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The design of appropriate multifractal analysis algorithms, able to correctly characterize the scaling prop-
erties of multifractal systems from experimental, discretized data, is a major challenge in the study of such
scale invariant systems. In the recent years, a growing interest for the application of the microcanonical
formalism has taken place, as it allows a precise localization of the fractal components as well as a statistical
characterization of the system. In this paper, we deal with the specific problems arising when systems that are
strictly monofractal are analyzed using some standard microcanonical multifractal methods. We discuss the
adaptations of these methods needed to give an appropriate treatment of monofractal systems.

DOI: 10.1103/PhysRevE.74.061110 PACS number�s�: 02.50.�r, 05.40.�a, 05.10.�a, 05.45.Df

I. INTRODUCTION

Multicritical and multiscaling systems have become an
active research area in nonlinear physics for the last decades.
Systems obeying power laws are being reported on a steady
basis since a long time ago �1–9�. In this context, the study
of critical exponents is a major issue for several reasons. For
instance, in a phase transition, there are a large number of
relations between the exponents arising from fundamental
thermodynamics and statistical mechanics considerations
that go beyond any particular system. Close to a critical
point, the details on the microscopical dynamics of the sys-
tem become irrelevant and the macroscopic features are pre-
cisely dominated by these exponents.

The paradigm of a scale-invariant, self-similar system is a
fractal. The behavior under changes of scale of a physical
variable defined on a fractal set usually follows a power law
with an exponent related to the fractal dimension DF. There-
fore, only one parameter, DF, is required to characterize the
scaling properties of the system. However, there are many
examples of complex systems in biology, economy, physics,
etc., where this simple description is no longer valid. To
characterize them we need a continuous set of exponents, the
so-called singularity spectrum. Each one of these
exponents—called singularity exponents—gives information
about the local degree of regularity or singularity at each
point of the system. In general, systems behaving in this way
are named multifractals.

There are two main different theoretical formalisms to
analyze the scaling properties of fractal and multifractal sys-
tems. The classic approach, which we will call canonical
formalism �CF�, has only a statistical character. The singu-
larity exponents are determined from an averaging process of
relevant quantities over different scales. In contrast, the al-
ternative approach, the microcanonical formalism ��CF�,
has a geometric character that allows a characterization of
the singularity exponent at each point of the system. The

�CF has suffered an important advance in the last years as a
consequence of some recent theoretical results �10–12�. It
has several advantages that make it particularly interesting
with respect to the CF. Thus, �CF analysis requires less sta-
tistics �less data points� to achieve a characterization of simi-
lar quality �13� and allows a precise geometrical classifica-
tion of the fractal components of multifractal signals �11�. In
addition, by the application of �CF analysis it has been
shown that multifractal signals can be reconstructed from the
most singular points �12�, and eventually �CF methods can
be used in forecasting of multifractal time series.

To apply �CF analysis, it is essential to obtain precise
estimates of the singularity exponents at each point, as the
characterization of a multifractal set is extremely sensitive to
biases and errors on them. In practice, when processing mul-
tifractal signals from real systems, many limitations on the
data, including discretization and sampling, make the task of
assessing the correct exponents a challenge.

The previous considerations open some additional inter-
esting issues: There are several methods to perform multi-
fractal analysis based on the �CF, but it is not clear how they
work when dealing with monofractal systems. These meth-
ods are explicitly designed to efficiently assess a continuous
spectrum of exponents, but it is not evident whether they are
able to collapse this spectrum to a single point. In fact, if one
of these methods fails to give the fractal dimension of the
signal or it gives a wide spectrum of exponents, then one
must be very careful when applying it, since some wrong
conclusions could arise from an inappropriate analysis, e.g.,
to consider that the system is not monofractal but multifrac-
tal. In addition, as we will see along this paper, the study of
sampled, discretized data representing monofractal systems
raises some nontrivial signal processing issues that can affect
both CF and �CF analysis methods. For instance, some ad-
aptations are needed to deal with signals of fractal support.
Also an important issue appears when the standard multifrac-
tal measure is ill behaved, as it induces a global shift on the
singularity exponents. It is important to provide a mechanism
able to correct the shift as, in practical situations, one has no
prior idea about the scaling features of the analyzed signal.
We will consider this problem in detail.

The goal of this paper is hence twofold. First, to study the
validity of the �CF for the analysis of monofractal systems;
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we will use different CF and �CF analysis methods and
discuss their reliability, advantages, and limitations—in par-
ticular, in terms of their ability to obtain a single point or
very narrow range of points in the singularity spectra. Sec-
ond, to present a discussion on the adaptations to deal with
signals defined on fractal supports and on the generalization
of multifractal measures when the standard definition is ill-
behaved.

This paper is organized as follows: In the next section, we
briefly introduce several standard methods of multifractal
analysis based on the �CF. In Sec. III we introduce two
analysis functionals, namely the linear increment and the
measure. Also, we discuss some generic adaptations needed
by the methods to correctly analyze the signals. Section IV is
devoted to the introduction of the monofractals analyzed in
this paper, while in Sec. V we show the obtained results.
Finally, in Sec. VI we present our conclusions.

II. MULTIFRACTAL METHODS BASED ON THE �CF

The �CF allows one to characterize the local scaling fea-
tures of multifractal signals. In order to unveil this local
structure, singularity analysis methods are applied. Given a
signal s�t�, singularity analysis consists of assigning to each
point t a singularity exponent h�t� �11,14�. We will denote
the singularity manifold Fh as the set of points sharing the
same value of singularity,

Fh � �t : h�t� = h� . �1�

The singularity manifolds Fh are sets of very irregular nature,
and they typically are of fractal character, with nontrivial
fractal dimensions. For that reason, the singularity manifolds
Fh are also usually known as fractal components. We will
denote by D�h� the fractal dimension of the manifold Fh.
When D�h� is regarded as a function of h it is called the
singularity spectrum of the signal.

The signal s�t� is analyzed by means of an appropriate
operator Tr that acts on s and returns a new function Trs�t�.
The operator depends on a scale variable r, which character-
izes the locality of its actuation. To assign to each point t a
singularity exponent h�t�, the following relation must hold:

Trs�t� = �T�t�rh�t� + o�rh�t�� . �2�

We will say that the signal s�t� is multifractal in the �CF
sense if there exists a functional Tr such that Eq. �2� is veri-
fied and the obtained singularity spectrum D�h� is a convex
curve, namely, it has negative second derivative for all h.
This second condition is a consequence of Jensen’s inequal-
ity �15�, meaning that the distribution of Trs can be directly
connected with the existence of an infinitely divisible multi-
plicative cascade �16�. In fact, the singularity spectrum com-
pletely characterizes the statistics of the multiplicative pro-
cess �16–19�. Also, we can obtain the singularity spectrum
from the statistics of the multiplicative process, so that we
can establish a bidirectional connection between statistical
and geometrical self-similarity.

The implementation of �CF analysis can be done follow-
ing different strategies. Each one has its own difficulties and

advantages when they are used in the analysis of monofractal
systems. In our work, we have considered two �CF methods:
the local singularity method and the punctual singularity
method. We have also included the moment method, which is
proper to the CF, to highlight the differences between geo-
metric and statistical characterization. A CF method can be
applied in the context of �CF because a system which is
multifractal in the �CF is also multifractal according to the
CF �19�. In the following, we will briefly see how to apply
these methods to obtain the singularity spectrum but, for a
more detailed revision, we refer the reader to Ref. �13�.

The main point common to all these methods is to deter-
mine the probability �r�h� of observing a singularity h at
scale r, something that is completely determined by the frac-
tal dimension D�h� of the associated fractal component Fh

�20�, namely,

�r�h� � rd−D�h�, �3�

where d is the topological dimension of the embedding space
of the signal. Fractal sets cannot have a dimension higher
than that of their embedding, so D�h��d ∀h. In this paper,
we assume d=1 although all of the following methods can be
straightforwardly extended to analyze d-dimensional signals.

A. Local singularity method

In this method, we obtain an estimate of the singularity
exponent h�t� at any point t through a log-log linear regres-
sion of Eq. �2� in a range of scales. Then, the empirical
distribution �r0

�h� is estimated from the histogram of experi-
mental values of h at the resolution scale r0. In fact, any
scale can be used but, at the resolution scale r0, we have
more points to evaluate the histogram. Taking Eq. �3� into
account, we can derive the singularity spectrum, namely,

D�h� = d −
ln��r0

�h�/�r0
�h1��

ln r0
, �4�

where �r0
�h1� is an appropriate constant that allows us to

remove the implicit normalization factor in Eq. �3�. To deter-
mine this constant, we require that D�h1�=d so that �r�h1�
does not depend on the scale and allows us to normalize the
distribution �r�h�. Notice that if such singularity h1 exists, it
is necessarily the modal point �i.e., the maximum of the sin-
gularity distribution�, as no fractal component Fh can have a
dimension D�h� higher than d. Therefore, the normalization
becomes trivial: we normalize the histogram by its maxi-
mum. The question is if such a maximum has actually asso-
ciated dimension D�h1�=d. For signals with total support,
there is at least one fractal manifold Fh1

that attains the maxi-
mum dimensionality, i.e., D�h1�=d �21�. For signals having
strictly fractal support, i.e., a support with fractal dimension
Dsupp�d, we can analyze the whole real domain of t and
formally assign the value h1�t�=� to all the points outside
the support �which means that s�t�=constant on those
points�. Then Fh1

is a total support manifold with associated
dimension D�h1�=d and the proposed normalization also
works.
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B. Punctual singularity method

This method is an extreme simplification of the local sin-
gularity method: singularities are estimated in a very crude
fashion, from the behavior of the operator at the minimum
scale r0 instead of a linear regression. Namely, we assume
that r0 is so small that ln �T in Eq. �2� is negligible in com-
parison with ln r0. We obtain the punctual singularity expo-

nent estimate, h̃�t�, given by

h̃�t� �
ln Tr0

s�t�

ln r0
. �5�

As a matter of fact, for many real signals with good enough

resolution, h̃�t� is a good estimate of h�t� �13�. Then, we
proceed as in the previous method: we compute the empirical

distribution of h̃ and from it we apply the histogram formula
given in Eq. �4� to obtain the singularity spectrum D�h�.

Both the local singularity method and the punctual singu-
larity method obtain the singularity spectrum from the histo-
gram of singularity exponents. This fact allows us to estimate
the error bars of the spectrum, by considering the sampling
error associated to each bin of the histogram. If we consider
an uncertainty of three standard deviations �about 99% of
confidence�, the error bars of the singularity spectrum are
given by

	D�h� =
3�Nh

ln r0
, �6�

where Nh is the number of events in the bin that corresponds
to the singularity exponent h. The reader can find a step-by-
step proof of the previous formula in Ref. �13�.

C. Moment method

This is the classical method, based on the CF
�16,18,22–25�, but also applicable under the �CF frame-
work. Parisi and Frisch’s formula �19� establishes a link be-
tween the global, statistical exponents associated to the CF
approach and the local, geometrical exponents associated to
�CF. In the following lines we schematically reproduce the
Parisi and Frisch proof which renders this link explicit.

When computing the order p moments of the variable Trs
we have

	
Trs
p� �� dhrd−D�h�rph. �7�

When r is small enough, the integral will be dominated by
the minimum value of the exponent �d−D�h�+ ph�, so we
obtain that

	
Trs
p� � r
p, r � 1, �8�

where


p = infh�ph + d − D�h��; �9�

that is, the canonical exponents 
p are given by the Legendre
transform of the singularity spectrum D�h�. Equation �9� is
the famous Parisi and Frisch formula �19�. If the singularity

spectrum is convex, we can invert the Legendre transform
and express the singularity spectrum as a function of the
canonical exponents,

D�h� = infp�ph + d − 
p� . �10�

For the validity of this method, we need to make an ex-
plicit appeal to the convexity of the function D�h�. As we
require that signals in the �CF possess convex spectra, this
limitation is not constraining our study.

III. FUNCTIONALS

Different choices for the functional Trs are possible.
Similar functionals usually lead to the same singularity char-
acterization h�t� of the signal, but sometimes not all of them
lead to exactly the same results. In the next paragraphs, we
describe the functionals used in our work.

A. Linear increment

A commonly used functional is the linear increment, 
	rs
,
given by

Trs�t� = 
	rs
�t� � 
s�t + r� − s�t�
 . �11�

This functional has evidenced the microcanonical multifrac-
tal scaling in the sense of Eq. �2� when applied to several real
world systems �17,24�. However, this is true only when the
signal under analysis belongs to the very restrictive class of
multiaffine functions �22�, which are a subset of microca-
nonical multifractals. A classical example of experimentally
observed multiaffine function is given by field velocities re-
corded in flows under fully developed turbulence �17�. The
main advantage of multiaffine functions is the closeness to
classical concepts in functional analysis as Hölder expo-
nents; in fact, a multiaffine function s�t� with singularity ex-
ponents h�t� has a Hölder exponent at each point t that coin-
cides with h�t� so, from Eqs. �2� and �11�, it verifies that


s�t + r� − s�t�
  rh�t�, �12�

where the symbol � means asymptotically proportional to,
as r→0, so that Eq. �12� has a meaning equivalent to Eq. �2�,
but in a simplified notation.

In practice, multiaffinity is often impossible to assess due
to the presence of long-range correlations which mask large
exponents �21,26�. Nevertheless, in some cases, it is still pos-
sible to extend the class of multiaffine functions using a
wavelet-based functional which generalizes the linear incre-
ment, namely,

Trs�t� = T�s�t,r� � � dt�s�t��
1

rd�� t� − t

r
� , �13�

where the symbol T�s�t ,r� stands for the classical definition
�27,28� of the wavelet projection of the signal s on the wave-
let � at the point t and scale r. The wavelet � must be
required to have zero mean, so that it consists �at least� of a
positive and a negative part, and hence it realizes a weighted
difference, generalizing that of the linear increment and fil-
tering the effects of long-range correlations �21�. Wavelet-
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based multiaffine analysis has allowed one to characterize
the multifractal structure of many different systems
�21,26,29–32�, although only in the context of the CF.

B. Multifractal measure

Another possibility to attain a geometric microcanonical
characterization comes from the use of multifractal measures
�23,24�. A measure � is a -additive function operating on
sets A such that it assigns a positive value to each set,
��A��0 ∀A. A measure that has been reported to unveil
�CF multifractal properties for many different signals
�11,33,34� is the gradient modulus measure, which is given
by

��A� = �
A

dt�
�s
�t�� �14�

for any set A. This definition allows one to define a measure
functional,

Trs�t� =
1

rd�r�t� �
1

rd�
Br

dt�
�s
�t�� , �15�

where Br�t� is the ball of radius r and centered on t, and �r�t�
stands for the measure of that ball, ��Br�t��. Again, in order
to filter long-range correlations and provide a smooth inter-
polation scheme, it is convenient to generalize the definition
of the functional above using wavelet projections of the mea-
sure �11,35,36�, in a similar way to what was done before
with linear increments,

Trs�t� = T�
�s
�t,r� � �
−�

�

dt�
1

rd�� t� − t

r
�
�s
�t�� .

�16�

Contrary to the wavelet-based generalization of linear incre-
ments, here the wavelet � is not required to have zero mean
and positive functions can be used �11�. Wavelet projections
of multifractal measures have allowed one to unveil �CF
multifractality when applied to systems as diverse as natural
images �11�, econometric time series �37�, meteorological
images �38�, and oceanographical satellite images �34�.

The reader can notice that the scaling dependence on r for
the measure definitions of Tr, Eqs. �15� and �16�, will differ
in a factor r from the linear increment definitions of Tr, Eqs.
�11� and �13�, due to the fact that the analyzed quantity in
measures is the gradient of the signal, while in linear incre-
ments it is the signal itself. Hence, a shift on +1 should be
expected in the estimation of the singularity exponents h�t�
�11,31�.

A good criterion to use a functional or another is to de-
termine the quality of a regression among several scales in
Eq. �2�. In the following, we will deal with these two kinds
of functionals that we have presented, namely the linear in-
crement, Eq. �11�, and the measure functional, Eq. �15�; and
also with their wavelet extensions, Eqs. �13� and �16�, re-
spectively. These are the most commonly used functionals
and have been shown to work in many practical situations.
We will see in each instance the appropriateness of each

functional according to the signal to be analyzed and the
adaptations needed.

C. Wavelet processing of fractal sets with nontotal support

As discussed, wavelet projections were introduced to filter
noise and long-range correlations. However, they introduce
some spatial dispersion which may be a drawback when ana-
lyzing monofractals with fractal support. The wavelet projec-
tions of points close to any support point will have a small
but nonzero contribution, and so the point could be errone-
ously assigned a large �but not infinity, as it should be� value
of singularity exponent. Nevertheless, this problem can be
simply circumvented if we isolate the support points and
then restrict the study of wavelet projections to these points.
Extracting the support is a simple task: zero-gradient points
are outside the support, all the other points belonging to it
�mathematically speaking, the support is the topological
closing of the set of non-null gradients but, over discretized
signals, taking the closing is something more formal than
effectively real�. When numerically separating support and
nonsupport points, a small but finite threshold must be used
to decide if the gradient is negligible. It may happen that
some points in the support with very small gradient are in-
correctly considered as nonsupport points but, in practice,
the observed proportion of incorrectly classified points is
very low and does not affect the final result.

D. Generalization of the measure for ill-behaved gradients

A standard finite-difference discretization at resolution
scale � of the multifractal measure defined in Eq. �15� is the
following:

�r
����t� = �

i=1

N

�
����s�t + i��
 , �17�

where N=r /� is the effective number of points that contrib-
ute to the measure. The gradient, �s�t�, is approximated at
resolution � as

����s�t� =
	�s�t�

�
, �18�

where 	�s�t�=s�t+��−s�t�.
For well-behaved gradients, all the dependency on � is

removed when limits are taken, i.e.,

����s�t� →
�→0

� s�t� �19�

and �r
��� will converge to the actual measure �r as �→0.

However, this convergence requires that the gradient �s is
well defined, at least in a distributional sense. That is, �s can
diverge to � at some points, but it must follow a well-defined
distribution. In other words, the curve 
�s 
 �t� can diverge in
a zero-measure set of points, but it must be integrable.

Consider two measures defined on the same interval, ap-
proximated with two different scale quanta �, ��. If �s is
well defined, both converge to the same quantity, namely,

�r
����t� = �r

�����t�, �,�� → 0 �20�

and both approximate �r�t�.
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However, when the gradient �s is not well defined, its
discrete estimation ����s does depend on �. This is typically
the case of fractal functions with infinite curve length, i.e.,
infinite �r. If �s is not defined in a distributional sense,
neither is �r, and the numerical, finite-size estimates of the

measure at a given point t, �r
����t� and �r

�����t�, cannot con-
verge to a fixed quantity,

�r
����t� � �r

�����t�, �,�� → 0. �21�

Therefore, �r
��→0��t� will not scale as r1+h�t� as expected. On

the contrary, it usually grows proportionally to the number of
points N �bulk scaling�, leading to an incorrect estimation of
singularity exponents, hest�t�=0.

To solve this problem, one option would be to scale the
infinitesimal � according to r, i.e., �=r /N, thus leading to the
right scaling in r, �r

����t�r1+h�t�. However, the signals to be
analyzed are sampled at a fixed resolution scale � and we
cannot change it.

We can proceed in a different way, providing a redefini-
tion of the measure, well behaved and giving access to the
true scaling properties of the signal. In order to give a physi-
cal meaning to the measure, we must require that �r

���

=�r
���� as � ,��→0. So, we propose to regularize the measure

in the following way:

�r � lim
�→0

�r
���

N� , N =
r

�
, �22�

where � is an exponent to regularize the behavior of �r. The
value of � is not known a priori, but can be easily estimated
from two different discretizations, � and ��, which are as-
sumed to be very small,

�r
���

N� =
�r

����

N�� �23�

with r=N�=N���. The expected value of �r
��� is

	�r
���� = N1+hest	��

���� , �24�

where hest is the incorrectly estimated singularity exponent.
From Eq. �17�, it follows that 	��

����= 	
	�s
� and taking ex-
pected values on Eq. �23� we obtain that

��−hest−1	
	�s
� = ���−hest−1	
	��s
� �25�

so we can easily estimate � from

� = 1 + hest −
ln�	
	��s
�/	
	�s
��

ln���/��
. �26�

Notice that we can always apply the generalized measure
definition, Eq. �22�, that is, we do not need to know a priori
whether the signal s has an undefined gradient or not. If the

standard measure is well behaved �r
��� and �r

���� directly ap-
proximate �r and, from Eq. �23�, it follows that �=0 and the
correct singularity exponent hest=h is directly estimated �no-
tice that h is the singularity exponent referred to the gradient,
not to the signal�. Therefore, we will always make use of the
generalized definition, Eq. �22�.

IV. MONOFRACTAL DATASETS

We will deal with two different types of synthetic mono-
fractal signal, commonly referred to in the literature. The
first type is the p� order Q-adic Devil’s staircase �p� DS�; the
second one is the fractional Brownian motion �fBm�. We
have chosen these because they are very simple signals but
have enough richness and complexity to lead to interesting
processing issues.

A. Definition of p� DS

Signals of this type �1� are generated by integrating the
uniform p� Cantor measure Kp� in the interval �0,1�. Let us
define the notation first. Q will be an integer number Q�N.
The vector p� is a Q-dimensional vector for which each com-
ponent can only take the value 0 or 1, p� �Z2

Q. We define by
p the norm-1 of p� , that is, the total number of 1’s in p� . We
will define the measure Kp� as the limit of the sequence of
measures Kp�

n, which are successive approximations to the
final measure, namely,

Kp� = lim
n→�

Kp�
n . �27�

The measures Kp�
n are obtained by successive subdivision

of each subinterval in new Q subpieces, from which Q− p are
removed and p kept. In a more formal way we have

Kp�
n =

Qn

pn �
i1,i2,. . .,in=1

Q

pi1
pi2

. . . pin
��0.i1i2. . .in,0.i1i2. . .�in+1��,

�28�

where �A is the set measure associated to the set A, �A�B�
= 
A�B
. The limit measure Kp� is then a unitary measure
with support on the p� Cantor set, namely the set such that the
Q-adic representation of its points does only contain the dig-
its corresponding to the non-null coordinates of p� . A visual
realization of this generating process is presented in Fig. 1.

In addition to the classical, deterministic definition of the
p� Q-adic Cantor measure Kp� given above, we can also define
the random p Q-adic Cantor measure Rp;Q, just by choosing
the p non-null components of the vector p� at random at each
step.

The p� Devil’s staircase �p� DS� is the continuous function
s�t�, t� �0,1�, defined as the p� Cantor measure of the inter-
val �0, t�,

s�t� � Kp���0,t�� . �29�

We have an analogous expression for the random p Q-adic
DS, obtained by integrating the random p Q-adic Cantor
measure.

FIG. 1. �Color online� Iterative steps of generation of a �1,0,1�
Cantor set.
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DS have some relevant features, if 0� p�Q, it is nonde-
creasing, s�0�=0, s�1�=1, and it has zero derivative in all the
points but a zero-measure set. The trivial cases p=0
�⇒s�t�=0� and p=Q �⇒s�t�= t� are degenerated, so we will
ignore them. In Fig. 2 we show a deterministic and a random
DS.

Each point in a DS can be associated with a singularity
exponent, depending on whether the point belongs to the
support of the measure or not. Let Sp� be the support of the
Cantor measure, Sp� =supp�Kp��; hence, if t belongs to the sup-
port, t�Sp�, we have that


s�t + r� − s�t�
  rDsupp ∀ r �30�

with a Hölder exponent Dsupp= ln p / ln Q that coincides with
the Hausdorff dimension of the support Sp� �20�. On the con-
trary, if t�Sp�, we have that there is a finite r0�0 such that


s�t + r� − s�t�
 = 0 ∀ r � r0 �31�

so the Hölder exponent associated to these points is �.

B. Definition of the fBm

Fractional Brownian motions �fBm’s� are natural exten-
sions to Brownian motions. They are stationary continuous
random processes with Gaussian marginal distributions and
power law correlations. Namely, s�t� is a fBm of index H if

�i� with probability 1, s�0�=0 and s�t� is a continuous
function of t.

�ii� ∀t�0 and ∀r�0, s�t+r�−s�t� is Gaussianly distrib-
uted, with mean 0 and dispersion rH.

The fBm generalizes the classical concept of Brownian
motion to the cases in which disjoint increments are posi-
tively or negatively correlated. The index value H=1/2 is
associated to the classical uncorrelated Brownian motion,
while H�1/2 represents processes in which increments are
positively correlated, and H�1/2 leads to processes in
which increments are negatively correlated. In Fig. 3 we
show examples of negatively correlated, uncorrelated, and
positively correlated fBm’s.

Each point in a fBm can be associated with the same
Hölder exponent, which coincides with H �20�; this follows

from the condition �ii� in the definition above. Hence, we
have that


s�t + r� − s�t�
  rH. �32�

This result is also required, as a strictly necessary require-
ment, from the continuity condition �i�. Namely, the continu-
ity allows one to subsplit the interval �t , t+r� as n subinter-
vals, each one contributing a difference to the global
difference, all random but all with dispersion �r /n�H. The
scaling rH is a result of a thermalization when n→�. For
that reason, when dealing with discretized data with a finite
number of possible subdivisions, deviations from the central
value H should be expected.

In our work, we have generated fBm signals using the
Wood-Chan algorithm �39� which is an exact generation
method. By “exact” we mean that the increments, Eq. �32�,
are exactly Gaussianly distributed, even at the resolution
scale �that is, increments at any level follow a Gaussian dis-
tribution, not a distribution which converges to a Gaussian
just as a limit behavior�. In addition, the Wood-Chan method
is not greatly affected by numerical instabilities, something
that plagues other generating methods, especially when used
to generate negatively correlated signals.

In the case of fBm, the gradient �s is not well defined.
The discrete estimate of the gradient at scale �, ����s, as
defined in Eq. �18�, has a normal distribution with mean 0
and dispersion �H−1, which becomes undefined when �→0
�as H�1, it has infinite zero-order moment�. Therefore, to
avoid wrongly estimated scalings in the analysis with mea-
sure functionals, we must use the generalized definition of
the measure presented in Sec. III D. In fact, the naive defi-
nition of the measure leads to an incorrect scaling �rr1

instead of �rrH as expected. We give a theoretical proof of
this wrongly estimated scaling in the Appendix.

V. RESULTS

We have used the three methods presented in Sec. II and
the two kinds of functional Tr of Sec. III, namely the linear
increment and the measure �also their wavelet-based equiva-
lents, when needed�, to analyze several ensembles of Devil’s
staircases and fractional Brownian motions. The wavelet-
based definitions of the functionals allow us to filter noise
and avoid local fluctuations in the estimation of h�t�. In the
local singularity method we require the best possible esti-
mate of h�t� at each t so that, to decrease the influence of
noise and numerical instabilities, the wavelet-based defini-
tions, Eqs. �13� and �16�, should be used. We use the first
derivative of the Gaussian as an analysis wavelet for the
generalized linear increment and a simple Gaussian for the
measure functional.

FIG. 2. �Color online� Deterministic �1,0,1� DS �left-hand side�
and random p=2 3-adic DS �right-hand side�.

FIG. 3. �Color online� fBm with H=1/4 �left-
hand side�, H=1/2 �center�, H=3/4 �right-hand
side�.
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For the punctual singularity method, we analyze only at
the scale of resolution r0 with the simple definitions; the use
of wavelets has almost no effect, as they extend over a very
small scale, and hence the wavelet projections give almost
the same result as the nonwavelet functional from where they
are derived. In addition, linear increments and measures are
essentially identical when this method is applied to dis-
cretized data: the gradient becomes a finite difference of
scale r0 �i.e., identical to a linear increment� divided by the
scale step r0, so that both functionals give exactly the same
estimates of the exponents, up to the factor +1 discussed in
Sec. III, which is due to the presence of the 1/r0 factor in the
definition of the gradient. Finally, regarding the moment
method, wavelets are unneeded, as we only need a statistical
determination of the singularity exponents, not a precise es-
timate at each point. Therefore, we make use of the simple
definitions, Eqs. �11� and �15�.

In the local singularity method and the moment method, a
scale range from 128r0 to 32 768r0 exponentially sampled
has been used. The smallest scales have not been analyzed to
avoid discretization effects.

We include the error bars of the spectra of the microca-
nonical methods, using the formula �6�. Notice that these
error bars express only the statistical error, but do not ac-
count for systematic deviations, whose nature is discussed
later on.

A. Study of the p� DS

For the experiences concerning the Devil’s staircases,
we have generated two different ensembles. The first one
consists of a single deterministic �1,0,1� DS. The second one
consists of 10 different random p=2 3-adic DS. In both cases
we have generated series of exactly 14 348 907 points
�n=15 scales of generation�. Figure 4 shows the spectra ob-
tained for each method and functional.

1. Local singularity method

As discussed in Sec. III C, we restrict the wavelet projec-
tions to the numerically determined support of the p� DS.
However, estimated singularity exponents are affected by
some dispersion. The singularity spectra peak around the cor-
rect value with a relatively small dispersion, a bit greater for
random DS than for deterministic DS, for both linear incre-
ment and measure functionals. The dimension at the peak is
slightly smaller than its theoretical value D, the fractal di-
mension of the DS, because dispersion in the singularity ex-
ponents splits the fractal support into various submanifolds,
all of less fractal dimension than the support. When we con-
sider the manifold formed by the union of all these subsets
�by taking a coarser binning in the histogram of singularities�
we indeed recover the actual dimension D.

2. Punctual singularity method

In this case, this method attains the best performance, as it
achieves almost perfect estimations of the singularity spectra
for both deterministic and random Devil’s staircases. This is
due to the fact that, at resolution level, r0, the operator Trs
only takes two values, 1 and 0. The set of nonzero points
coincides exactly with the support. This is a bit unphysical
situation, but certainly advantageous in this case.

3. Moment method

When the moment method is applied to a generic multi-
fractal signal, the range of moments used in the analysis
must include values of p large enough to ensure that the tails
of the singularity spectrum D�h� are retrieved. According to
Eq. �9�, large-order, negative moments correspond to the
right tail of D�h� and large-order, positive moments to the
left tail, due to the convexity of the 
p vs p curve discussed
in Sec. II C. For monofractals, the spectrum consists of a
single point and the curve 
p is always a straight line. For the

FIG. 4. �Color online� Estimated singularity spectra D�h� computed with the local singularity method �left-hand side�, the punctual
singularity method �center�, and the moment method �right-hand side�, for the �1,0,1� DS �first row� and the random p=2 3-adic DS �second
row�. The spectra are estimated with linear increments ��� and multifractal measures ���. The circle indicates the theoretical singularity
exponent and associated Hausdorff dimension.
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particular case of DS, the slope of the curve 
p is D for linear
increments, Eq. �11�, and D−1 for measures, Eq. �15�.

Experimental 
p, either using linear increments or mea-
sures, exhibit a loss of convexity at negative, large-order
moments. For any multifractal system the curve 
p vs p must
be convex, as this is a direct consequence of Jensen’s in-
equality �see discussion in Sec. II�. Therefore, a concave
zone must be interpreted as a numerical artifact due to loss of
accuracy and hence we need to truncate the curve 
p at least
at the inflection point pi. The value of pi depends on the size
of the generated signal, although pi increases in absolute
value at a very slow fashion with the total number of points

in the series. An example of resulting 
p curve, shown in Fig.
5, indicates that it seems appropriate to stop at order −1 to
avoid the artificial concavity zone, even if that restricts the
analysis to the central part of the singularity spectrum.
Therefore, the range from p=−1 to p=8 has been analyzed.

The estimated spectra are pointlike, with a small disper-
sion for both linear increment and measure functionals. Al-
though dispersion is equal to or less than in the local singu-
larity method, the spectra do not seem to follow well-defined
curves. The peak of the D�h� curves is very difficult to lo-
calize, so neither the singularity exponent nor the fractal di-
mension can be precisely estimated.

B. Study of the fBm

For this study, we have generated three ensembles of frac-
tional Brownian motions, each one associated to exponents
H=1/4, H=1/2, and H=3/4. The three ensembles consist of
10 series, of 16 777 216 points each, generated through the
Wood-Chan algorithm. Figure 6 shows the spectra obtained
for each method and functional.

Although theory predicts that increments of the continu-
ous fBm depend on the scale parameter r as a power law of
Hölder exponent H for any point in the series, as shown in
Eq. �32�, this result is a consequence of the continuity and
hence, when dealing with discretized signals, finite resolu-
tion effects are relevant. For discretely generated series, lin-
ear increments are not constant but follow a distribution �in

FIG. 5. �Color online� 
p computed with the moment method for
the �1,0,1� DS.

FIG. 6. �Color online� Estimated singularity spectra D�h� computed with the local singularity method �left-hand side�, the punctual
singularity method �center�, and the moment method �right-hand side�, for the fBm of H=1/4 �first row�, H=1/2 �second row�, and
H=3/4 �third row�. The spectra are estimated through linear increments ��� and multifractal measures ���. The circle indicates the
theoretical singularity exponent and Hausdorff dimension.
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fact, they are distributed as the absolute value of a Gaussian
variable with dispersion rH�. Any �CF method will reflect
this residual random character of the linear increments, so
the obtained singularity spectra will always have some dis-
persion, decreasing with the series size. This dispersion ef-
fect becomes strongly evident when linear increments are
used for all the methods, with all the spectra peaking at the
correct value. Measure functionals provide better results, as
the spectra exhibit smaller dispersions than those obtained
using linear increment functionals. Notice that measure func-
tionals cannot be defined in the standard way, as the fBm
measure is ill behaved, so the generalized definition pre-
sented in Sec. III D has been used.

1. Local singularity method

The measure functional gives very nice estimates of delta-
like singularity spectra under the application of this method,
with the peak exactly on the theoretical singularity exponent
H. The linear increment functional induces very large dis-
persed spectra, but also peaking in the right value. Regres-
sions in Eq. �2� with the linear increment functional are
found to be of very poor quality, meaning that the linear
increment functional is not able to unveil �CF multifractality
for this kind of signals. This is not surprising, as the same
happens with some real-world multifractal signals �40�. The
origin of dispersion is due to numerical limitations, as the
asymptotical behavior of Eq. �2� is not numerically achieved
with this functional �corrective terms can be important if the
functional does not filter them�.

This effect can be theoretically studied: As shown in
Sec. IV B, the linear increments are Gaussianly distributed,
	rs=N�0,r2H�, so

ln
	rs
�t� = H ln r + ln
n�t�
 , �33�

where n�t� is a N�0,1� random variable. A linear regression
of ln
	rs
 vs ln r �see Fig. 7� would retrieve the singularity
exponent as the slope of the regression line, with an estima-

tion error depending on the fluctuations of the ln
n�t�
 term.
Although the average regression approaches the right
exponent—in fact, all of the obtained singularity spectra ex-
actly peak in H—the common case is a poor quality regres-
sion with a wrongly estimated singularity exponent, leading
to the dispersion observed in the singularity spectra. The
uncertainty in the regression can be estimated by considering
the term ln
n�t�
 as an added noise. Although it is not Gauss-
ian, least squares minimization has been used in the regres-
sion, so the uncertainty of the slope derived from least
squares will be approximately the dispersion in the singular-
ity exponent. Hence,

H
2 =

1

N�H2 +
12n�

2

�ln
rmax

r0
�2� , �34�

where n�=ln
n�t�
, n��1.11. The number of regression
points N is limited by the scale range rmax/r0, as a scale step
smaller than 2 supposes that some regression points are iden-
tical and uncertainty cannot be reduced. Then, for a fixed
scale step, N� ln

rmax

r0
and, since H2�12, H approximately

behaves as N−3/2. That is, H is reduced as the scale range
grows, but at a very slow pace.

In Fig. 8 we show the spectra of the H=1/4 ensemble
analyzed with different scale ranges. One can see that the
obtained spectra slowly converge to the single-point theoret-
ical spectrum as the scale range grows, at the expected rate.

2. Punctual singularity method

The obtained spectra have a nicely estimated, deltalike
left tail, with the peak in the correct singularity exponent.
However, the right tail is linearized instead of having a sharp
decay. This problem is very common in this method; it con-
cerns the mode smallness issue discussed in Ref. �13�, and
has its roots in the limitation to assess very regular behaviors
of the signal �that is, the ones associated to large values of

FIG. 7. �Color online� Example of an experimental ln
Trs
 vs
ln r plot, used to retrieve the singularity exponent in the local sin-
gularity method. Trs is a wavelet extension of the linear increment
and the analyzed signal is a H=1/4 fBm. The dots correspond to
observed data points, which significantly deviate from a straight
line. The dashed line is the theoretical regression line, while the
continuous line is the actual regression line, corresponding to an
exponent h=0.19.

FIG. 8. �Color online� Estimated singularity spectra D�h� com-
puted with the local singularity method, using wavelet projections
of linear increments, for a fBm of H=1/4. The greatest scale
reached is 10+1 ���, 10+2 ���, 10+3 ���, 10+4 ���, and 10+5 ���
expressed in units of the resolution scale r0. Inset, log-log regres-
sion showing that the width at half-height of the spectrum as a
function of the logarithm of the scale range, N, approximately de-
cays as a power law of exponent −1.5, as expected.
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h�t�� when the method does not take into account the corre-
lation with neighboring points at different scales. Only meth-
ods processing information at several scales, as the other
two, can accurately resolve the right tail of singularity spec-
tra.

As in the local singularity method, the empirical disper-
sions in the spectra can be theoretically studied. At the reso-
lution scale, r0, both the linear increment and the measure are
absolute values of Gaussian variables of dispersion r0

H �for
the linear increment� and r0

H−1 �for the measure�. Therefore,
in application of Eq. �5� we obtain that singularity exponents
are distributed as logarithms of Gaussian variables, and the
spectra are proportional to the logarithms of these distribu-
tion functions. We have observed that these curves exactly
coincide with the numerically estimated ones �the singularity
spectra shown in Fig. 6�, hence the observed dispersion is
inherent to the method.

3. Moment method

Moments are evaluated over the range p=−4 to p=8. Due
to numerical limitations, the canonical curves 
p are not per-
fect straight lines, so a slight dispersion is induced. The spec-
tra obtained from both measure and linear increment func-
tionals are almost pointlike, usually a bit more disperse for
the latter. However, the obtained spectra are too flat, which
makes the precise localization of the peak more uncertain
than in the local singularity method.

VI. CONCLUSIONS

In this paper, we have discussed on the validity of the
microcanonical multifractal approach, �CF, to deal with
monofractal systems and, in particular, to evaluate the singu-
larity spectrum from discretized synthetic data. �CF is a
powerful methodology to deal with multifractal signals, but
so far no attempt to generalize it for strictly fractal sets had
been attempted. The issue is relevant, as we generally do not
a priori know whether a given system is actually multifractal
or simply monofractal. In case that �CF methods had not
been able to deal with monofractals, this would have enor-
mously restricted their applicability.

Our main conclusion is that appropriate �CF methods can
be applied on monofractals, at least over the common ex-
amples of monofractal series that we have generated for this
study. Results offered by these �CF approaches are of simi-
lar quality than the ones obtained with the classical CF ap-
proach. This should shift the choice of use to �CF methods,
as they offer as a bonus the possibility of knowing the sin-
gularity exponents at each point �which is not so relevant in
monofractals, but it is of great value on multifractals
�11,33,34��. In addition, as �CF methods are less demanding
in data than CF methods �13�, they offer the possibility of
estimating the singularity spectrum up to very small fractal
dimensions, i.e., the tails of the D�h� curve, that have been
often inaccessible with classical CF methodologies. Notice
also that CF methods usually require some tuning of param-
eters �i.e., the range of moments employed in the analysis, in
the case of the moment method�, which limits the actual
range of singularity exponents that they are resolving. In

addition, although the performance of CF methods can be
very good in the sense that they retrieve small dispersed
singularity spectra, they sometimes lack good localization of
the distribution peak. The local singularity method with mea-
sure functionals, on the contrary, does not require fine pa-
rameter tuning and always provides a reliable estimate of
controlled quality and dispersion of the singularity spectrum,
with an almost perfect determination of the distribution peak.

When the results of the different �CF methods presented
in this work are compared, we see that the one with the best
performance is the local singularity method applied to mea-
sure functionals. This is not surprising, as previous validation
studies on the performance of multifractal methods over gen-
eral multifractal signals �13� have shown this same better
performance for this method: it requires less assumptions on
the signal to be analyzed and it offers quality results over
moderated size ensemble. In the study presented in this pa-
per, this method always leads to very narrow spectra, which
have good correspondence with the deltalike singularity dis-
tribution characteristic to monofractals.

The use of both CF and �CF methods imply some adap-
tations to the data features when those are of monofractal
nature. We have seen that analysis must be restricted to the
support of the signal when it is not of total support; in addi-
tion, in the case of signals with undefined gradient, the use of
multifractal measures implies a redefinition of the measure
as the standard notion is not well defined. All these adapta-
tions, however, are simple and general, and can be imple-
mented by default in the methods, as they yield no modifi-
cation when the data are not affected by the problem
concerned with the adaptation. All the discussion on the nec-
essary adaptations to deal with signals of undefined gradient
had not been previously discussed in the literature, in spite of
the fact that this problem can potentially affect all the meth-
ods to a great extent.
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APPENDIX: PROOF ON THE UNCORRECTED
SCALING OF THE fBm MEASURE

In the text, we have mentioned that the scaling in r of the
standard, ill-behaved fBm measure is �rr1, instead of the
expected behavior, �rrH which, in fact, is achieved when
we use the regularization presented in Sec. III D. We can
give a rough argument justifying this scaling, just by consid-
ering the fBm as the limit of a random walk �20�,

s�t + �� � s�t� + a�t��, � → 0, �A1�

where a�t� is a random variable such that
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a�t� = �+ a , p = 1
2 ,

− a , p = 1
2 ,
� �A2�

with nontrivial correlations between a�t� and a�t�� at differ-
ent times t, t�, but always of the same modulus, 
a�t�

=a ∀ t. In order to recover the correct scaling associated to
the fBm, the value of a should be �H �see the conditions
presented in Sec. IV B�. Then,

�r
��� = �

i=1

N


�H
 = N�H = r1�H−1  r1, �A3�

where we use the same notation as in Sec. III D. Also, we
implicitly assume the limits �→0, N→�. with r=N�. �In
the following derivations, the same will apply.�

However, this result does not prove that, for a true fBm,
the scaling must be the same. Actually, we can give a more
rigorous proof of the presented scaling, considering true
Gaussian increments and taking into account correlations.
First, we define the modulus of the increments around a point
t0 as

xi = 
s�t0 + �i + 1��� − s�t0 + i��
 . �A4�

Then, the standard measure of N points, noted as �r
����t0� in

Sec. III D, will be

�N = x1 + ¯ + xN, �A5�

where now we will use the more simple notation �N, to set
the accent on the number of points. The order p power of this
measure can be expressed through the multinomial formula

�N
p = �

i1=0

p

¯ �
iN=0

p

i1+¯+iN=p

p!

i1! ¯ iN!
x1

i1
¯ xN

iN �A6�

which can also be expressed as a sum of terms containing p
�equal or different� factors,

�N
p = �

i1,¯,ip

xi1
¯ xip

�A7�

that can be arranged by the multiplicity, namely,

�A8�

for p�N. The underbraces indicate the number of equivalent
terms �i.e., those that have the same multiplicity� on each
sum. Since all the terms are positive, and their contributions
do not directly depend on N, the first sum will be typically
the largest contribution to �N

p as N→�. The behavior is not
clear when N is not so large, as the moments of �N with
p�N only have terms with, at most, N different factors.
However, high order moments of �N only affect the tail of its
distribution. Also, even if N is not very large, the first sum in
Eq. �A8� has the largest contribution, although the terms in
the other sums can be greater than in the first sum. In fact,
when we average, we obtain that

	xi1
¯ xip

� � 	xi1
2
¯ xip−1

� � ¯ � 	xi1
p � , �A9�

something that is due to the generalized Jensen’s inequality
�15�.

Let x be a generic name for any increment xi, since these
increments are all N�0,�2H� Gaussianly distributed �see Sec.
IV B�, it follows that

	xm� =� 2

�
�mH�

0

�

dx�x�me−�1/2�x�2
=

��m�

��m

2
�21−�m/2��mH.

�A10�

For large values of m, this can be approximated through the
Stirling formula as 	xm�2m/2�� m

2
��mH. Notice that the actual

value of � is not relevant to compare the relative contribu-
tions of the terms in Eq. �A8�, since it has the same contri-
bution, �pH, in all of these terms.

In the case of a classical Brownian motion, H=1/2, the
increments are independent, and hence

	xi1
¯ xip

� = 	x�p = � 2

�
�p/2

�pH. �A11�

This result allows us to compare the contributions of the first
and the second sum in Eq. �A8�, when averaged. The terms
in the second sum are typically a factor �

2 greater than those
in the first sum, but the second sum only has �Np−1−Np−2�
terms instead of �Np−Np−1�, thus rapidly becomes irrelevant
as N increases. The terms in the third sum are a factor 2
greater than the terms in the second sum, but also have less
contribution. The last sum has N terms 	xp� which, in the
worst case, p=N, will asymptotically contribute as 2N/2�� N

2
�,

anyway lesser than the �NN−NN−1�� 2
�

�N/2 of the first sum.
Then, the leading contribution is that of the first sum, and so
the order p moment of the measure can be approximated as

	�N
p � � Np	x�p = Np	�1

p� ∀ p � N . �A12�

Therefore, from Eqs. �2� and �15�, it follows that the esti-
mated scaling corresponds to a Hölder exponent h=0,

�N�̇N�1  r1, �A13�

where the �̇ symbol means that both sides approximately
have the same distribution.

For the general case of an index H fBm, correlations be-
tween the xi factors in the xi1

¯xip
terms decay very fast,

unless �1−H� is very small. Hence, the scaling in N of the
measure is similar to that of the H=1/2 case, Eq. �A13�, for
N�1. �In our work, we have seen that cases with, e.g.,
H=0.9 and N=50 have imperceptible deviations from the
H=1/2 case, but we have not deeply studied this effect, as
the regularization proposed in Sec. III D works anyway.�
Although Eq. �A11� is not true for a general fBm with
H�1/2, almost all the factors in xi1

¯xip
are decorrelated

and we can approximate
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	xi1
¯ xip

� � 	x�p �A14�

provided that N is sufficiently large. This is due to the fact
that correlations between two distant increments decay very
fast with distance, and then almost all the factors in xi1

¯xip
are typically very little correlated as, for large N, the xi are
typically not close to each other. The same argument applies
to each term of Eq. �A8� and then a similar discussion to that
of the H=1/2 case leads to Eq. �A13� also valid in general,
although it should be remarked that �1 does depend on H,
i.e., in all the cases, the measure has the same scaling in N,
but it does not mean that it has the same distribution. If N is
not so large, the same result is still valid for small orders of
moments p which, in fact, give the bulk of the �N distribu-
tion.

The validity of approximation �A14� lays on how fast the
correlations of the increments xi decay with distance. To see
this, we define two increments of a fBm near the instant t0
separate n points as

b1 = s�t0 + �� − s�t0� ,

b2 = s�t0 + �n + 1��� − s�t0 + n�� . �A15�

We also define the correlation between these increments as

C =
	b1b2�

�2H =
�n + 1�2H + �n − 1�2H − 2n2H

2
, �A16�

where we use that the increments are N�0,�2H� distributed.
Now we define the covariance matrix C as

C = �2H�1 C

C 1
� . �A17�

This allows us to write the joint multivariant PDF of the
increments b1 and b2,

f�b1,b2� =
1

�det�2�C�
e−�1/2�b�*C−1b�

=
1

2��1 − C2�2H
e−�b1

2+b2
2−2Cb1b2�/�2�1−C2��2H�.

�A18�

The moduli of the increments, i.e., the xi, have a correla-
tion

Cxi,xi+n
=

	
b1

b2
� − 	
b
�2

	
b
2� − 	
b
�2 =
I

1 −
2

�

, �A19�

where we have considered xi= 
b1
 and xi+n= 
b2
. Notice that
the origin points t0 in their respective definitions do not need
to be the same for the x’s as for the b’s, because the corre-
lation does not depend on the subindex i, only on the relative
distance n. The numerator is abbreviated as I and corre-
sponds to the following Gaussian integral:

I =
1

2�
�

−�

�

db1�
−�

�

db2
b1

b2


� � 1
�1 − C2

e−�b1
2+b2

2−2Cb1b2�/�2−2C2� − e−�b1
2+b2

2�/2� .

�A20�

Notice that we have normalized b1 and b2, to cancel a �2H

factor in the numerator and the denominator of Eq. �A19�.
We are specially interested in the tail of the correlation

function Cxi,xi+n
, that is, the case where n�1. We accept that

correlations can be important at short distances, but the va-
lidity of Eq. �A14� would depend only on how fast the cor-
relations decay, in order to not affect the moments when N is
large enough. From Eq. �A16�, it follows that n�1 implies
C�1, for any value of H between 0 and 1. Then, the integral
I can be approximated and easily calculated for this case,

�A21�

where we have truncated the Taylor expansions on C at sec-
ond order. The expression A is approximated as

�A22�

where the first order term vanishes for symmetry reasons.
That is why we need the second order terms, which give rise
to three integrals, I� C2

2 �I1+ I2+ I3�, with values

I1 = − 2
1

2�
�

−�

�

db
b
3e−�1/2�b2�
−�

�

db
b
e−�1/2�b2
= −

8

�
,

I2 =
1

2�
��

−�

�

db
b
3e−�1/2�b2�2

=
8

�
,

I3 =
1

2�
��

−�

�

db
b
e−�1/2�b2�2

=
2

�
, �A23�

so the integral I is well approximated as

I �
C2

�
. �A24�

Moreover, the expression of C in Eq. �A16� is itself approxi-
mated as

C � H�2H − 1�n−2�1−H� �A25�

when n�1. Therefore, we obtain that

Cxi,xi+n
�

H2�2H − 1�2

� − 2
n−4�1−H� �A26�

and a fast decay of the correlations is assured ∀H�1.
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