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Abstract: The aim of this project is to study the toric code, a particular example of a system
that realizes quantum computation. We explain the role of topology in determining the ground state
of the system and its degeneracy, as well as the surprising fact that excitations are neither bosonic
nor fermionic, but rather anyonic. As a novel result, we deduce the full spectrum of the toric code.

I. Introduction

In recent years, one of the main challenges of quantum
computation (QC) has been the study of fault-tolerant
quantum computation and the development of quantum
error-correcting codes (QECCs). Proposed by Kitaev in
2003 (cf. [1]), a simple example to realize QC is the toric
code (TC); a system of 1

2 -spin particles on a lattice em-
bedded in a torus, which uses the topological properties
of the surface to encode and protect information. The
purpose of the article is to examine this quantum system
in detail.

In chapter II, we begin introducing the concept of any-
onic statistics as the particle statistics that naturally
emerges in R2. Although it might seem disconnected
from QC at first, we will later see how it is deeply con-
nected with the excitations of the TC. In chapter III, we
focus on the TC by studying the energy and degeneracy
of the ground and excited states, hence computing the
full spectrum of the Hamiltonian. We also analyse the
behaviour of its low-energy excitations, which turn out to
be anyonic. To conclude, in chapter IV we briefly review
how the TC can be used for the realization of QC.

II. Particle statistics. Anyons

Consider the exchange of N ⩾ 2 indistinguishable par-
ticles in Rd (). We study the effect of this exchange in
the wave function of the system, ψN , and the different
particle statistics that emerge depending on d > 1. For
this purpose we consider the configuration space, defined
as

Cd
N (R) := ConfN (Rd) :=

(Rd)N\∆
SN

, (1)

where SN is the symmetric group of order N and ∆ :=
{(x1, ..., xN ) ∈ (Rd)N | ri = rj for some i ̸= j}.

We want to study the changes in ψN when it evolves
from the point pi := (xi, ti) to pf := (xf , tf ). Because the
particles are indistinguishable, we can consider xi = xf ,
that is, closed loops in the configuration space. Using the
path-integral formulation (cf. [2, p. 8]) we can show that
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the change in ψN depends solely on some parameters
χ(α), where [α] ∈ Π1(C

d
N (R)). In fact, these χ(α) are

representations of Π1(C
d
N (R)).

Summarizing, the variations of ψN under exchange de-
pend only on the fundamental group of the configuration
space, and its representations give us the different parti-
cle statistics that emerge in that space. Hence, to obtain
these different behaviours depending on d, we need the
following result (cf. [3]):

Π1(C
d
N (R)) =

{
SN , d > 2,

BN , d = 2
, (2)

where BN is the braid group of order N . Let’s focus on
the 1-dimensional representations of these groups.
We begin with the most well-studied case, d > 2.

There are only two 1-dimensional representations of the
symmetric group; the identity, I, and the sign representa-
tion, sgn. The former gives place to bosons and the latter
to fermions. More specifically, we obtain χI(σ) = 1 and
χsgn(σ) = ±1, ∀σ ∈ SN , which define the statistics of the
wave function under exchange, depending on the particle
type.
Now for d = 2, we have that there are infinite 1-

dimensional representations of the braid group. We will
call these representations abelian anyons (higher dimen-
sional representations correspond to non-abelian anyons,
but we don’t consider them here). The term abelian is
due to the commutation of the 1-dimensional represen-
tations, that are just complex numbers. The term anyon
means that these particles have any statistics, as there
are infinite representations of BN . We can also assign
values to χ(α) ∈ C, ∀α ∈ BN (cf. [2, p. 18]), that give
rise to an infinite number of statistics under exchange.

III. The toric code

Consider a 2−dimensional square lattice with L×L edges
with periodic boundary conditions so that it can be em-
bedded in a torus, and with 1

2 -spin particles in the middle

of each link, as in FIG. 1. Clearly, we have 2L2 spins,
and the Hilbert space of the system, H, has dimension

dimH = 22L
2

. Consider a Hamiltonian for this system
given by:

H := −
∑
v∈V

Av −
∑
p∈P

Bp, (3)
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where Av and Bp are called vertex and plaquette oper-
ators acting on vertex v and plaquette p of the lattice,
respectively. They are defined as

Av :=

L2⊗
j=1

Pj , Pj =

{
X, if j ∈ v

I, if j /∈ v
,

Bp :=

L2⊗
j=1

Qj , Qj =

{
Z, if j ∈ p

I, if j /∈ p
,

(4)

where I,X and Z are the usual identity and Pauli op-
erators, and ⊗ denotes the Kronecker product. V and
P are the complete set of vertices and plaquettes of the
lattice, respectively. It is easy to check that we have L2

Av operators, and the same number of Bp operators.
When referring to any operator acting on the lattice,

we will only reference the operators different from I (e.g.
Bp ≡

⊗
j∈p Zj , where Zj is the operator Z acting on

the spin sj). To conclude with the definitions, we define
|0⟩ and |1⟩ as the states of a spin such that Z |0⟩ = |0⟩,
Z |1⟩ = − |1⟩, X |0⟩ = |1⟩, and X |1⟩ = |0⟩.
The aim of this section is to studyH and its properties.

To do so, one can first check that, ∀v, v′ ∈ V , ∀p, p′ ∈ P
and for any given eigenstates |ψ⟩ , |ψ′⟩ ∈ H of a Av or Bp

operator, the following properties hold:

1. Av |ψ⟩ = ± |ψ⟩ and Bp |ψ′⟩ = ± |ψ′⟩,

2.
∏

v∈V Av =
∏

p∈P Bp = I,

3. [Av, A
′
v] = [Bp, B

′
p] = [Av, Bp] = 0,

4. [Av, H] = [Bp, H] = 0.

The first property follows from the fact that Av and
Bp are all hermitian and idempotent. The second fol-
lows because X and Z are idempotent and they ap-
pear twice in each spin in the product. For the third
property; [Av, A

′
v] = 0 = [Bp, B

′
p] is trivial because

[X,X] = [Z,Z] = 0. Also, if v and p share a spin, then
they share two. Using [X ⊗X,Z ⊗Z] = 0, we have that
[Av, Bp] = 0. The fourth property is immediate from the
third one. It also follows that all terms in the Hamil-
tonian can be simultaneously diagonalised. With these
basic properties, let’s study the states of the Hamilto-
nian, together with their energies and degeneracies.

A. The ground states

Let’s study the ground states of the Hamiltonian. We
need to find a configuration such that the energy of H
is minimal, thus, for which the eigenvalues of Av and Bp

are maximal. Before studying the complete Hamiltonian,
consider first the restricted case

Ĥ := −
∑
p∈P

Bp. (5)

Consider the subspace HB := {|ξ⟩ ∈ H : λp(ξ) =
+1,∀p ∈ P}, and let BHB

be the Z-product basis of that

FIG. 1: Example of a L = 5 toric code lattice. The circles
in the middle of each link simulate the 1

2
-spin particles, and

the grey edges and circles represent the periodic boundary
conditions of the lattice. Notice also the representation of a
Av and a Bp operator.

space, where λp(ξ) is the eigenvalue of |ξ⟩ when Bp is
applied to it.
Now, because given a plaquette p the spins sj on that

plaquette are either |0⟩ or |1⟩, we can count the number of
0 and 1 spins in each plaquette, which we call the parity
of the plaquette p:

νp(ξ) :=
∑
j∈p

sj (mod 2). (6)

Notice that, given |ξ⟩ ∈ BHB
, νp(ξ) = 0 (mod 2), ∀p ∈

P .
Consider two adjacent columns of vertical links (a col-

umn of plaquettes from the bottom to the top of the
lattice where we have eliminated the horizontal links),
c1 and c2. It is easy to check that νc1(ξ) :=

∑
j∈c1

sj
(mod 2) =

∑
j∈c2

sj (mod 2) =: νc2(ξ), |ξ⟩ ∈ BHB
.

Because this can be done with any two given adjacent
columns of links, we have that νc := νci(ξ) is a homo-
logical invariant called topological number, where i is any
given column. A similar argument considering rows in-
stead of columns leads us to another invariant, νr.
Because νc and νr can either be 0 or 1 for any given

|ξ⟩ ∈ BHB
, we have four possible combinations of topo-

logical numbers; (νr, νc) = {(0, 0), (0, 1), (1, 0), (1, 1)}.
Define Ω(ν1,ν2) = {|ξ⟩ ∈ BHB

: (νr, νc)(ξ) = (ν1, ν2)}.
Going back to Ĥ, it is clear that a ground state can be

expressed as the following linear combination:

|ν1, ν2⟩ =
∑

|ξ⟩∈Ω(ν1,ν2)

αξ |ξ⟩ . (7)

where the αξ ∈ C are arbitrary parameters. To prove
that such a state exists, it suffices to consider a lattice
with rows of |0⟩-spins and columns of |1⟩-spins.
Consider now the full Hamiltonian given by (3). We

claim that if we take αξ = 1, ∀ |ξ⟩ ∈ Ω(ν1,ν2), then |ν1, ν2⟩
is also a ground state of H. First notice that given |ξ⟩ ∈
Ω(ν1,ν2), for anyAv, we have that |ξ′⟩ := Av |ξ⟩ ∈ Ω(ν1,ν2):

Bp |ξ′⟩ = BpAv |ξ⟩ = AvBp |ξ⟩ = Av |ξ⟩ = |ξ′⟩ , (8)
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where we have used property 3. Moreover, because Av

will flip an even number of spins of the column ci and
row rj it acts on, the numbers (ν1, ν2) won’t change. It’s
also easy to see that Av |ξ′⟩ ≠ Av |ξ′′⟩ for any Av and
for any two different states |ξ′⟩ , |ξ′′⟩ ∈ Ω(ν1,ν2), because

A2
v = I.
With the arguments above, if we take αξ = 1, we have

Av |ν1, ν2⟩ =
∑

|ξ⟩∈Ω(ν1,ν2)

Av |ξ⟩ =
∑

|ξ′⟩∈Ω(ν1,ν2)

|ξ′⟩ = |ν1, ν2⟩ ,

(9)
∀v ∈ V , so that the eigenvalue of |ν1, ν2⟩ under any Av

is +1, and so it’s a ground state of H, as expected.
Because of the different possible combinations of

(νr, νc), we have four different ground states:

|ν1, ν2⟩ =
∑

|ξ⟩∈Ω(ν1,ν2)

|ξ⟩ . (10)

These 4 vectors, in fact, form a base of the ground state
vector space. This means that we have a 4-fold degener-
ate ground space, with an explicit way to build its base.

To conclude this section, let’s compute the energy of
the ground states. Because all the Av and Bp operators
have eigenvalue +1 and thanks to property 4, the energy
it’s just a sum of these eigenvalues. Because we have 2L2

operators, the energy of the ground state, EGS , is:

EGS = −2L2. (11)

B. Excited states

1. Energy of the excited states

Let’s study the excited states of the Hamiltonian. Con-
sider a ground state |Ψ⟩, and let |ψX⟩ := X |Ψ⟩ and
|ψZ⟩ := Z |Ψ⟩. Because of the anti-commutation rela-
tions {Z,Av} = {X,Bp} = 0, we have Av |ψZ⟩ = − |ψZ⟩
and Bp |ψX⟩ = − |ψX⟩. Thus, applying X or Z to any
spin will create an excited state. In particular, |ψ⟩ will
have eigenvalue −1 under an operator Av (Bp) if we ap-
ply Z (X) to an odd number of spins in interaction with
Av (Bp). Because applying a Pauli matrix to one spin
will always change two eigenvalues, the energy of the first
excited state is given by:

E1st = EGS + 4 = −2L2 + 4. (12)

In general, if we have 2l operators with eigenvalue −1,
the energy of the excited state will be:

E2l = EGS + 4l = −2L2 + 4l. (13)

Finally, observe that because any flipped spin will always
affect an even number of operators of the same type, we
have the restriction 2l ⩽ 2L2 if L is even, and 2l ⩽ 2L2−2
if L is odd. Hence, the energy of the highest excited state
will be E2L2 = 2L2 if L is even, and E2L2−2 = 2L2 − 4 if
L is odd.

2. Degeneracy of the excited states

Let’s move to the degeneracy of the excited states. We
proceed in a similar way as for the ground state; we first
study the degeneracy of Ĥ, and then that of H.

Let BH be the Z-product basis, |ξ⟩ ∈ BH, and fix
the eigenvalues λ1, ..., λL2−1 of |ξ⟩ for L2 − 1 Bp op-
erators (all except for one), where a of them are −1-
eigenvalues. Because we have 2L2 edges and L2 − 1 re-
strictions for the Bp operators, we can freely choose the
state of 2L2 − (L2 − 1) = L2 + 1 spins so that the state
|ξ⟩ has the specified eigenvalues in the given order. Be-
cause we are interested in the degeneracy of H, we can
count the number of states having a −1-eigenvalues in a

random order as 2L
2+1

(
L2−1

a

)
. If we include the last pla-

quette, the possible combinations increase to 2L
2+1

(
L2

2k

)
,

where 2k = a if a is even, and 2k = a + 1 if a is odd.
Thus we know the number of states in BH having 2k −1-
eigenvalues for the Bp operators, thus the degeneracy of

Ĥ.

Let’s now study the degeneracy of H. Again, we con-
sider the same elements |ξ⟩ of the Z-product basis with
the λ1, ..., λL2−1 eigenvalues fixed for the first L2 − 1 Bp

operators. First, using the same argument as in equation
(8), we have that multiplying any of these states |ξ⟩ by
any Av operator, the new state |ξ′⟩ has the same set of
eigenvalues for the Bp operators than |ξ⟩. Because we

have 2L
2−1 possible products of the different Av opera-

tors and 2L
2+1 states with fixed eigenvalues for the Bp’s,

we get 2L
2+1

2L2−1
= 4 sets of states with the same eigenvalues

and so that, multiplying a state from a set for any Av

operator, the new state will belong to the same set.

In addition, if we want 2i −1-eigenvalues for the Av

operators, we can use projector operators, defined as

Πv,± :=
I ±Av

2
, ∀v ∈ V. (14)

A projector Πv,± transforms any state |ξ⟩ to an eigen-
state of the Av operator with eigenvalue ±1. Hence, the
different combinations of projectors that we have to build
eigenstates with 2i −1-eigenvalues for the L2 Av opera-

tors is given by
(
L2

2i

)
.

Finally, we conclude that the number of states having
2l = 2i+2k −1-eigenvalues for the Av and Bp operators
is given by the following sum:

deg(E2l) = 4
∑

2k+2i=2l

(
L2

2k

)(
L2

2i

)
, (15)

where the 4 is justified by the four sets of states defined
above (similar to the ground state degeneracy).

Our objective is now to compute this sum. Define
a(x) := (1 + x)n(1 + x)n and b(x) := (1 + x)n(1 − x)n.
From the binomial theorem, a(x) and b(x) are equivalent
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to:

a(x) =

n∑
i,j=0

(
n

i

)(
n

j

)
xi+j , b(x) =

n∑
i,j=0

(−1)j
(
n

i

)(
n

j

)
xi+j .

(16)
If we consider n = L2, p(x) := 2(a(x) + b(x)), and a
given xr of p(x), r = 2l even, from (16) we get that the
coefficient p2l is:

p2l = 2
∑

i+j=2l

(
L2

i

)(
L2

j

)
+ 2

∑
i+j=2l

(−1)i
(
L2

i

)(
L2

j

)

= 4
∑

2i+2j=2l

(
L2

2i

)(
L2

2j

)
= deg(E2l),

(17)
where in the second identity we have used that the sum-
mands will eliminate unless i is even, and thus 2i+j = 2l
will only be satisfied if j is also even.
If we now rewrite a(x) = (1+x)2n and b(x) = (1−x2)n,

we can also derive the relations:

a(x) =

2n∑
i=0

(
2n

i

)
xi, b(x) =

n∑
j=0

(
n

j

)
(−1)jx2j , (18)

from which it follows that, taking n = L2, the coefficient
p2l of the polynomial p(x) defined before is

deg(E2l) = p2l = 2

[(
2L2

2l

)
+ (−1)l

(
L2

l

)]
. (19)

The previous result gives us an analytical solution for
the degeneracy of the eigenvalues of H. It is also easy to
check that if we sum the degeneracy of all energy states,

we get
∑

0⩽2l⩽2L2 deg(E2l) = 22L
2

, as expected. With
this result we conclude the study of the Hamiltonian H.

FIG. 2: Example of 4 strings. Two of them are open
strings, one creating two charges and the other creating two
monopoles. The other two are closed strings; a contractible
and a non-contractible loop (Xv). The dotted lines represent
the path followed by the X-strings, which can be thought as
a path in the dual space of the lattice.

3. Anyonic behaviour of the excited states

Our goal now is to examine the behaviour of the low-
energy excitations. We will see that excitations have

particle behaviour, so given an eigenstate |ψ⟩ ∈ H of
an operator Av with eigenvalue −1, we will say that the
vertex v is an e-excitation or charge. Similarly, the pla-
quette p is a m-excitation or monopole, and if we have
a pair of charges and a pair of monopoles where the v
and p share spins, we say that we have two pairs of ϵ-
excitations or dyons. Again, because a spin belongs to
two v and two p, excitations always come in pairs.
Let |Ψ⟩ be a ground state. Let’s formally define the

concept of string, already used in chapter II. Two spins
are Z, X or Y -adjacent if they share a Av, Bp, or Av and
Bp operator, respectively. Let α = {X,Y, Z}, and define
a α-string as a set of operators acting on α-adjacent spins:

Γα :=
⊗
j∈γα

Qj , (20)

where γα = {s1, ..., sn} is any finite set of α-adjacent
spins and Qj = α, ∀j ∈ γα. Notice that, for any single
string, we will always have only two excitations. Clearly,
ΓX strings create a pair of e, ΓZ a pair of m, and ΓY a
pair of ϵ (see FIG. 2).
If we consider two α-strings with one edge in common,

we can define an operation of concatenation in these two
strings in the following way. Given Γα and Γ′

α with a
common spin sn,

Γα ∪ Γ′
α :=

⊗
j∈γα∪γ′

α

Qj , (21)

where again the Qj = α. We note that, as long as there
is only one edge in common, there is no increase nor de-
crease of energy in the concatenation of strings. Hence,
we can move the two excitations around the lattice with-
out any exchange of energy. However, if we create a
closed string (loop) by concatenating strings, we annihi-
late the excitations and recover the ground state energy.
Another way of annihilating or combining excitations

is by applying more than one Pauli operator to the same
spin. This creates what we call fusion rules:

• e× e = m×m = ϵ× ϵ = 1,

• e×m = ϵ, e× ϵ = m, m× ϵ = e,

where 1 represents the absence of excitation. The fusion
rules are a direct consequence of the products of Pauli
matrices (up to a phase).
Let’s complete this section studying what happens

when we exchange two excitations. Observe that ex-
changing two particles can be thought of as winding a
particle around the other for half a turn. Hence, a com-
plete turn can be thought of as two complete exchanges
of the particles.
Consider two pairs of excitations of any type cre-

ated by strings Γα and Γ′
β with no edge in common,

where α, β ∈ {X,Y, Z}, and let |Ψ⟩ be any ground
state. Clearly, [Γα,Γ

′
β ] = 0. Consider the initial state

|ψi⟩ = Γ′
βΓα |Ψ⟩. Suppose we want to wind an excita-

tion created by string Γα around an excitation created
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by string Γ′
β . This can be represented by concatenating

Γα with a closed loop Γ′′
α. Clearly, Γ

′′
α also has an edge in

common with Γ′
β . With this construction, the final state

after the winding can be represented by

|ψf ⟩ = Γ′′
α |ψi⟩ = Γ′′

αΓ
′
βΓα |Ψ⟩ . (22)

Studying the commutation relation [Γ′′
α,Γ

′
β ] for the dif-

ferent α, β will give us the exchange behaviour of the
excitations, that we call braiding relations.

First, it is trivial to see that if we exchange e with
another e, or an m with another m, all the operators
commute because α = β, and thus the final state is the
same as the initial state. We conclude that e and m par-
ticles behave like bosons. In other words, the exchange
statistics is χ(e, e) = χ(m,m) = 1.
What if we want to wind a particle m around e?

Clearly the initial state is given by |ψi⟩ = Γ′
X |ψZ⟩, where

|ψZ⟩ ≡ ΓZ |Ψ⟩. Now, if we apply string Γ′′
Z , we obtain

|ψf ⟩ = Γ′′
Z |ψi⟩ = −Γ′

XΓ′′
Z |ψZ⟩ = −Γ′

X |ψZ⟩ = − |ψi⟩ ,
(23)

where we have used that Γ′
X and Γ′′

Z anticommute, and
that Γ′′

Z is a closed loop so it doesn’t change the state
|ψZ⟩. Thus, when winding m around e, |ψf ⟩ = − |ψi⟩.
Taking the root (because an entire turn is equivalent to
two exchanges), we obtain that χ(e,m) = i. This ex-
change relation is neither bosonic nor fermionic, so we
finally find particles presenting anyonic behaviour.

Similar remarks can be done to obtain the rest of the
braiding relations. A not so trivial relation is χ(ϵ, ϵ).
Because α = β, one would expect the dyons to have
boson behaviour. However, it can be shown (cf. [4, p. 6])
that this is not true and, in fact, they exhibit fermionic
behaviour. Summarizing, we obtain:

• χ(e, e) = χ(m,m) = 1, χ(ε, ε) = −1,

• χ(e,m) = χ(ϵ, e) = χ(ϵ,m) = i.

These braiding relations, together with the fusion rules,
fully describe the behaviour of TC excitations, which
turns out to be anyonic. This shows the connection be-
tween these -apparently- unrelated fields.

IV. Quantum computation

We conclude this paper by briefly mentioning how to use
the TC to realize QC. The lattice is embedded on a torus,

so we have four classes of non-trivial loops. These are
vertical and horizontal X and Z-loops; Xv, Xh, Zv, Zh.

If we consider the four different ground states defined
on chapter II, the non-contractible loops act as operators
on these states as usual Pauli matrices acting on a sys-
tem of 2 spins (e.g. Xh |00⟩ = |10⟩). This translates, in
the computational language, as having two logical qubits
encoded in the system, with their correspondent logical
Pauli operators. Moreover, the system is stable against
local perturbations (cf. [5, p. 19]); namely, if we consider
a local perturbation V acting on less than L spins, then
the ground state degeneracy isn’t lifted. This means that,
the largest the lattice, the more protected is the system.

V. Conclusions

We conclude this paper with a brief review of what we
have studied, and possible directions towards which fur-
ther research could lead.

We have extensively studied the TC and its properties.
We have provided a detailed description of its spectrum, a
result not present in the literature, as far as we have been
able to investigate. We have also studied the behaviour
of its low-energy excitations, that turn out to be anyonic.
Due to the intrinsic connection between anyons and braid
groups, we have provided the fusion and braiding rules
of these excitations. We have also shown how the TC
has topological order, which makes it a good candidate
to realize QC.

Finally, we point out that the homological arguments
used to study the degeneracy of the ground state and its
protection from local operators, are now widely used in
research and in the study of surface codes (for instance,
cf. [6]). This reinforces the idea that using the topologi-
cal properties of systems in a smart way is fundamental
to build promising QECCs, and for QC in general.
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