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Abstract: Fluid invasion through a porous medium exhibits interesting physical properties such
as hysteresis and memory. In the ideal case where the invasion is driven quasistatically, and the
passage from one equilibrium state to another is considered instantaneous, hysteresis cycles exhibit
a property called Return Point Memory (RPM). This paper shows how to take into account the
viscous pressure of the fluid and proves that the corresponding hysteresis cycles still exhibit RPM.
In addition, a qualitative study of this viscous pressure based on a numerical solution of the balance
equation is presented.

I. INTRODUCTION

There are different systems in physics, chemistry and
biology that can encode and store information during
a dynamic process [1]. This physical phenomenon is
known as memory. In most cases this property appears
in systems out of equilibrium. This work will focus on
a memory-related property called Return Point Memory
(RPM).

RPM is directly related to hysteresis phenomena
such as those found in condensed matter and materials
physics. In some systems, when the order parameter is
plotted against the control parameter, a hysteresis cycle
arises. This hysteresis cycle is generated by the tendency
of the system to retain information from the applied ex-
ternal stimulus. This external stimulus is what we call
the control parameter. If the control parameter is varied
cyclically, a hysteresis cycle is generated.

When the control parameter is changed between two
values, a hysteresis cycle is obtained. If we modify the
control parameter appropriately during the hysteresis cy-
cle, we can generate a small hysteresis cycle called inter-
nal cycle. This cycle starts and ends in the same state.
When the internal cycle ends, the system continues along
the main curve following the same states as if the inter-
nal cycle had not occurred. These system features are
correlated with the RPM.

These memory and hysteresis properties can be mod-
elled in a magnetic system with a random-field Ising
model (RFIM) at zero temperature. When an external
magnetic field is applied, the system presents a hystere-
sis cycle with RPM. During the variation of this external
magnetic field, it is possible to produce internal cycles [2].
Apart from ferromagnetic systems [3], other interesting
systems that show hysteresis with memory properties are
deterministic cellular automata [4], charge-density waves
[5] [6], and capillary condensation in nanoporous materi-
als [7].

In this paper, we will focus on the study of hystere-
sis and RPM of two-phase flow in disordered media. In
this system, fluids can be imbibed or drained into the
porous media. Imbibition takes place when the more wet-

ting fluid displaces the less wetting fluid, and drainage
is the opposite situation. As the external pressure on
the more wetting fluid is increased or decreased, the
porous medium becomes more or less saturated, respec-
tively. This process produces pressure-saturation trajec-
tories that exhibit hysteresis and RPM. The outline of
this study will be the following: In Sec. II we will present
the experimental system used to model fluid invasion in
porous media, and the physics behind this system. In
Sec. III a physical model for pressure-driven quasistatic
displacements introduced in Ref. [8] will be explained.
The existence of the RPM in the ideal case in which the
relaxation of the fluid front between metastable equi-
librium states is considered instantaneous will also be
demonstrated, following the aforementioned paper. Fi-
nally, in Sec IV, knowing all of the above and adding
a viscous term to the balance equation, we will demon-
strate theoretically that the system still exhibits RPM in
the case where a nonzero relaxation time is at play. We
define the relaxation time as the characteristic time that
must elapse to increase the fluid saturation by a factor
(1 − 1/e). In addition, we will do a qualitative study of
the viscous pressure solving the balance equation with a
Runge-Kutta method.

II. HELE-SHAW CELL AND INTERFACE
MODEL

The hysteresis properties and the RPM of two-phase
flow in disordered media are studied using an “imper-
fect” Hele-Shaw cell [9]. This cell consists of two plates
separated by a distance b0 as illustrated in Fig. 1. The
upper glass plate confines the fluid between it and the
lower plate. The lower plate is filled with randomly dis-
tributed obstacles of height δb. This disordered Hele-
Shaw cell will be imbibed and drained, quasistatically,
with a viscous fluid (in our case a silicone oil) stored in
a reservoir of height H.
Initially, the cell will be filled with air at atmospheric

pressure. Subsequently, the oil will be injected from the
tank creating an oil-air interface. The interface will travel
through the interior of the cell encountering various ob-



Memory properties of fluid invasion in disordered media Javier Roda Garćıa

FIG. 1: Design of the Hele-Shaw cell used to study hysteresis
and RPM of two-phase flow in disordered media. The inset
shows the interior of the cell. Inside the cell, we can see
the opening through which the oil will flow and the obstacles
distributed throughout the cell. Reprinted from Ref. [10].

stacles. Each time the interface encounters an obstacle,
there will be a change of capillary pressure at the in-
terface in that point. This change of capillary pressure
originates from a change in the curvature of the inter-
face, and results in an increase in the pressure difference
between the oil and the air, given by the Young-Laplace
equation. The increase in pressure induces a local in-
crease of the interface velocity over the obstacle. The
oil-air interface will show the irregularities shown in Fig.
1. For each value of x, we will have a different inter-
face height h(x) because each point of the interface will
have passed through a different number of obstacles. If
the Hele-Shaw cell were unobstructed, all points in the
interface would have the same velocity at all times and
the interface would be straight. It is interesting to notice
that the cell is tilted at an angle α to induce an effec-
tive gravity. This effective gravity is necessary to avoid
viscous fingering instabilities in drainage.

As explained in detail in Ref. [8], we can model the sys-
tem using a pressure equilibrium equation. This equation
will take into account the pressure at which the oil is im-
bibed or drained, ρgH, the gravitational pressure due to
the inclination of the cell, ρg sinα h(x), and the pressure
due to capillary contributions at the interface.

As discussed before, the capillary pressure contribu-
tions are given by the Young-Laplace equation. This
equation gives the pressure jump across a curved inter-
face:

JpK = γκ = γ(κ⊥ + κ∥). (1)

As we can see in Eq. (1), the pressure jump across the
interface will depend on the surface tension γ between
the fluids and on a parameter κ that refers to the cur-
vature of the interface. To study the curvature term, we
separate κ into a perpendicular (κ⊥) and a parallel (κ∥)
component. The κ⊥ component refers to the curvature
of the oil-air meniscus in the y−z plane and the κ∥ com-
ponent to the curvature in the x − y plane. Taking into
account the linear approximation |dh/dx| < 1, we have
that κ∥ ≈ d2h/dx2. For the perpendicular term, taking
into account the geometry of the meniscus, we know that

κ⊥ = 2 cos θ/b(x, y) [11]. The κ⊥ term introduces an in-
crease in pressure (which translates into an increase in
velocity) at the point where the interface meets an ob-
stacle. The κ∥ term introduces an additional pressure
that depends on its neighbouring points.
It is important to note that we need to imbibe

and drain quasistatically so that the displacement goes
through the metastable equilibrium states represented by
the model. The equation of mechanical equilibrium is as
follows:

γ
d2h(x)

dx2
− ρg sinα h(x) + ρgH + pc[x, h(x)] = 0, (2)

where pc[x, h(x)] = 2γ cos θ/b(x, y) and g the Earth’s
gravitational acceleration. The expression b(x, y) is equal
to b0 when the interface is not over an obstacle at that
point and is equal to b0 − δb when the interface is over
an obstacle. The terms γd2h(x)/dx2 and pc[x, h(x)] are
the pressure terms of capillary origin, which refer to the
curvature of the system and are derived from the Young-
Laplace equation.

FIG. 2: Representation of the external pressure as a function
of the wetting-phase saturation of the disordered Hele-Shaw
cell. The main hysteresis cycle can be seen together with
a small internal cycle. Four possible configurations of the
system for a given pressure P0 have been shown in the graph.
Adapted from Ref. [8]

By increasing or decreasing the height H of the reservoir,
the oil will be imbibed or drained into the cell, respec-
tively. During this imbibition and draining process, the
pressure-saturation curves show a hysteresis cycle and
RPM (Fig. 2). It is important to notice that, if we cre-
ate an internal cycle, the start and end state will be the
same. Moreover, when the internal cycle is completed,
the system follows the same trajectory that it would have
followed if the internal cycle had not been created. It is
interesting to notice also that, for the same given pres-
sure, the system can present an infinite number of differ-
ent configurations, since one can make as many internal
cycles as one wishes. The curious thing is that, even with
an infinite number of available states, the system knows
which trajectory is following in the pressure-saturation
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curves and always remembers the configuration it has to
take every time. This phenomenon is due to the existence
of the RPM.

III. DEMONSTRATION OF RPM WITH ZERO
RELAXATION TIME

We will demonstrate the existence of RPM in
quasistatically-driven two-phase flow in disordered me-
dia, following Ref. [8]. First of all, a system that presents
RPM must satisfy three properties: the dynamics of the
front must be deterministic, rate-independent, and must
obey the no-passing rule (NPR) [5].

Firstly, the system must be deterministic because it
must be possible to predict the state that will be ac-
quired after a particular driving protocol. This property
is fulfilled because, for a given realization of the disor-
der, the defects in the Hele-Shaw cell are located in the
same position and have a macroscopic size. Therefore,
the system will not be subjected to external fluctuations,
thus ignoring stochastic effects. Secondly, the dynamics
of the interface is rate-independent as long as the external
pressure varies quasistatically. Finally, the NPR holds as
well, as proved next.

FIG. 3: (a) Representation of two fronts in a Hele-Shaw cell,
where the y-axis represents the height of the cell and the x-
axis its width. (b) The left diagram represents the temporal
protocols followed by the external pressure (in a.u.) to carry
out the cycles. The right diagram represents the applied ex-
ternal pressure (in a.u.) as a function of the cell saturation
(in a.u.). Adapted from Ref. [8].

We will assume that the relaxation time of the fluid
after a variation of the external pressure is negligible.
Strictly speaking, this would be true only if the invading
fluid was inviscid. A reductio ad absurdum demonstra-
tion will be used to prove the NPR. We start by defining
the parameter pe:

pe(x) = γ
d2h(x)

dx2
− ρg sinα h(x) + P + pc[x, h(x)]. (3)

The parameter pe(x) represents the net external pressure
applied in each point of the interface. If pe(x) > 0 the
oil will be imbibed, if pe(x) < 0 the fluid will be drained,
and if pe(x) = 0 the fluid will remain in mechanical equi-
librium at that point x.
Let us suppose that there are two different and in-

dependent fronts: r(x) and s(x). Furthermore, r(x) is
below s(x), and their external driving pressures satisfy
that Pr ≤ Ps. The NPR says that the front r(x) can
never reach s(x), i.e. r(x) < s(x). To prove that the
NPR is satisfied in our system, we proceed by assum-
ing the opposite, i.e. that r(x) = s(x) at some point
x, as shown in Fig. 3a. When the overtaking takes
place at x, γd2r(x)/dx2 ≤ γd2s(x)/dx2. This condi-
tion applies because the front r(x) must have a lesser
curvature than s(x) around the point x. Furthermore,
Pr ≤ Ps by assumption. Bearing in mind that we
are studying a point where s(x) = r(x), we can af-
firm that we will have pc[x, r(x)] = pc[x, s(x)]. Also,
ρg sinα r(x) = ρg sinα s(x) because both interfaces will
have the same effective gravity due to the inclination of
the cell. It is essential to note that overtaking can only
occur if pre(x) > pse(x). But we show next that this condi-
tion can never occur. Starting from the overtaking con-
dition we have that:

pre(x) > pse(x) ⇒ γ
d2r(x)

dx2
+ Pr > γ

d2s(x)

dx2
+ Ps.

But γd2r(x)/dx2 ≤ γd2s(x)/dx2 and Pr ≤ Ps, so that

pre(x) ≤ pse(x).

This contradiction proves that overtaking can never oc-
cur. This proves the existence of NPR in quasistatically
driven two-phase flow in disordered media for inviscid
fluids (negligible relaxation time).
Let us imagine now that we want to move the interface

from a pressure Pb to a pressure Pa. We will apply three
different pressure protocols illustrated in the left figure
in Fig. 3b. The first protocol will consist of maintaining
the pressure in Pb and increasing the pressure at the end
until reaching Pa. The second protocol will consist of
increasing the pressure at the beginning to Pa and staying
at that pressure. The third protocol shall consist of a
bounded non-monotonic trajectory between Pa and Pb.
If we perform this bounded pressure variation protocol
between Pa and Pb the fact that the system satisfies the
NPR, ensures that the configuration of the interface at
Pa will be the same in the three protocols. Taking into
account this and knowing that the system is deterministic
and rate-independent, we can say with certainty that the
system will present RPM. It is interesting to note that
if NPR would not be fulfilled, we could not state that
the final configuration of the interface was independent
of the pressure protocol used. The right figure in Fig.
3b shows the pressure-saturation curves of the pressure
protocols used, taking into account that the NPR holds.
In summary, we have demonstrated that the NPR, to-

gether with the fact that the system is deterministic and

Treball de Fi de Grau 3 Barcelona, March 2022



Memory properties of fluid invasion in disordered media Javier Roda Garćıa

rate-independent, implies that it verifies the RPM prop-
erty.

IV. DEMONSTRATION OF RPM TAKING
INTO ACCOUNT THE VISCOUS RELAXATION

TIME

Our objective now is to demonstrate the existence of
RPM in a more realistic case where the viscosity of the
fluid is taken into account. First of all, a time-dependent
term must be added to the balance equation that will
characterise the relaxation of the fluid after a change
in applied presure to its new equilibrium configuration.
This term is derived from the Navier-Stokes equations.
Working in the Stokes limit, where inertial effects are
negligible compared to viscous effects, and taking into
account that, for the most of the motion of the fluid is
in the x− y plane, the gap-averaged 2D velocity field in
the x− y plane of the cell is given by:

v⃗ = −κ

µ
∇⃗p,

where κ is the permeability of the cell and µ is the dy-
namic viscosity of the fluid. To introduce this expression
in the pressure balance equation, we assume that the
pressure gradient has its dominant component in the y-
axis direction, where ∂p/∂y = ∆p/h. The balance equa-
tion with the viscous pressure term will be then:

γ
∂2h

∂x2
− ρg sinα h+ ρgH + pc[x, h]−

∂h

∂t

µ

κ
h ≃ 0. (4)

This equation takes into account the viscous relaxation
of the front velocity. The relaxation will depend on the
fluid velocity ∂h/∂t, the interface height h, the cell per-
meability κ, and the fluid dynamic viscosity µ. It is im-
portant to notice that now the fluid height depends on
the position x and the time t.

To prove the RPM property in this case, let us suppose
again that we have the fronts r(x, t) and s(x, t). If (under
driving pressures Pr ≤ Ps) we assume that we have a
point where both interfaces are equal (r(x, t) = s(x, t)),
the NPR will have been violated. From here on, we will
prove that this does not happen.

For an overtaking to occur,

pre(x) > pse(x).

In this case we have the same conditions than in Sec.
III: pc[x, r(x, t)] = pc[x, s(x, t)] and ρg sinα r(x, t) =
ρg sinα s(x, t). Applying these conditions the previous
inequality implies:

γ
∂2r

∂x2
+ Pr −

∂r

∂t

µ

κ
r > γ

∂2s

∂x2
+ Ps −

∂s

∂t

µ

κ
s.

Furthermore, γ∂2r/∂x2 ≤ γ∂2s/∂x2, Pr ≤ Ps, so that

−∂r

∂t

µ

κ
r > −∂s

∂t

µ

κ
s.

Taking into account that µs/κ = µr/κ at point x, we can
say that:

∂s

∂t
>

∂r

∂t
. (5)

Based on the hypothesis that the interface r(x, t) has
overtaken the s(x, t), we achieve the expression (5). This
generates a contradiction because the velocity of s(x, t)
would be greater than r(x, t), and an overtaking could
not occur. It is interesting to note also that if we applied
the condition that the velocity of r(x, t) was greater than
that of s(x, t), i.e. ∂r/∂t > ∂s/∂t, in order to impose an
overtaking, we would obtain that pre(x, t) < pse(x, t) and
we would be falling into another contradiction. In con-
clusion, the validity of the NPR has been demonstrated
also when the viscous pressure of the fluid is taken into
account. Moreover, since the system is also determinis-
tic and rate-independent, we can state that it presents
RPM.
In order to understand the importance of viscous pres-

sure, the nonlinear pressure balance equation (4) has
been solved using a Runge-Kutta method programmed
in Fortran. To keep things simple, we did not take into
account the capillary terms (flat interface case). The pa-
rameters used to solve Eq. (4) numerically are used in
Ref. [14] for laboratory experiments. Using these real-
istic parameters and applying correctly the initial condi-
tions, the results shown in Fig. 4 are obtained. The equa-
tion has been solved for a given initial height h0 = 0.25 m
and with different angles. In order to move the interface
forward, the reservoir has been raised by only ∆H = 0.1
mm. In Fig. 4 we can see that the relaxation time of
the fluid decreases with increasing cell inclination. This
result makes sense since the more inclination the cell has
more effective gravity and it is easier to slow down the
fluid. During the relaxation, two different regimes can be
distinguished [13]. At short times the viscous term dom-
inates and h ∼

√
t (Washburn regime). At long times

the gravitational term starts to gain importance and the

FIG. 4: Diagram of the interface relaxation in the case of a
defect-free Hele-Shaw cell for different angles and with the
same initial height. The x-axis shows the elapsed time and
the y-axis the height h acquired by the interface.
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fluid height tends to saturate. The relaxation of the fluid
at long times has a negative exponential behaviour [14].
It is important to note that, for the angles studied, in
order for the fluid to reach the new equilibrium height
we would have to wait between 3000 and 5000 s (of the
order of one hour!). The steeper the Hele-Shaw cell is
inclined, the faster stability will be reached.

FIG. 5: Diagram showing the relaxation of the fluid at dif-
ferent heights and for a fixed angle (α = 5◦3′). The x-axis
represents the elapsed time and the y-axis represents h/hsat,
where hsat is the theoretical height that the fluid should reach
to stabilise.

In addition, the model predicts that a higher interface
will take more time to reach the equilibrium height. This
makes sense because a higher interface will have more
oil column under it and it will be harder for gravity to
stabilise the fluid. As can be seen in Fig. 5, the numerical
simulation confirms this hypothesis. For a given angle,

as the initial fluid height is increased, the fluid takes a
longer time to stabilise.

V. CONCLUSION

We have studied the hysteresis and memory properties
of a two-phase flow in a disordered medium (an “imper-
fect” Hele-Shaw cell [9]). Following Ref. [8], we have
shown that, in the case where the viscous pressure of
the fluid is not taken into account, the system presents
RPM. Furthermore, we have extended this result for the
first time to viscous fluids, and we have proved that
the system still exhibits RPM. From the numerical so-
lutions of fluid relaxation in a defect-free cell, we have
seen that the instantaneous relaxation approximation is
very crude. For a viscous fluid (about 50 times more
viscous than water), the times that must be waited to
reach the equilibrium height for the angles studied are
around one hour approximately. Due to this, we con-
clude that the viscous pressure is an important factor to
take into account to reproduce the experimentally mea-
sured pressure-saturation hysteresis cycles.
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