLC-supergradient acetonitrile and methanol obtained from Panreac 
and 2-propanol obtained from Merck (Darmstadt, Germany) were used. 

Phenolic compounds used in the DMS optimization were purchased from 
different suppliers: quercetin dihydrate from Riedel-de-Haën (Seelze, 
Germany); chlorogenic acid from HWI Analytik GMBH (Ruelzheim, 
Germany); gallic, homogentisic, and ferulic acids, and vanillin from 
Fluka (Steinheim, Germany); and D-(− )-quinic, caffeic, homovanillic, p- 
coumaric, sinapic, and betulinic acids, syringaldehyde, protocatechuic 
aldehyde, and rutin from Merck. 

2.2. Instrumentation 

A 5500 Qtrap (AB Sciex, Framingham, MA, USA) mass spectrometer 
with an electrospray ion source (ESI) and the SelexION differential 
mobility separation device (DMS, AB Sciex, Framingham, MA, USA), 
installed between the ionization source and the vacuum interface, was 
used for the analysis of samples. Paprika extracts were directly intro-
duced for 1.6 min by infusion to the ionizations source at a rate of 5 
µL⋅min− 1 using the integrated syringe pump. 

Regarding DMS conditions, the temperature was fixed at 225 ◦C 
(medium), the separation voltage (SV) and DMS offset (DMO) were set at 
2500 V and 3 V, respectively, and the high DMS resolution enhancement 
option was selected. Under these conditions, a CoV ramp (from − 10 to 7 
V) was performed. MS detection in negative full-scan MS mode (Enhance 
MS, EMS) was used from 100 to 650 m/z at a scan rate of 1000 Da⋅s− 1. 
Nitrogen, used as nebulizer and auxiliary gas, was set at 20, 15, and 
0 arbitrary units for the curtain gas, the ion source gas 1, and the ion 
source gas 2, respectively. Besides, the ion spray voltage (IS) was set at 
− 4500 V without heating the ion source, and the declustering potential 
(DP) and the entrance potential (EP) were fixed at − 100 V and − 10 V, 
respectively. Analyst software (version 1.6.2) from AB Sciex was used 
for instrument control and data acquisition. 

2.3. Samples, sample treatment, and sample analysis 

In this study, 70 paprika samples belonging to the three Spanish 
regions with the PDO label were analyzed. In this line, 30 La Vera 
samples (10 of each paprika type: hot, sweet, and bittersweet) were 
directly purchased from paprika production companies, and 20 Murcia 
and 20 Mallorca samples (containing half hot and half sweet types, each 
one) were bought in Spanish commercial markets. 

Samples were subjected to an ultrasound-assisted solid–liquid 
extraction (USLE) method, previously described by Cetó et al. (2018), 
using water:acetonitrile (20:80, v/v) as extracting solvent. 

Samples were randomly analyzed to reduce the impact of any po-
tential instrumental drift on the chemometric results. Moreover, a 
quality control (QC) sample, prepared by mixing 50 µL of each paprika 
sample extract, was also analyzed (at the beginning and every ten 
samples) to check for systematic errors along the analysis. 

2.4. Data analysis 

2.4.1. Data matrix construction 
Raw data were converted to mzXML format using the MSConvertGUI 

software (Chambers et al., 2012). Then, aiming at constructing a data 
matrix containing DMS–MS fingerprints, data were processed using the 
mzMine 2.53 software (Pluskal, Castillo, Villar-Briones, & Orešič, 2010). 
Firstly, nominal mass detection centroided each mass spectrum acquired 
for a sample, through the “Wavelet transform” algorithm (establishing a 
noise level of 2.0 × 104, a scale level of 3, and a wavelet window size of 
30%), particularly suitable for noisy low-resolution mass spectrometry 
(LRMS) data. Secondly, using the option of chromatogram builder, 
nominal mass signals found in at least 5 contiguous scans for a sample 
were connected, with a group intensity threshold of 3.0 × 104, a mini-
mum highest intensity of 7.0 × 104, and an m/z tolerance of 800 ppm. 
Thirdly, each ionogram was then deconvoluted into individual peaks, 
using the “Baseline cut-off” algorithm that recognized peaks with a CoV 
duration range between 0.4 and 2.0 V and fulfilling the peak intensity 
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conditions established in the previous step. Fourthly, isotopes were 
removed, considering the most intense isotope as the most representa-
tive and setting an m/z tolerance of 800 ppm. Finally, the random 
sample consensus (RANSAC) aligner matched m/z signals detected 
across samples, establishing a mass tolerance of 1000 ppm, peak CoV 
tolerances of 1.5 and 0.5 V (before and after correction, respectively), 
and a minimum number of points of 80%. In the end, an X-data matrix 
containing DMS–MS fingerprints (ion peak area matrix in which each 
row corresponds to a sample (78 samples) and each column corresponds 
to a variable (203), being a variable a specific ion (specific m/z) 
migrating at a specific CoV) of the studied samples was obtained 
(Table S1). 

2.4.2. Chemometric analysis 
Principal component analysis (PCA), PLS-DA, and SIMCA were car-

ried out using Solo 8.6 chemometrics software from Eigenvector 
Research (Manson, WA, USA). Details of the theoretical background of 
these chemometric methods are given elsewhere (Massart et al., 1997; 
Wold, 1976). In this paper, we will only make a brief description of the 
most relevant aspects related to our study. 

Independently of the chemometric method employed, an X-data 
matrix was required, consisting of DMS–MS fingerprints. Moreover, data 
were autoscaled before the chemometric analysis to suppress differences 
in each variable’s magnitude and amplitude scales. For such a purpose, 
data were mean-centered and subsequently divided by the standard 
deviation of the corresponding variable according to the following 
expression: 

xiautoscaled =
xi − x

s  

where xi autoscaled is the value for variable i after autoscaling, xi is the 
original value for variable i, and X and s are the mean value and standard 
deviation, respectively. 

A preliminary exploration of DMS-MS fingerprints by PCA assessed 
the behavior of samples and variables. PCA concentrates the relevant 
information of the X-matrix, contained in a large number of experi-
mental variables, into a reduced number of mathematical variables 
called principal components (PCs). PCA relies on decomposing the 
experimental data matrix into two smaller submatrices of scores (T, with 
coordinates of the samples) and loadings (PT, with the eigenvectors or 
coordinates of the variables). As a result, the scatter plot of scores on PC 
space depicts the sample layout which may reveal similarities and dif-
ferences among sample characteristics such as origins and varieties. The 
loadings’ plots may figure out the most descriptive variables and their 
correlations. 

The supervised sample classification (according to geographical 
origin and type) was studied through PLS-DA and evaluated after 
external validation through sensitivity, specificity, and accuracy. The 
experimental X-matrix is correlated with the class matrix that encodes 
the sample membership to its class. The classification model is estab-
lished to obtain the minimum error in the sample assignation to the 
corresponding classes. Here, the optimal number of latent variables 
(LVs) used in each PLS-DA model was established at the first significant 
minimum point of cross-validation (CV) error using the Venetian blinds 
method. Subsequently, the classification performance was assessed by 
external validation using independent test samples. 

SIMCA was proposed for paprika sample authentication. SIMCA re-
lies on a PCA model constructed using only samples belonging to a given 
class. Hence, a PCA model is obtained, for instance, with la Vera, Murcia, 
or Mallorca samples. Reduced Q residuals and Hotelling T2 values, 
normalized to a 95% confidence limit, were used to calculate the dis-
tance between a new projected sample and the established PCA sub-
model. The number of PCs used in the PCA submodel, as well as the 
decision threshold, were optimized in each SIMCA model by maximizing 
the calibration step performance. Then, both the distance and the 

decision threshold assessed the sample class membership. Moreover, 
considering that SIMCA calibration models were built with less than 20 
samples, the leave-one-out method was proposed for CV. Finally, as with 
PLS-DA, SIMCA models’ performance was assessed by external 
validation. 

3. Results and discussion 

3.1. Selection of the DMS–MS conditions 

A mixture of 15 phenolic compounds (namely chlorogenic, gallic, 
homogentisic, ferulic, D-(− )-quinic, caffeic, homovanillic, p-coumaric, 
sinapic, and betulinic acids, vanillin, quercetin, syringaldehyde, proto-
catechuic aldehyde, and rutin), previously identified as possible key 
components for the classification of paprika samples (Barbosa, 
Campmajó, Saurina, Puignou, & Núñez, 2020), was used to set DMS–MS 
conditions. As commented before, this work was not focused on opti-
mizing the polyphenol separation but on the untargeted analysis of 
paprika samples to obtain characteristic sample fingerprints to 
discriminate samples according to geographical origin and type. 

With this in mind, the polyphenol standard solution (10 mg⋅L-1 each 
compound) was introduced by infusion to the mass spectrometer 
through the SelexION differential mobility separation device to establish 
the DMS–MS parameters. Then, a negative full-scan using Q3 in ion trap 
mode (EMS) was recorded from 100 to 650 m/z. Total ion intensity was 
monitored to evaluate MS parameters such as DP and IS, obtaining the 
maximum signal intensity at − 100 V and − 4500 V, respectively. 
Following the same criterion, DMS temperature was fixed at 225 ◦C 
(medium). 

The separation of the polyphenols included in the standard mixture 
was studied to choose the most appropriate SV. Hence, a ramp of the 
CoV was performed at different SV (from 1000 V to 4000 V, in steps of 
500 V). As a result, the higher the SV, the higher degree of separation 
was observed. However, the signal intensity was strongly affected 
(Fig. S1), and therefore, as a compromise, an SV of 2500 V was selected 
to analyze paprika samples. 

Additionally, several gas modifiers —namely methanol, acetonitrile, 
2-propanol, and acetone— were evaluated. Volatile reagents introduced 
into the gas flow may interact differently with the ions to form clusters, 
thus modifying their mobility and affecting both separation and signal 
intensity. Hence, the effect of each modifier on the DMS separation of 
the selected polyphenols was studied at low (1.5%) and high (3.0%) 
modifier concentrations. However, no significant improvement was 
observed in any case. Therefore, and considering that this study aimed to 
use a simple method to generate discriminating sample DMS–MS fin-
gerprints, the addition of a gas modifier was discarded. 

Fig. 1 shows representative DMS–MS fingerprints for a hot La Vera, 
Murcia, and Mallorca PDO paprika sample. Several qualitative differ-
ences in the ionograms regarding compounds detected and their peak 
intensity can be observed. In this context, Mallorca paprika samples 
presented the most distinctive DMS–MS fingerprints. However, 
remarkable dissimilarities were encountered among La Vera and Murcia 
samples. Therefore, the DMS–MS fingerprints were proposed as chemi-
cal descriptors for further multivariate chemometric analysis. 

3.2. Non-supervised and supervised chemometric analysis 

After the visual inspection of the DMS–MS raw data, a 78 × 203 
(samples × variables) data matrix was constructed following the pro-
cedure described in Section 2.4.1. Then, PCA was used for an explor-
atory assessment of the behavior of samples and QCs. Fig. S2 presents 
the PCA scatter plot of scores on the PC2-PC1 (describing 28.06% of the 
variance), where QC samples were in a compact cluster, discarding the 
presence of a systematic error (e.g., a shift in the analytical system) and, 
thus validating the subsequent chemometric results. Mallorca paprika 
samples were located on the top of the plot, displaying positive PC2 
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values, while La Vera and Murcia ones appeared jointly (Fig. S2A). 
Moreover, the PCA score plot noticed no sample distribution according 
to paprika type (Fig. S2B). 

Once demonstrated the good performance of the analysis, QC sam-
ples were removed from the DMS–MS data matrix for the supervised 
chemometric classification carried out through PLS-DA, resulting in a 
dimension of 70 × 203 (samples × variables). Firstly, sample classifi-
cation according to the geographical origin (La Vera, Murcia, and 

Mallorca) was studied. In this context, a PLS-DA model built with two 
LVs (explaining a Y-variance of 58.51%) allowed an apparent distinction 
between the three Spanish regions under study, thus improving the non- 
supervised chemometric results given above. Hence, in the obtained 
scores plot of LV1 vs. LV2, LV2 values allowed the isolation of Murcia 
samples, located at the bottom of the diagram, while the separation of La 
Vera and Mallorca samples (placed on the top of the diagram, displaying 
positive LV2 values) was mainly attributed to LV1 values (Fig. 2A). 

Fig. 1. DMS–MS fingerprints obtained for a hot La Vera, Murcia, and Mallorca PDO paprika sample at SV 2500  V, and MS full-scan spectra at CoV 3.58 V.  

Fig. 2. PLS-DA scores plot of LV1 vs. LV2 obtained for the analyzed paprika samples according to their geographical origin, using DMS–MS fingerprints (A) and 
individual La Vera (B), Murcia (C), and Mallorca (D) PLS-DA models to classify samples according to their type. 
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External validation was carried out to evaluate the ability of the PLS-DA 
model established to classify paprika samples from the three Spanish 
regions distinguished with the PDO label. Thus, 60% of samples were 
randomly stratified and used as the calibration set, while the remaining 
40% were used as the external validation set. As a result, a classification 
rate of 100% was achieved, being [12, 0, 0; 0, 8, 0; 0, 0, 8] the confusion 
matrix for the established PLS-DA model. Please note that rows in the 
confusion matrix correspond to La Vera, Murcia, and Mallorca classes, 
respectively, and columns are given in this same order. Hence, the 12 La 
Vera, the 8 Murcia, and the 8 Mallorca samples were correctly classified 
into their respective classes. 

Additionally, sample classification regarding paprika’s type (hot, 
bittersweet, or sweet) was also evaluated by PLS-DA. In this line, Fig. S3 
contains the plot of scores of LV1 vs. LV2 obtained after assigning each 
sample to its class, considering both geographical origin and type. As can 
be seen, although Murcia and Mallorca paprika samples seemed to follow 
a trend related to the sample type (La Vera samples appeared jointly in 
the plot), the similarities due to the geographical origin prevailed. 
Therefore, to better analyze sample grouping depending on the product 
type, individual PLS-DA models were built for each region under study. 
As a result, as shown in Fig. 2B, DMS–MS fingerprints allowed La Vera 
samples separation according to their type. To our knowledge, this 
separation has only been previously achieved using an untargeted ultra- 
high-performance liquid chromatography coupled to high-resolution 
mass spectrometry (UHPLC–HRMS) method (Barbosa et al., 2020). 
However, the UHPLC-HRMS method required more expensive and 
complex instrumentation than the method proposed here. In addition, 
30 min were needed for analyzing each sample, while only 1.6 min were 
required using the DMS-MS method. Both PLS-DA scatter plots of scores 
of Murcia (Fig. 2C) and Mallorca (Fig. 2D) samples also discriminate 
between their hot and sweet type. However, in this case, no external 
validation could be performed because of the scarcity of samples for 
each class. 

Finally, considering the excellent classificatory results obtained with 
PLS-DA, SIMCA was proposed as a one-class modeling chemometric 
technique to assess the authenticity of the Spanish paprika samples ac-
cording to their geographical origin based on DMS–MS fingerprints. 
Again, as in the PLS-DA study, DMS–MS data was split into the cali-
bration set (42 × 203, samples × variables) and the validation set (28 ×
203, samples × variables). Table 1 shows the number of PCs and the 
decision threshold selected in each SIMCA model, as well as the 
authentication performance in terms of sensitivity, specificity, and ac-
curacy after the external validation. The developed La Vera and Mallorca 
SIMCA models provided good accuracy results, although specificity and 
sensitivity were more limited. Instead, assignation results were poorer 
with the Murcia SIMCA model. 

A variable selection strategy was applied to improve these results, 
given that the first PCs of the SIMCA model do not necessarily contain 
discriminant information. Thus, a new data matrix was constructed, 
containing only the 10 variables with the highest selectivity ratio among 
the 20 ones with the highest variable importance in projection (VIP) 
values obtained for each paprika geographical origin class in the pre-
vious PLS-DA model. As a result, considering that some variables were 

simultaneously relevant for two of the studied classes, 42 × 25 (samples 
× variables) and 28 × 25 (samples × variables) calibration and external 
validation data matrices were built, respectively. As observed in Table 1, 
the applied variable selection strategy remarkably improved the assig-
nation accuracy of the SIMCA models in all the cases. In this context, 
excellent results were obtained for La Vera (assignation rate of 92.9%) 
and Mallorca (assignation rate of 100.0%) authentication because of an 
enhancement in the specificity and sensitivity results, respectively, 
when using the reduced data matrix. Instead, although better assigna-
tion performance was achieved in the Murcia SIMCA model due to good 
specificity values, poor sensitivity values were obtained. 

4. Conclusions 

As commented before, LC or GC, often coupled to MS, is the preferred 
separation technique when dealing with classification or authentication 
in food analysis. The separation capacity of IMS to separate closely 
related compounds is well-known; however, not much research has been 
done using this technique for dealing with food classification or 
authentication issues. In fact, from our point of view, considering the 
separation potential of this technique, there is still a long way to go. 
Separations by IMS, and more specifically by DMS, offer faster and 
greener alternatives to the widely used LC counterpart. With this in 
mind, the applicability of DMS–MS was evaluated in this manuscript. It 
is worth highlighting the short analysis time required for sample anal-
ysis (1.6 min per sample). From the results obtained, we conclude that 
this technique was satisfactorily applied for the first time to a food 
classification and authentication issue through a fingerprinting 
approach combined with chemometrics. With such a purpose, 70 
paprika samples from the three Spanish regions distinguished with the 
PDO label (La Vera, Murcia, and Mallorca) were used as a case study. 
Sample classification according to geographical origin and type was 
achieved by subjecting DMS–MS fingerprints to PLS-DA. In this context, 
in the first case, a classification accuracy of 100% was reached after 
external validation. Moreover, SIMCA results proved the ability of 
DMS–MS fingerprinting to authenticate La Vera and Mallorca paprika 
samples, especially after applying a previous variable selection strategy. 
Therefore, with this study, DMS–MS has been demonstrated to be a 
reliable high-throughput alternative to other currently applied 
techniques. 
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Table 1 
Calibration model parameters —number of PCs and established decision threshold— and external validation results —class sensitivity (%), class specificity (%), and 
global accuracy (%)— for each of the SIMCA models built.   

LA VERA MURCIA MALLORCA 

Calibration 
model 

External validation Calibration 
model 

External validation Calibration 
model 

External validation 

PCs Threshold Sens. Spec. Accuracy PCs Threshold Sens. Spec. Accuracy PCs Threshold Sens. Spec. Accuracy 

Non-reduced 
matrix 

3  0.5  83.33  68.75  75.00 1  0.5  50.00  55.00  53.57 5  0.5  62.50  100.0  89.29 

Reduced 
matrix 

2  0.5  83.33  100.0  92.86 6  0.5  25.00  85.00  67.86 3  0.5  100.0  100.0  100.0  
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Ibáñez, C., Simó, C., García-Cañas, V., Acunha, T., & Cifuentes, A. (2015). The role of 
direct high-resolution mass spectrometry in foodomics. Analytical and Bioanalytical 
Chemistry, 407, 6275–6287. https://doi.org/10.1007/s00216-015-8812-1 

Karasek, F. W. (1974). Plasma chromatography. Analytical Chemistry, 46. https://doi. 
org/10.1021/ac60344a724 

Kirk, A. T. (2019). Ultra-high-resolution ion mobility spectrometry — current 
instrumentation, limitations, and future developments. Analytical and Bioanalytical 
Chemistry, 411, 6229–6246. 
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