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Abstract: In this report we investigate the instability of a dark soliton imprinted in a two-
dimensional Bose-Einstein condensate. We have shown that depending on the form of the imprinted
phase step, the soliton bends and then, via a snake instability, it decays into vortices. We have per-
formed numerical simulations of the time evolution of the imprinted dark soliton in two-dimensions.
Finally, we have qualitatively interpreted the theoretical framework that describes this phenomenon
in the approximation of weakly interacting bosons.

I. INTRODUCTION

Since its foundation at the beginning of the last cen-
tury, quantum physics has led up to the growth of our
knowledge in directions previously forbidden. After the
pertinent formulation of quantum mechanics and taking
into account the increasingly relevance of quantum tech-
nologies and their applications, our knowledge in those
fields has grown, as have the scales at which quantum
effects can be observed nowadays, starting from the sub-
atomic and progressing to the macroscopic.

The Bose-Einstein condensate (BEC) is a form of mat-
ter that Albert Einstein predicted in 1924-1925 based on
Satyendra Nath Bose’s study and first observed by Eric
Cornell and Carl Wieman at JILA in 1995 [1]. That state
of matter consists of a system made up of bosons that be-
come condensed when cooled near absolute zero; under
those conditions, a macroscopic fraction of the particles
occupy the same single-particle wave function with the
lowest energy, allowing the quantum effects to be rele-
vant on a macroscopic scale.

A many-body, weakly interacting bosonic system at
very low temperatures can be described within the mean-
field framework by the Gross-Pitaevskii (GP) equation,
which was formulated by E. P. Gross and L. P. Pitaevskii
while working on characterizing vortices in those systems
[5, 7].

The GP equation is a nonlinear Schrödinger like equa-
tion, and may exhibit certain nonlinear solutions, such
as solitons. Solitons are solitary waves that travel in a
non-linear media without distortion as a result of a deli-
cate balance between dissipation and the medium’s non-
linearity. They are most commonly encountered in phys-
ical processes that can be explained using a series of non-
linear partial derivative equations. Bright solitons (BS)
or dark solitons (DS) are a type of solution that emerges
in BECs as a modulation of the density profile depending
on the interparticle interaction. A BS represents a peak
in the density amplitude, while a DS represents a back-
ground density localized dip with a characteristic phase
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step. BS appears for attractive interactions, whereas DS
for repulsive ones.
Solitons in 1D are stable solutions of the GP equation.

The stability of these solutions is determined, among
other factors, by the dimensionality of the system un-
der consideration. In particular, DSs for 2D are unstable
against transverse modulation, a phenomenon known as
snake instability (SI), which bends the nodal stripe until
it breaks up into vortices and sound waves.
The report’s structure is broken down as follows. Sec-

tion II presents the theoretical framework we will be
working with, including the mean-field approximation
and the equations that govern systems of many weakly
interacting bosons, as well as the DS and what it means.
Section III details the specific case that will be numeri-
cally reproduced, as well as the considerations that have
been taken. The results collected and the related discus-
sion are reported in Section IV. Section V concludes with
a summary of our results.

II. THEORETICAL FRAMEWORK

A. The Gross-Pitaevskii equation

Our approach for studying the behavior of these sys-
tems will be in the approximation of weakly interacting
bosons, which can be described by the Gross-Pitaevskii
theory. Most of the effects of two-body interactions in
these dilute gases around zero temperatures may be de-
scribed using this framework [3].
N identical and interacting bosons, at very low tem-

peratures T ≃ 0, confined by an external potential Vext

are described by the following many-body Hamiltonian:

H =

N∑
i=1

[
− ℏ2

2m
∇2

i + Vext (ri)

]
+

1

2

∑
i̸=j

V (rij) . (1)

When the system is very dilute only binary low-energy
collisions are relevant. In that situation the interaction
potential between the particles can be modelized as a
contact potential like V (rij) = gδ (ri − rj), where the
coupling constant is g = 4πℏ2as/m, being as the scatter-
ing lenght of the s-wave and m the mass of the particle.
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From Eq. (1) one can write the energy functional as:

E [Ψ] =

∫
dr

[
ℏ2

2m
|∇Ψ|2 + Vext (r) |Ψ|2 + g

2
|Ψ|4

]
. (2)

The GP equation can be obtained by employing the vari-
ational method on (2):

iℏ
∂

∂t
Ψ(r, t) =

[
−ℏ2∇2

2m
+ Vext (r) + gN |Ψ(r, t)|2

]
Ψ(r, t) ,

(3)

where the wave function is normalized as
∫
dr |Ψ(r, t)|2 =

1. We can associate the density profile of the condensate
to n (r, t) = |Ψ(r, t)|2.

B. Dark solitons

In the nonlinear regime, the GP equation has exact an-
alytical solutions in 1D. These solutions take the shape
of solitary waves, also known as solitons, which are local-
ized disturbances that propagate without changing their
shape.

This propagation without spreading is produced by
balancing the nonlinear term with the dispersion term;
in our case, the corresponding terms are the nonlinear in-

teraction g |Ψ(r, t)|2 and the kinetic energy one −ℏ2∇2

2m .
Our system will take a solitonic solution in the form of
a DS as we will model a rubidium condensate with a re-
pulsive atomic interaction g > 0, since that condition is
required for DS to exist.

DS have some traits from what one might recognize
them. The speed of propagation in the condensate, νs, is
less than the Bogoliubov’s speed of sound [8]:

ν0 =

√
gn0

m
, (4)

where n0 is the background (bulk) density. The speed
and depth of the soliton, as well as the Bogoliubov speed,
can be related [4]:

νs
ν0

= cos
δ

2
=

√
1− nd

n0
, (5)

where nd is the density depth of the soliton and δ the
value of the phase step. For a discontinuous phase step
along the BEC, δ = π, the dark soliton has zero velocity
and zero density at its center with a width of the order
of the healing length, being that:

ξ =
ℏ√

2n0mg
. (6)

Looking how it evolves in terms of δ one might ob-
serve that the speed increases as δ decreases, approach-
ing the speed of sound. The soliton grows wider and
shallower, with a more progressive phase step. They do
not maintain static anymore and they travel in the op-
posite direction of the phase gradient. Since DS behave

by this characteristic phase step, a way to generate such
a solitary wave is by initially imprinting a phase step,
ϕ (x, y), on the ground state condensate wave function
Ψ −→ Ψexp[iϕ (x, y)].

III. SNAKE INSTABILITY SIMULATION

In this work we consider a 2D condensate. To that
end, one method of forcing a real BEC to live near two
dimensions is to confine it with a three-dimensional har-
monic potential with a frequency wz ≫ wx, wy; that is, a
confinement in the transverse direction strong enough to
freeze the dynamics in this axis, being the 2D potential
that results:

Vext (x, y) =
m

2

(
ω2
xx

2 + ω2
yy

2
)
. (7)

To effectively describe our condensate in 2D, the GP
equation (3) must be expressed with an effective cou-

pling constant in 2D, g −→ g2D = g/(
√
2πaz), where az

is the characteristic length, in oscillator units, for the
axis perpendicular to the plane. This expression can be
demonstrated reducing the GP equation from the 3D case
[2].
The simulations in this report are performed for a 87Rb

BEC with a number of particles N = 105, a characteristic
scattering length for the s-wave as = 109 a0 where a0 is
the Bohr radius and the trapping frequencies are ωx =
ωy = 2π × 10 Hz and ωz = 2π × 700 Hz [11].
As previously mentioned, the procedure for construct-

ing a DS is to imprint a phase step with a value of π at
x0 = 0 along the condensate wave function, with a phase
dependence on the x axis, and then evolve the resulting
wave function in imaginary time to form a DS with a
nodal strip parallel to the y axis.
There is a formal difference between a DS and a gray

soliton (GS): the first one has a complete depletion of the
density in the nodal strip while for the GS the depletion
is only partial. Even if the imprinted DS quickly decays
into a GS, because it won’t be able to maintain a full
depletion of the density at the notch, we will still refer to
the first as a DS and we will use GS for the most shallow
ones [13].
Solitons are not stable solutions of a nonlinear equa-

tion beyond one dimension; in those circumstances, the
stable solutions are vortices, which are phase singulari-
ties. A kind of decay of a DS to these vortices is via the
instability known as the snake instability (SI), which is
caused by initial disturbances modulating the amplitude
of the soliton that bends along its whole length.
Because the speed of the DS (5) is related to its am-

plitude, its modulation has a direct effect on it, which
is magnified by the subsequent disturbances caused by
bending the DS, eventually tearing it into vortices [6].
The transverse extension of the condensate must be

less than or of the order of the healing length for the DS
to remain stable; otherwise, it will decay into vortices.
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(a) (b) (c)

Figure 1: (Top panels) Snapshots of the density in the x-y plane. (Bottom panels) Snapshots of the corresponding
phase in the x-y plane. The phase of the imprinted DS at t = 0 and x0 = 0 corresponds to Eq. (8), with a value of
b ≃ 0, very small but not null.

If the condensate’s transverse extension is insufficient,
the produced vortices rejoin to create the black stripe
and undergo SI once again.

In the simulation, we used both sharp and smooth
phase gradients because, as previously stated, the be-
havior of the SI will be heavily influenced by these phase
gradients we will imprint DS with. While the sharp gra-
dient can be obtained with as a Heaviside step function
that extends both towards positive and negative values
of the position, the impression of smooth phase can be
described as follows [4, 11]:

ϕ (x) =
π

2
tanh

(
x− x0

b

)
. (8)

Imprinting a phase step at x0 is equivalent to imbuing
momentum to the wave function where the phase varies.
The spatial width of the phase gradient will be deter-
mined by the parameter b, see Fig. 2. The width deter-
mines the dynamics and properties that the DS and the
SI will have.

The simulations we ran made use of the Trotter-Suzuki
package (TS), created by Wittek and Calderaro [12].
This package offers a solution for the Schöringer equation
that can simulate the evolution of interacting BECs given
by the GP equation. To lower the computational cost of
evolving the GP, the software applies a generalization of
the Trotter formula [10]. An exponential operator can
be roughly approximated using that formula. According
to Trotter’s formula, in the case of an exponential with
only two operators:

Figure 2: Phase step function, Eq.(8), along the x axis,
centered at x0 = 0, according to different values of the pa-
rameter b, which defines the amplitude of the imprinted
soliton.

exp (A+B) = lim
n→∞

(
exp

A

n
+ exp

A

n

)n

(9)

Where A and B are arbitrary real or complex matrices
M ×M . The exponential of an operator is expensive to
calculate numerically, but when expressed as the sum of
operators this cost is reduced. This formula provides a
way to reasonably approximate these exponentials of op-
erators. It should be noted that another approximation
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Figure 3: Density snapshot in the x-y plane at t =
42.97 ms and the imprinted DS at x0 = 0. The SI has
already been broken into numerous vortices

is necessary and decide where to truncate n, as an in-
finity limit is required and this is not numerically ap-
propriate. Suzuki provided a good approximation of the
error assumed depending on how n is truncated [9].

IV. RESULTS

We performed different simulations by imprinting a DS
centered at x0 using the phase step, Eq. (8), with dif-
ferent widths of the phase gradient, i.e. modifying the
values of b. We have investigated the time evolution of
the DS and the possible appearance of the SI.

If we imprint the phase step at x0 = 0, with a small
value of b, into the ground state of the wave function and
let it evolve we can see how a DS emerges in the center,
followed by sound waves and GSs that can be identified
by their speed. Being the velocity of the sound waves the
speed of sound, the velocity of the GSs depends on the
depth of their notch and will be lower than the speed of
sound. Then, the SI start to form at the center of the
DS and evolves to the edges of the BEC.

If we increase b in the phase imprinted DS we see that
the SI will develop at the same time at the center and
at the edges of the BEC, propagating to the intermedi-
ate regions. Increasing further the parameter b the SI
develops first at the edges, evolving to the center.

This case can be seen in the panels in Fig. 1 as an im-
printed phase step of value π develops a DS in the center
of the BEC, see Fig. 1.a. This DS lasts until transverse
disturbances destabilize it, eventually leading to the de-
velopment of the SI. It can be observed how it begins on
the borders, due to the non null value of b, and progresses
to the center, see Fig. 1.b. Eventually, see Fig. 1.c, the
integrity of the SI is compromised, resulting in the for-
mation of numerous vortices, see Fig. 3. Finally for very
large b values the system does not decay through a SI but
directly into vortices, because the created DS is shallow
enough to have a velocity near the speed of sound.

Figure 4: Density snapshot of the density in the x-y plane
at t = 24.27 ms. The imprinted DS at x0 = 0 has a value
of b ≃ 10−3 large enough to provide a bending of the DS
while the SI is developing.

Figure 5: Snapshot of the normalized density profile at
y = 0 and t = 11.94 ms after having imprinted the phase
step at x0 = 24.1 µm. The profile of the GS is shown.

Figure 6: Snapshot of the phase profile. Dashed line
is the phase profile of the initially imprinted soliton at
x0 = 24.1µm, and y = 0. Solid line is the phase profile
at y = 0 and t = 11.94 ms
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Another effect of acting with a smooth gradient is that
the soliton, independently of how the SI develops, tends
to bend like a bow, see Fig. 4.

When the imprinted phase is off-center in the conden-
sate, see Fig. 5 and Fig. 6, the resulting DS does not
remain static and instead moves along the condensate in
the opposite direction of the phase gradient. This move-
ment will be slower than the speed of sound, identify-
ing it as a DS versus GSs, as well as sound waves that
will form. Moving on a background of non-homogeneous
density will cause the SI to be more difficult to develop,
whether it comes to form, it will be shredded into vortices
directly as it travels along the BEC.

V. CONCLUSIONS

We have addressed the phenomenon of snake instabil-
ity of a dark soliton in a two-dimensional Bose-Einstein
condensate with repulsive interactions. To understand it,
we have analyzed how the phase imprinted on the ground
state density to generate the dark soliton affects this in-
stability. We have also investigated this phenomenon nu-
merically.

The numerical simulations we have performed repro-
duce the expected behavior that derives from the theory.
We have been able to see how the parameters that deter-
mine the given system and its evolution are: the value
of the phase step, the amplitude of the gradient of the
phase step, and the relative position where it is printed
in the density profile.
Finally, we have seen that the snake instability opens

up the door to form a condensate full of vortices exhibit-
ing a rich dynamics. This dynamics deserves further in-
vestigation.
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