
Treball final de grau

DOBLE GRAU DE MATEMÀTIQUES I INFORMÁTICA

Facultat de Matemàtiques i Informàtica
Universitat de Barcelona

Medical Image Segmentation with
Limited Data

Autor: Iván Canales

Director: Dr. Simone Balocco

Realitzat a: Departament de Matemática Aplicada

Barcelona, 13 de juny de 2022

Abstract

Ischemic Heart Disease (IHD) is one of the leading causes of mortality in Spain; early
diagnosis is key. Intravenous ultrasound imaging (IVUS) can help identify symptoms of
IHD, at the cost of segmenting a large volume of frames by medical professionals. While
promising, automated image segmentation using Convolutional Neural Networks (CNN)
suffer from sample scarcity: a large amount of parameters is often used, and medical ima-
ging datasets are typically small and costly to acquire and label. In this report we study
and compare state of the art methods used to deal with sample scarcity. In particular we
introduce data augmentation methodologies, specialized training losses and transfer le-
arning methods, and compare their performance on IVUS segmentation of the media and
lumen or the artery. Additionally we introduce a promising paradigm, few-shot segmen-
tation, and provide an initial implementation using PFENet. This implementation can
avoid significant overfitting, even when trained with a single example, outperforming
traditional CNNs on the same segmentation problem.

Resum

Les malalties de les arteries coronaries son una de les primeres causes de mortalitat en
Espanya; el diagnòstic precoç és molt important. Les imatges intravenoses per ultrasons
(IVUS) poden ajudar a diagnosticar símptomes de malalties coronaries, però requereixen
el processament de una gran quantitat de fotogrames per part de professionals mèdics.
Encara que els resultats son favorables, l’automatització de la segmentació de les imat-
ges mitjançant l’ús de Xarxes Neuronals Convolucionals (CNN) sofreixen de la manca de
dades: habitualment contenen una gran quantitat de paràmetres, i les dades disponibles
són habitualment poques i costosos d’etiquetar. En aquest informe estudiem i comparem
tècniques d’última generació per combatre la manca de dades. En particular, introduïm
mètodes d’augment de dades, funcions de pèrdua especialitzades i tècniques de trans-
ferència de coneixement; i comparem l’efectivitat d’aquests per a la segmentació de la
media i el lumen de les artèries. Addicionalment, introduïm el prometedor paradigma de
segmentació ‘few-shot’ (amb poques dades) i n’oferim una implementació inicial. Aques-
ta pot evitar el sobre-ajustament en l’entrenament, fins i tot quan s’entrena amb un únic
exemple, millorant els resultats obtinguts mitjançant CNNs tradicionals.

2020 Mathematics Subject Classification. 68T07

Dedicado a Luisa y Josefa.

Contents

1 Introduction 2
1.1 Motivation . 2
1.2 Our Contribution . 3
1.3 Literature Review . 3
1.4 Structure of the Project . 4

2 Technical Background 6
2.1 Neural Networks . 6

2.1.1 Optimization . 8
2.2 Convolutional Neural Networks . 10

3 State of the Art 14
3.1 Data Augmentation . 14
3.2 Transfer Learning . 15

3.2.1 Fine-tuning . 16
3.2.2 Feature Extraction . 16

3.3 Few-shot Learning . 18
3.3.1 Meta-learning . 19
3.3.2 Metric Based Learning . 19

4 Methodology 22
4.1 Data . 22
4.2 Preprocessing . 24
4.3 Data Augmentation . 25
4.4 Evaluation Metrics . 27
4.5 Loss Functions . 30
4.6 Network Architecture . 33

4.6.1 Few-shot Scenario . 34
4.7 Statistical Significance . 35

5 Results 36
5.1 Data Augmentation . 36
5.2 Hausdorff Loss . 37
5.3 Few-shot Scenario . 42

6 Conclusions 45
6.1 Contributions . 45
6.2 Summary of Results . 46

6.2.1 Future Work . 47

A First 48
A.1 Numerical Results . 48
A.2 Additional Resources . 49

Chapter 1

Introduction

1.1 Motivation

Ischemic heart disease (IHD)—sometimes called coronary artery disease—is one of
the leading causes of mortality. In 2020, more than a 30% of the deaths in Spain can be
attributed to some form of IHD[7]. Therefore, early detection and diagnostic of IHD is
of interest for the healthcare system.

Intravascular ultrasound (IVUS) is a medical imaging methodology designed to study
the inner wall (endothelium) of blood vessels. It has been established as the gold standard
for in vivo imaging of the vessel wall of coronary arteries [10] replacing angiographic
imaging in cases where it is considered unreliable. It is therefore an important diagnostic
tool for the diagnostic of coronary artery disease.

However, IVUS comes at a high human cost. The vessel morphology in the frames
must be identified by trained physicians and a large amount of frames are generated per
session. There is an interest to automate the task of interpreting the IVUS frames, in
particular the problem of segmentation: given a greyscale frame obtained through IVUS,
identify the interior of the vessel, through which blood flows (lumen), and the wall of
the artery (media).

In the recent years, the rise of deep (machine) learning has brought upon improve-
ments on automatic image segmentation, which attempts to alleviate the human cost of
semantically segmentation, in particular for medical imaging. Unfortunately these mod-
els do require large amounts of labelled data to provide favourable results.

2

1.2 Our Contribution 3

1.2 Our Contribution

In this project we implement and evaluate approaches to dealing with lack of labelled
data in image segmentation. Using the two datasets provided by [2], we analyse three
distinct approaches. First, data augmentation can be used to generate synthetic samples
without the need for medical intervention. Second, we explore manipulating the training
loss to improvemodel performance. Finally we employ fine tuningmethods, andwe study
the limit case of just one training sample (one-shot learning).

We study the influence of diverse data augmentation methods: affine transforms such
as rotations, flips, and zooms; and elastic deformations. For the elastic deformations we
propose an implementation that aims to mimic the involuntary movements of the hand
when drawing the masks. We couple these with tweaks on the training process used in
[25], such asmin–max normalization of the input images. After evaluation, we observe an
increase in performance of the models that use data augmentation, with varying degrees
of influence.

Our study of training losses compares the efficacy of categorical crossentropy, and
the Jaccard and Hausdorff distances. A loss based on an approximation of the Hausdorff
distance is provided as an effort to minimize the computational cost of the naive imple-
mentation. We argue that this loss could lead to improvements in the performance of the
model, and provide theoretical results and qualitative analysis to support our claim.

For the segmentation task, we use fully convolutional Artificial Neural Networks,
largely based on the U-Net [24] architecture. We then analyse the effects of using a
pre-trained Inception ResNet [14] as the backbone for feature extraction to improve
segmentation performance.

Finally we explore the ‘few-shot’ learning architecture, or learning the problem using
a very reduced training set—usually five or less examples. For this purpose we specialize
a pre-trained PFENet [29] through fine-tuning. This leads to promising results, outper-
forming significantly the other models—when trained with a single example. We obtain
a competitive performance in the segmentation of the media, comparable to the results
obtained using more data.

1.3 Literature Review

For the IVUS segmentation task, Convolutional Neural Networks are the most used
machine learning algorithms [20] [1] [31] [32] [33] [22] . U-Net based architectures

4 Introduction

are common among the deep learning architectures [1] [31] [32]. Other methodologies
used in the literature—but not in the scope of this report—include traditional supervised
machine learning methods like Support Vector Machines [30] and Random Forests [30],
and other image processing algorithms like the 3D-helical snake segmentation described
in [13].

When it comes to data augmentation, affine transformations are commonly used [1]
[33]. Some papers propose the use of blurring (Gaussian, Average, Median) [33], how-
ever we know that the artefacts in IVUS imaging follow speckle noise. [32] propose other
ad hoc methods adapted to IVUS imaging designed to reproduce ‘difficult frames’.

1.4 Structure of the Project

The execution of this project has been structured into four distinct phases: familiar-
ization with tooling, review of previous results, improvements to previous models, and
research and application of few shot algorithms.

The first phase begins in December of 2021 with the first meeting. The subsequent
monts were allocated to learn and familiarize ourselves with the machine learning frame-
works used, as well as the dataset and the problem to solve.

Figure 1.1: Gantt diagram showing the timeline (in weeks).

In the second phase, the focus of the developing was to construct a framework for
prototyping the models, distributable as a Python package using TensorFlow and
Keras as the deep learning framework . As seen in Fig. 1.1, this lasts until week 19.
The reason for that, was that the task to adapt the previous material was underestimated.
Several implementations were missing, and on the existing implementations non-trivial
changes had to bemade. Notable examples are the Jaccard loss and elastic transformation
implementations, which were rewritten in their entirety.

1.4 Structure of the Project 5

It is also worth noting, that adapting what was present required in depth understand-
ing of the implementation, as well as familiarity with the dataset structure. In short, this
phase was originally conceived to comprise minimal changes to use the existing models,
however it ended up requiring in depth knowledge of, not only the concepts, but also
their implementation.

The third and fourth phases include most of the original work for this project. In the
third phase we study methods that can improve the existing models. This this include
the study of the Hausdorff distance from a theoretical and qualitative perspective, along
with the implementation of the Hausdorff loss.

For the fourth and final phase, we take on the task of researching and using few-shot
learning models. This was challenging from both a conceptual an technical point of view.
Not only did it require to learn how the models worked, but also required familiarity
with an alternative deep learning framework, PyTorch , to be able to reuse pre-trained
weights. Adapting the model to our segmentation task required knowledge about the
inner workings of the training and evaluation methods, which lead to a considerable
technical effort.

Chapter 2

Technical Background

In this chapter we introduce the foundations of Neural Networks. We describe this
family of algorithms and introduce concepts that will be used in subsequent chapters.
Since we focus our efforts on Convolutional Neural Networks, we also provide some the-
oretical solutions that might shed some light on their performance for this task.

2.1 Neural Networks

The Deep Learning algorithms, namely Neural Networks and in particular Convolu-
tional Neural Networks, have become the golden standard ofmachine learning algorithms
in the last decades for tasks such as image classification and segmentation, requiring min-
imal preprocessing steps.

In this chapter we introduce the theoretical foundations of this class of machine learn-
ing algorithms, and we will present some results that attempt to explain the empirical
results observed after using Convolutional Neural Networks.

Definition 2.1. Let X, W and Y be two real vector spaces, we define a layer as an
application Λ where:

1. Λ : X ×W → Y is the composition of a differentiable linear (w.r.t. X) function
f : X ×W → Y and a differentiable non-linearity ψ : Y → Y .

2. dimX is the input dimension of Λ, and dimY the output dimension.

3. for some θ ∈ W—the weights—we indicate Λθ := Λ(⋆, θ) as the layer with fixed
weights.

6

2.1 Neural Networks 7

Note 2.2. When a layer is the matrix product of the input vector and its weights (followed
by the non-linearity), it is often called a dense layer.

Definition 2.3. Let X = Rn and Y = Rm be two sets, then for some k > 0, a Feedfor-
ward Artificial Neural Network (ANN) Φ is an application

Φ : X × Rk → Y,

such that Φ(x, θ) = (Λ1(⋆, θ1) ◦ Λ2(⋆, θ2) ◦ · · · ◦ Λr(⋆, θ2))(x), and the Λi (1 ≤ i ≤ k) are
its layers, defined as

Λi : Rni × Rki → Rmi , (2.1)

where n = n1, ni+1 = mi, m = mr and θ 7→ (θ1, θ2, . . . , θr) describes an isomorphism
Rk ∼= Rk1 ×Rk2 × · · · ×Rkr . From now on, we assume w.l.o.g. θ to be the concatenation
of every θi.

Remark 2.4. If the layers 2.1 were linear, for a fixed set of weights θ, (2.1) would be
isomorphic to the product of rmatrices, and therefore defined by amatrixM(θ) ∈Mn×m.
Note 2.5. The name ‘Artificial Neural Network’ is a reference to the fact that they take an
inspiration from the neuron networks in the human brain. Usually ANNs are portrayed
as directed graphs 2.1, the nodes of which are often referred as ‘neurons’. The qualifier
‘feedforward’ refers to the directed graph representation having no loops, or equivalently,
that the i-th layer is not the input of the j-th layer for any j ≤ i.

Definition 2.6. Let X ⊂ Rn be a linear space, and f : X → R a differentiable function.
Then f is convex if, and only if,

f(x) ≥ f(y) +∇f(y) · (x− y) ∀x, y ∈ X

where

∇f(x) =

∂f
∂x1

(x)
...

∂f
∂xn

(x)

is the gradient of the function at x and (·) is the dot product.

8 Technical Background

Figure 2.1: Neural network with 9 neurons, one ‘hidden’ layer and one ‘output’ layer. [4]

Definition 2.7. Let X ⊂ Rn, we say that a function ℓ : X ×X → [0,∞) is a loss if

1. ℓ is a convex differentiable function.

2. ℓ(x, y) = 0⇔ x = y.

In practice a loss function is used to obtain a measure of “how good” the outputs of
an Artificial Neural Network are, as compared to the outputs of the target function, and
as such will often its definition might vary according to the problem.

Example 2.8. The mean square error function defined by

MSE(Y, Ŷ) :=
1

n

n∑
i=1

(Yi − Ŷ)2

is a common loss used for regression problems.

2.1.1 Optimization

One of the reasons why Artificial Neural Networks have becomemainstream in the last
decades has been the invention of the back-propagation algorithms [17]. Using backprop-

2.1 Neural Networks 9

agation, we can show that, not only the Neural Network is differentiable (with respect to
its weights), but we also have an efficient way to calculate it.

Using the gradient of the network with respect to its weights, it is possible to iteratively
refine or ‘train’ the model by updating the weights using the opposite direction of the
gradient. The simplest option is Gradient Descent described as

Algorithm 1 Gradient Descent
Input θ the initial weights, X the training samples and Y the training labels; γ a small

value.
Output θ the trained weights.
1: while not converged do
2: θ ← θ − γ∇(ℓ(Φ(X, θ), Y))

3: end while

However, when the dataset is too large, it might not be feasible to evaluate the whole
dataset at once.When that is the case, Stochastic Gradient Descent (SGD) is used:

Algorithm 2 Stochastic Gradient Descent
Input θ the initial weights, X the training samples and Y the training labels; γ a small

value.
Output θ the trained weights.
1: for iteration in {1, 2, . . . } do
2: SHUFFLE(X,Y)

3: for (x, y) sample of (X,Y) do
4: θ ← θ − γ∇(ℓ(Φ(x, θ), y))
5: end for
6: end for

For Stochastic Gradient Descent only one random sample is used at a time to calcu-
late update the weights. A compromise between SGD and Gradient Descent is using small
batches (mini-batches) of samples instead of a single sample. Additionally other varia-
tions of the SGD exist, in particular the Adaptive Moment Estimation (ADAM) optimizer,
which additionally uses the second moments of the gradients.

10 Technical Background

2.2 Convolutional Neural Networks

Definition 2.9. Let f, g : R → C be complex functions. We define the convolution of f
and g as

(f ∗ g)(t) :=
∫ ∞

−∞
f(τ)g(τ − t)dτ.

Suppose f, g : Z × Z → C complex functions defined over the 2-dimensional set of
integers, then we define the discrete two-dimensional convolution of f and g as

(f ∗ g)(i, j) =
∑

(x,y)∈Z×Z

f(i, j)g(i− x, j − y),

when the series converges.
Definition 2.10. Let k ∈ Rn×n and I ∈ RN×M a real valued matrix, where n < N ,M is
an odd integer, we define the application the convolution of kernel k onM as

(I ∗ k)[i, j] =
∑

(s,t)∈Z×Z

k[s, t] · I[u+ s, v + t] =

n∑
s=1

n∑
t=0

k[s, t] · I[u+ s, v + t]

where u = i− ⌈n/2⌉, v = j − ⌈n/2⌉. Notice that I[i, j] (or k[i, j] respectively) is defined
as

I[i, j] =

{
Iij 0 ≤ i ≤ N, 0 ≤ j ≤M
0 otherwise

Remark 2.11. Notice that the preceding definition is equivalent to a two-dimensional
discrete convolution as defined in 2.9.
Definition 2.12. We define a 2D convolutional layer Λ as

Λ : X ×W → Y c

(x, θ) 7→ (ψ(x ∗ θ1), · · · , ψ(x ∗ θ))

with activation ψ : Y → Y as non-linear application, and weights θ.

Proposition 2.13. Let Λ : X ×Rk → Y be a 2D convolutional layer with associated kernel
θ. Then Λ(x, θ) is the composition of a linear function and a non-linearity.

Proof. Let Λ(x, θ) = (ψ(f(x, θc)), · · · , ψ(f(x, θc))) = Ψ(F (x, θ)), where Ψ is ψ general-
ized to c channels, clearly Ψ is a non-linearity and therefore we just need to prove that
F (x, θ) is linear. Since we saw that f is a convolution, and therefore linear. Then F is
a composition of linear functions and in consequence Λ = Ψ ◦ F is the composition of a
linear function and a non-linearity.

2.2 Convolutional Neural Networks 11

Now we will introduce two results found in [12], that might shed some insight on
why CNNs have such performance.

Definition 2.14. We introduce the following notation introduced in [12] as

1. Upper-case letters denote a product of dimensions: D = d0 × · · · × dN .

2. Subscripts in a tensor denote a slice along a dimension: ifW ∈ Rd×r,Wi is the i-th
column of the matrix; if W ∈ Rn×m×r, Wi is the matrix corresponding to the i-th
slice along the 3rd dimension.

3. For two tensors W ∈ RD×rs and Q ∈ RD×rt , the tensor [WQ] ∈D×(rs+rt) denotes
the concatenation along the last dimension.

Definition 2.15. The following definitions will be used in the statement of the theorems:

1. A size-r set of K factors (W 1, . . . ,WK)r ∈ R(D1×r) × · · · × R(DK×r) is defined to
be a set of K tensors where the final dimension of each tensor is equal to r. Notice
that the superscript in Di does not denote exponentiation.

2. A function φ : RD1 × · · · × RDK is positively homogeneous with degree p if

∀α ≥ 0, φ(αw1, . . . , αwK) = αpφ(w1, . . . , wK)

Remark 2.16. Notice that the second definition of 2.15 implies that φ(0, . . . , 0) = 0 for
all p ̸= 0.
Remark 2.17. If f is a linear function, then it is positively homogeneous of degree 1:

f(aw1, . . . , awK) = af(w1, . . . , wk).

Remark 2.18. If φ is positively homogeneous with degree p, its composition with the
Rectified Linear Unit (ReLU) defined as

ψ+ : RD → RD

x 7→ max (0, x)

where max is the element-wise maximum, is also positively homogeneous with degree p.
Indeed:

(r ◦ φ)(aw1, . . . , awK) = ψ+(apφ(w1, . . . , wK))

= apmax(0, φ(w1, . . . , wK))

= ap(ψ+ ◦ φ)(w1, . . . , wK).

12 Technical Background

Similarly its composition with max pooling defined, using the same notation as 2.10,as

m(I)(i, j) = max
0≤s,t≤n

I(u+ s, v + t),

is also positively homogeneous with degree p.

Definition 2.19. Let

• Φr(S;W
1, . . . ,WK) be the r-sized feedforward ANN of linear layers with weights

W 1, . . . ,WK and activation functions Ψ1, . . . ,ΨK evaluated on an input S as:

Φr(S;W
1, . . . ,WK) = ΨK(ΨK−1(. . .Ψ1(S ·W 1 . . .WK−1) ·WK),

where the size r is the last dimension of the weightsW 1, . . . ,WK ;

• ℓ is a loss, andΘ :W1×· · ·×Wk → R is a positive convex and differentiable function
(the regularization function), that takes into account the number of parameters
of the network (implied by the size r);

• λ is a positive scalar that balances the effect of the regularization function against
the loss ℓ.

We define the Classification Problem [12] as the non-convex1 optimization problem of
the form

min
r>0

min
(W 1,...,WK)

fr(W
1, . . . ,WK),

where

fr(W
1, . . . ,WK) = ℓ(Y,Φr(S;W

1, . . . ,WK)) + λΘr(W
1, . . . ,WK). (2.2)

Theorem 2.20. Global optimality from local minima [12] Consider the non-convex clas-
sification problem defined in 2.19, in which Φr(S;W

1, . . . ,WL) and Θr(W
1, . . . ,WK) can

be expressed as the sum of positively homogeneous mapping of the same degree. Then, any
local minimizer such that

∃i0 ∈ {1, ..., r}, (W 1
i0 , . . . ,W

K
i0) = (0, . . . , 0),

is also a global minimizer of the problem.
1ANN tend to have several minima

2.2 Convolutional Neural Networks 13

Remark 2.21. Notice that the previous statement is not true, in general, for any ANN.
However convolutional layers, with ReLU and max pooling as their non-linear activation
functions; with Batch Normalization instead of ℓ1 or ℓ2 do fulfil the requirements.

Corollary 2.22. Given a function fr(W 1, . . . ,WK) like (2.2), any local minimizer of the
optimization problem

min
(W 1,...,WK)r

fr(W
1, . . . ,WK)

is a global minimizer if fr+1([W
10], . . . , [WK0]) is a local minimizer of fr+1

Note 2.23. From the preceding corollary we obtain a characterization for the global min-
ima of our optimization problem.

Theorem 2.24. Global minima can be found by local descent [12] Given a function
fr(W

1, . . . ,WK) like (2.2), if r ≤ dimX (whereX is the output of the ANN) then from any
point (Z1, . . . , ZK) such that fr(Z1, . . . , ZK) < ∞ there must exist a non-increasing path
from (Z1, . . . , ZK) to a global minimizer of fr(W 1, . . . ,WK)

Note 2.25. From the preceding theorem, we can infer that for a network ‘large enough’,
using local gradient descent will eventually lead to a global minimum, regardless of the
weight initialization.

Chapter 3

State of the Art

In this chapter we introduce diverse methods that can be applied when training data
is very limited. The first methodology we in introduce is data augmentation, then transfer
learning and finally few-shot learning.

3.1 Data Augmentation

It is a fact that a limited dataset will negatively impact the performance of Deep
Learning algorithms, since the amount of training parameters is often very large. The
obvious solution would be to simply increase the dataset. Even though it might not be
reasonable—due to the costs or difficulty associated to obtaining them—to request more
samples to the provider, we can use techniques to generate synthetic images.

In this project we consider two main classes of transformations: affine transforma-
tions and elastic deformations. These transformations are applied to the training dataset
randomly, often with random variation of the parameters.

Affine transformations geometrical operations that preserve lines, including: rota-
tions, flips, zooms, shear, displacements and reflection. With affine transformations we
attempt to reproduce small variations that would appear when images of the same artery
section are captured repeatedly: for example the catheter closer to the artery walls, or a
different capture angle.

Elastic deformations, as described by Algo. 3, attempt to simulated the involuntary
movement fo the hand when drawing the outlines of the masks by the clinical experts.
This approach is shown to improve models that exceed those of elastic deformations [26],
when used on hand drawn datasets (such as MNIST).

14

3.2 Transfer Learning 15

Algorithm 3 Elastic Deformations
Input a ∈M(RN×M), α ∈ [0,∞), σ ∈ [0,∞)

Output b ∈M(RN×M)

1: x← 0 ∈M(RN×M)

2: y ← 0 ∈M(RN×M)

3: for all 1 ≤ i ≤ N, 1 ≤ j ≤M do
4: generate random u, v ∈ (0, 1)

5: xi,j ← u ∗ α
6: yi,j ← v ∗ α
7: end for
8: x← GaussianBlur(x, σ)
9: y ← GaussianBlur(y, σ)

10: for all 1 ≤ i ≤ N, 1 ≤ j ≤M do
11: r ← xij

12: s← yij

13: bij = ars ▷ ars is 0 for any indices “outside” the image. (zero-padding)
14: end for

3.2 Transfer Learning

Data augmentation might not be enough to prevent the model overfitting if the vari-
ation of the simulated samples is not large enough. As a tool to deal with this, we
introduce transfer learning. From a high-level perspective, transfer learning refers to
the techniques used to reuse pre-trained models on novel tasks. More specifically, the
transfer learning problem can be expressed as finding the transformation from a task
TS = (YS , fS) of learning a target function fS : XS → YS , where XS is the feature space
and YS label space (for the task); into the task TT = (YT , fT) of learning a target function
fT : XT → YT , and either XS ̸= XT or TS ̸= TT (or both).

Definition 3.1. We define a feature vector as a vector associated to an n dimensional
vector space (the feature space) that represents some object O.

Example 3.2. A feature vector representing an image could be a vector of pixels in
[0, 1]n×m.

Example 3.3. Examples of transfer leaning are:

16 State of the Art

1. using a model trained on pictures of cats to detect pictures of dogs (same feature
space, different tasks);

2. using a model trained to detect sentiments on written text to detect sentiments on
verbal speech (same tasks, different feature space).

It is true that, if the tasks are too diferent, it would not be possible to use the model
(e.g. the dimensions of the inputs and outputs might not be compatible), but for the sake
of simplicity pre and post processing will be assumed and that the models are Artificial
Neural Networks. Additionally we will assume that the task are always classification, but
it general this doesn’t have to be necessarily true—the methods described can still be
applied.

3.2.1 Fine-tuning

The simplest implementation of transfer learning is fine-tuning. Here, we use the
weights of a model trained on a task TS as the weight initializations for our model. Then,
the new model is trained on a task TD ̸= TS . Often the model is used ‘as is’, and a
minimum of changes is made. It is common, however, to replace the first and last layers
of the model, since those are often tightly coupled to the previous inputs or outputs
respectively.

Doing this may help avoiding overfitting the model, by providing weight initializations
that require less effort to optimize. Overfitting is a common problem when training with
limited data, and describes the phenomenon of a model learning a representation that is
very coupled to the training dataset, possibly due to a lack of variability, and then failing
to generalize to examples out of that dataset. This is the equivalent of finding a local
minimum that does not correspond with the global minimum.

3.2.2 Feature Extraction

Before defining what feature extraction is, we introduce autoencoders. Autoencon-
ders are a class of Artificial Neural Networks. These algorithms attempt to learn the
representation of unlabelled data in some feature space, embedding semantic informa-
tion in the vector representation. A notable example of this is the word2vec[19][18]
family of algorithms, which transform the vector v representing a word as the i-th word
in the dictionary (vi = 1, vj = 0 if i ̸= j) into a smaller vector, where similar vectors—for
some metric like euclidean or cosine distance—represent similar concepts.

3.2 Transfer Learning 17

Figure 3.1: Visualization of the outputs of internal layers when using InceptionResnet as
an encoder

The concept of feature extraction is motivated by the conjecture that, when the
model is trained, the internal layers act as autoencoders of the input information, ex-
tracting relevant data for the classification task. If we assume the feature spaces for the
tasks to be similar enough, in the sense that there is a transformation between them that
preserves the semantic information (e.g. resizing images), a model could be used to ex-
tract this relevant encodings by acquiring the output of the inner layers. This is often
referred as using the model as the backbone of another model. 3.1.

By employing feature extraction, we lift the burden of learning this generic features
from the new model, thus reducing the amount of parameters. Then the new model can
focus the training efforts on learning how to classify the data using the learned features.

This transfer learning method differs from fine tuning mostly in the fact that the
backbone model is often relegated to be a sub-network of the main model. Often, the

18 State of the Art

weights of the backbone are frozen, i.e. not trained. This lowers the amount of trainable
parameters and might be desirable in some cases.

3.3 Few-shot Learning

Sometimes, our source model needs to be reused for a set of tasks, for which we have
a very limited amount of data. This means that, a priori, we don’t know the task for which
the model must be trained. One example of this is shown in [21], where the model must
be prepared to learn a sinusoidal function, but the parameters are unknown.

The previous techniques, fine tuning and feature extraction, can also be used to gen-
erate models for the target tasks. However in cases of extreme data scarcity, with as low
as 1 training examples, those methods might not be enough to prevent severe overfitting.

Support Pair

Support Image

Support Mask

Query Image Model Prediction

One-shot Prediction

Figure 3.2: Outline of one-shot prediction scenario. The class ‘turtle’ is a novel class and
the model is provided with a support image and mask as part of its input.

The most extreme case of few-shot learning is one-shot learning, illustrated in Fig.
3.2. Here, we show the scenario of a model learning to segment turtles in an image with
only an image–mask pair as context. Notice that for the few-shot segmentation problem
we asume that the new classes are unseen—in Fig. 3.2 the model has never ‘seen’ a turtle.
The methods reviewed in this section are used for both few- and one-shot learning, and

3.3 Few-shot Learning 19

those concepts might be used interchangeably.
In the literature we find two main approaches to solve the few-shot problem: meta-

learning based methods [3][9][11], and metric learning methods [28][27][36].

3.3.1 Meta-learning

Meta-learning approaches the few-shot problem by learningweight initializations that
can be used to learn quickly—that is in few steps—from the training dataset, which is
assumed to be very small. Informally, the training task for the model is ‘learning to learn’.
More concretely, given an initial subset of training tasks {Ti}i∈I (or classification classes)
we want to learn weights, such that for any task (resp. Classification class Tj , j /∈ I, we
learn a model in as few steps as possible.

Algorithm 4 reptile
Input subset of tasks T = {Ti}i∈I , θ vector of initial weights,
1: for step in {1, 2, . . . } do
2: select T ∈ T with associated weight ℓT .
3: compute θ̃ the updated weights after k steps of SDG or adam.
4: θ ← θ + ϵ(θ̃ − θ)
5: end for

[21] propose the reptile algorithm described in Alg. 4. As opposed to the approach
followed in fine-tuning, themodel is trained on a distribution of tasks with their associated
datasets. This method is able to learn weight initializations that suit the distribution of
tasks—as opposed to one task in the distribution. In some examples, such as the sinusoidal
function learning, a model using weights pre-trained using reptile performs better and
can be trained in less iterations than a model using traditional weight intializations [21].

3.3.2 Metric Based Learning

A different approach ismetric based learning. Here the goal is to learn a representa-
tion of the input data in an appropriate feature space, that is then used along some kind
of distance function to predict the labels based on proximity to samples in the support
set.

20 State of the Art

Prototypical Networks

Prototypical Networks [27] attack the few-shot problem for classification by assuming
that, for every class, there is a prototype that represents the class. Then, classification
can be done by finding the closest prototype.

Given an embedding function fΦ : Rn → Rm, the prototype for a support set Sk is

ck :=
1

|Sk|
∑

(xi,yi)∈Sk

fΦ(xi).

Then a distribution over the classes for the query point x is generated using a distance
d and soft-max as

PΦ(y = k|x) = exp(−d(fΦ(x), ck)∑
k′∈K exp(−d(fΦ(x), ck′))

where K denotes the set of prototype classes.

PFENet

In our results we will show an application of the Prior Guided Feature Enrichment
Network (PFENet) [29] applied to semantic IVUS segmentation. PFENet is closely re-
lated to prototypical networks, and extends the model proposed in CANet [35]. Both
models use a backbone—ResNet50[14] in our case—to extract features from the query
and support images.

In general features in the middle levels are preferred since it is conjectured that high
level features are more class specific[29], however PFENet exploits these high-level fea-
tures to provide semantic segmentation cues from the support pair.

From the high level features, PFENet constructs a prior mask, i.e. a mask that contains
the probability of pixels belonging to a class. Let us define the support pair S = (XS , YS)

and the query pair Q = (XQ, YQ). The segmentation masks YS and YQ are binary masks
where 1 is the indicator of the mask and 0 denotes background. The target mask YQ is
unknown to the model.

From the support pair and the query image, we compute the high level features,
extracted from the backbone, as

Φ(XQ), FS := Φ(XS) ◦ YS , (3.1)

where ◦ denotes the Hadamard product. Eq. (3.1) sets the support features of the back-
ground to 0, because YS is a binary mask.

3.3 Few-shot Learning 21

Then, for each query pixel xij ∈ FQ, we compute

pij := maxxrs∈FS
cos(xij , xrs),

using the cosine similarity cos. Notice that xij and xrs are vectors with elements for every
channel in the network output, and cij are scalars.

Finally the prior mask is constructed as PQ = {pij}, and it is normalized using min-
max normalization

PQ =
PQ −min(PQ)

max(PQ)−min(PQ) + ϵ
,

for some small epsilon—set to 10−7.
Now we have the input query image XQ, the support image–mask pair (XS , YS) and

the prior mask PQ. [29] propose a feature enrichment module (FEM) with the purpose
of refining the query features using the prior and the support features.

A sketch of the process is:

1. Inter-source Enrichment: where the input is projected to different scales and in-
teracted with the support features and prior mask independently.

2. Inter-scale Interaction: where essential information between query–support fea-
tures is selectively passed across scales.

3. Information Concentration: where the features in different scales are merged to
yield the final refined query feature.

The PFENet model is trained using what is called ‘episodic training’: the training task
is split into ‘episodes’ of support S and queryQ subsets of the same class. Then the model
is evaluated using the support image–mask pairs along the query image, and the error is
evaluated using the query mask.

Chapter 4

Methodology

All themodels, and both training and evaluation code are implemented in Python 3.9
using OpenCV 4.5, Tensorflow 2.8, Keras 2.8 and PyTorch 1.11 . For the research
and experimentation we use a computer running Ubuntu 20.04 LTS with an NVIDIA
GeForce GTX 960 graphics card.

For the task of model comparison, we will train on the first 109 frames of dataset B.
An exception to this is the few-shot task, which will use the first frame of the first patient.
The models will be trained using a train–validation split of 90/10, and we will generate
a distribution of models using K-Fold crossvalidation (for K = 3).

4.1 Data

For training and evaluation purposes, we use the datasets provided by [2].
Dataset A (or Boston) contains 77 images extracted from in vivo pullbacks of human

coronary arterires, from 22 patients. The hardware used to acquire them is an iLab IVUS,
from Boston Scientific. Frames are taken at 40MHz and are displayed as gray-scale PNG
images with a resolution of 512× 512 pixels. For this dataset, frames are not consecutive
and acquired at random instances of the cardiac cycle. This dataset will be used in its
totality as a training set to benchmark few-shot segmentation.

Dataset B (Volcano) contains a larger set of 435 images extracted from in vivo pull-
backs, from 10 patients. The imaging system used is a Si5 from Volcano Corporation,
with frames being taken at 20MHz. Each frame from this dataset is provided with four
adjacent frames to provide volumetric insight. The provided images are gray-scale PNG
images with a resolution of 384 × 384. The first quarter of the dataset (109 frames) are

22

4.1 Data 23

Frame comparison

Figure 4.1: Left frames from Dataset A; right frames from Dataset B

used for training, and the rest for evaluation.
The images of the dataset have been labelled (see Fig. 4.3) by two clinical experts,

one of them labelling the set twice. For our training and testing purposes we select the
second labelling from the expert that labelled twice.

Figure 4.2: Short axis (a) and longitudinal (b) view of the same pullback [2]

24 Methodology

Figure 4.3: Example of IVUS images and the respective segmentation masks for media
and lumen.

4.2 Preprocessing

Datasets A and B provide us with IVUS frames and outlines for the media and lumen.
The frames are stored as gray-scale Portable Network Graphics (PNG) with labels con-
taining (1) the patient they were extracted from, (2) the frame index in the pullback,
(3) the frame index in the sample. As per [2], the samples are provided as groups of 5
frames. To construct the training samples, we read the 5 PNG images corresponding to
a sample and concatenate them channel wise as N ×N × 5 tensors (where N = 512 for
the Boston dataset, and N = 384 for the Volcano dataset). Of this we discard the two
furthermost frames from the central frame for memory economy reasons.

The labels are stored as lists of 2D coordinates corresponding to vertices of a convex
hull. We reconstruct the labels as binary masks for the media and lumen by filling the
convex hull (Fig. 4.4). Labels for each sample are then represented as the one-hot en-
coding of the class of each pixel. That is, for each pixel we identify a vector v such that
vk = 1 if the pixel is of the class k, and 0 everywhere else, the classes being background
(k = 0), media (k = 1) and lumen (k = 2). Therefore we construct a N ×N × 3 tensor
where the ‘ones’ in the 3rd layer are in convex hull corresponding to the lumen, those in
the 2nd layer the points in convex hull corresponding to the media not contained in the
lumen, and those in the 1st layer are the complement of the other layers.

An advantage presented by this encoding is that we can use the ‘confidence’ of the

4.3 Data Augmentation 25

Figure 4.4: Left input vertices (lumen), center binary mask (lumen) and right one-hot
encoding as RGB channels.

model for each class (in the interval [0, 1]) instead of the true class label for training. The
true class can be obtained simply as

class(yij) = max {k ∈ {0, 1, 2}|vk}

using the previous definition for v.
For the preprocessing of the query images, we resize the images to half their height:

192 pixels for dataset B and 256 for dataset B. Then we perform min-max normalization
on the training images x(i), as

x(i) ← x(i) −min(x(i))

max(x(i))−min(x(i))
.

4.3 Data Augmentation

In this report we analyse the effects of some data augmentation on IVUS imaging.
The methods used will be affine and elastic transformations as described in §3.1.

From affine segmentation we select a subset of operations: rotations, horizontal and
vertical flips, and zooms. Notice that other affine transforms exist, including shear and
reflection transforms, but after preliminary analysis it was clear that those lead to invalid
images.

Additionally we introduce elastic deformations (Algo. 3) to simulate the involuntary
movement of the hand when drawing the mask. These will be applied to the training
masks (and not the image).

26 Methodology

Figure 4.5: Left: image deformed with zero padding. Right: image deformed with re-
flected padding. This transformations are exaggerated and aren’t used for training.

It is important to consider that, when augmenting our dataset careful testing of the
data augmentation is required. A model trained on examples that aren’t realistic is likely
to severely underperform. Finding the right transformations and tuning their parameters
is challenging, and to a large extent depends on intuition and visual analysis. It is possible
to use trained models on the original dataset to predict the quality of the augmented
dataset, but it is still not a trustworthy method we can rely on.

One example of ‘invalid transformations’ was found exploring the implementation
used by [25]. Upon analysis of the generated images, we discovered that the algorithms
used ‘reflection padding’, i.e. the pixels outside the image are obtained by reflecting the
original image. However, as seen in Fig. 4.3, this leads to impossible images. In our
implementation we use zero padding, i.e. the pixels outside are assumed to be black,
because this leads to images that are closer to the original images.

The parameters for the transformations used in our experiments are:

1. zoom range of 20%;

2. rotation range of 0.2π;

3. α = 2.5 and σ = 0.241 as parameters of the elastic transforms.
1an example of how the parameters affect the images is in Fig. A.1

4.4 Evaluation Metrics 27

4.4 Evaluation Metrics

In the original article for the datasets [2], the Jaccard measure (JM), the Difference
of Area Percentage (DAP) and Hausdorff distance (HD) are used to evaluate the perfor-
mance of models on the dataset. Out of these, we select the Jaccard distance (obtained
from the Jaccard index), and Hausdorff distance.

In this section we define, and comment the differences of this two losses and what
insight they provide. In [25], the Dice coefficient is also used, but, since it can be derived
from the Jaccard index we do not consider it.

Definition 4.1. The Jaccard Index, Jaccard Measure or sometimes Intersection over
Union, compares the similarity of the ground truth and predicted sets as the cardinality
of the intersection over the cardinality of the union:

J(A,B) :=
|A ∩B|
|A ∪B|

Clearly, the maximum of this function, J(A,B) = 1, is achieved if, and only if, A = B,
and the minimum is J(A,B) = 0 whenever A and B don’t intersect.

Definition 4.2. From the Jaccard Index, we define the Jaccard Distance as

dJ(A,B) := 1− J(A,B)

Remark 4.3. The Jaccard Distance is a metric in the set of finite subsets [16].

Definition 4.4. TheHausdorff Distance is defined over pairs of subsets of a metric space
(M, d) as

HD(A,B) = max{hd(A,B), hd(B,A)},

where
hd(A,B) = supx ∈ A inf

y∈B
d(x, y)

is the one-sided Hausdorff distance. Intuitively the one-sided Hausdorff distance is given
by the point of A that is furthest away from all the points in B (and viceversa).

Remark 4.5. The Hausdorff distance 4.4 is a metric over the set of non-empty closed sets.
In particular it is a metric over the set of non-empty finite sets.

The Hausdorff distance is sensitive to “noisy” predictions, i.e. masks with a ‘main’
component close to the target mask, and smaller components at a distance. An example

28 Methodology

Figure 4.6: Comparison of two sample masks (without M0 and with noise MN) against
the ground truthMG.

of this can be observed after studying the distances of the predictions in 4.6, where we
observe an increase of over 2000% in terms of the Hausdorff distance after adding the
noise. The Jaccard distance, however, only increases a 26.12%. This makes sense since
the effect of noise on the intersection and union is minimal.

Additionally, as we see from remark 4.5, the Hausdorff distance the sets to be non-
empty. This is reasonable, since for empty sets the distance is not defined. In our evalu-
ation metric we artificially set it to the length of the diagonal of the masks. On the other
hand, the Jaccard distance is set to 1 when the intersection is empty, and in particular
when any set is empty.

Despite the limitations mentioned above, the Hausdorff distance is able to encode
information about the shape of the masks—as opposed to the Jaccard index which only
considers the intersection. The Hausdorff distance is often consistent with the intuition
of which mask is better from a qualitative point of view, but the Jaccard distance might
lead to surprising results.

4.4 Evaluation Metrics 29

Figure 4.7: Comparison of two perceptually identical sample masks and their respective
Hausdorff and Jaccard distances.

We illustrate this in Fig. 4.7. Here we show two perceptually identical masks as
prediction examples, and yet the Jaccard distance shows significant variation. Hausdorff
distance, however, remains low and with a similar value. Our conjecture is that when the
masks are “thin” like we see in Fig. 4.7, small differences in the intersection will overly
influence the Jaccard distance.

From the previous analysis, we conclude that both metrics measure different things,
and there is value in considering them both when it comes to evaluating our model.
However, considering how examples like the one shown in 4.7 are qualitatively almost
indistinguishable, and we would expect the metrics to reflect this. That is only true in the
case of the Hausdorff distance, and therefore we conjecture that it could lead to higher
performance.

30 Methodology

4.5 Loss Functions

The choice of loss function determines to a certain extent the task that the model
is trying to optimize. The segmentation problem is eminently a classification problem
between labels and predictions, even if a (label) prediction is cast for each pixel in the
query image. Also, in our case we have to consider that we are actually predicting three
classes: the media, the lumen and the background.

Often in the literature [5], some variation of cross-entropy minimizing loss is seen as
a ‘catch-all’ loss for this category of problems. However, in our case we do have target
measures, so it is natural to consider them as the foundation for our loss. When using
a loss constructed from our metrics we should expect to obtain better qualitative and
quantitative results. Both the Jaccard distance and the Hausdorff distance are minimized
as the sets become more similar, and as such we can use them as replacements for the
cross-entropy loss with minimal changes.

We conjecture, however, that a loss based on the Hausdorff loss will lead to improve-
ments against a loss based on the Jaccard distance. In fact we show two theoretical
results: Lemma 4.7 and Lemma 4.9.

Definition 4.6. Let A be a set in a metric space (M,d), we define the generalized ball
of radius ε as

Uε(A) :=
⋃
x∈A
{y ∈M |d(x, y) ≤ ε} .

Lemma 4.7. Let (M,d) be ametric space, and define F (M) the set of finite closed non-empty
subsets ofM . Let X ∈ F (M). Define for all k > 0, 0 < h ≤ 1, the set

Pk,h = {Y ∈ F (M)|HD(X,Y) ≤ k, |X ∩ Y | ≥ h|X|} .

Then, for every 0 < h ≤ 1,

mh : (0,∞)→ [0, 1]

k 7→ sup {dJ(X,Y)|Y ∈ Pk,h} (4.1)

is monotonic and
mh(k)

k→0−−−→ 1− h

Proof. If Y ∈ Pk,h then

dJ(X,Y) = 1− |X ∩ Y |
|X ∪ Y |

≤ 1− h |X|
|X ∪ Y |

.

4.5 Loss Functions 31

Now we show that |X ∪Y | can be bound by a function of k. Let HD(X,Y) = ε ≤ k. Then
we know that

hd(X,Y)
X and Y are closed

= max
y∈Y

min
x∈X

d(x, y) ≤ ε. (4.2)

Consider Xε the generalized ball of radius ε around X. From (4.2), every y ∈ Y is
contained in the ball of radius ε of some x ∈ X. Therefore

Y ⊆ Xε =⇒ X ∪ Y ⊆ Xε.

Now define c(ε) := |Xε|, then |X ∪ Y | ≤ c(ε). From (4.1) ε ≤ k and finally

dJ(X,Y) ≤ 1− h |X|
c(k)

=: m(k).

Clearly c(k) is monotonic increasing w.r.t. k, h |X|
c(k) is monotonic decreasing and, because

1 > h
|X|
|X ∪ Y |

≥ h |X|
c(k)

> h,

m(k) is monotonic increasing. Therefore for a fixed h, mh(k)
k→0−−−→ 1− h.

Remark 4.8. Notice that the converse statement for Lemma 4.7 does not hold. Indeed,
even if we fix the intersection, it is not possible to provide a bound for the Hausdorff
distance using the Jaccard distance. We illustrate this with a counterexample. Let S =

X ∩ Y be the intersection, we construct Y ′ as S ∪ Z, where Z is any set that does not
intersect X such that |Y ′| = |Y |. Clearly dJ(X,Y) = dJ(X,Y

′). However we can make
the Hausdorff distance HD(X,Y ′) arbitrarily large, independently of the value of the
Jaccard distance and the cardinality of the sets.

Lemma 4.9. Let (M,d) be a metric finite space and define F (M) the set of closed non-empty
subsets ofM . Let X ∈ F (M) and define

Qk := {Y ∈ F (M)|k < |Y |} .

Then for all k > 0, there exists some ε > 0 such that

HD(X,Y) ≤ ε =⇒ X ∪ Y ̸= ∅ ∀Y ∈ Qk. (4.3)

32 Methodology

Proof. Consider k fixed, Y ∈ Qk and ε > 0. We know that

|X ∪ Y |+ |X ∩ Y | = |X|+ |Y | ≥ |X|+ k.

From the proof of lemma 4.7, we can substitute

|Xε|+ |X ∩ Y | ≥ |X|+ k =⇒ |X ∩ Y | ≥ |X|+ k − |Xε|.

Then, eq. (4.3) is equivalent to say that we can select some ε0 > 0 such that k > |Xε0 | −
X = |Xε0 \X|. We set ε0 = sup{ε > 0 | k > |Xε \X|}.

Lemma 4.7 leads us to believe that, if the intersection of the prediction and target
mask are large enough, minimizing the Hausdorff distance is guaranteed to minimize
the Jaccard distance. This is a reasonable requirement since the model is expected to
intersect the target as much as possible anyway.

From 4.9 we learn that, under some conditions of cardinality for the prediction, a
Hausdorff distance low enough will eventually lead to intersection of the target and pre-
diction. This reaffirms our intuition that the model will eventually intersect predictions
with targets.

Unfortunately, calculating the Hausdorff distance between two sets comes at a high
computational cost and high memory requirements, since the naive implementation re-
quires quadratic memory allocation (compared to the inputs).

To correct the performance requirements of the Hausdorff distance, we find an ap-
proximation of the Hausdorff distance. Similarly to [15], we use an approximation based
on distance transforms.

Consider Y, Ŷ ∈ Mn×m({0, 1}) the target and predicted 2D binary masks, where 0

represents the background and 1 the foreground. We define the distance transform as

T :Mn×m({0, 1})→Mn×m(R+)

Yij 7→ min
k,l|Ykl=1

d([i, j], [k, l])

Then, using the distance transform, we construct the loss as:

LDT (Y, Ŷ) :=
1

|Ω|
∑
Ω

(Y − Ŷ)(2) ◦ (T (Y)(α) + Ŷ), (4.4)

where A(α) indicates element-wise exponentiation and ◦ the Hadamard or element-wise
product, and Ω is the set of indices. Notice that, in contrast to the original algorithm by

4.6 Network Architecture 33

Figure 4.8: Example of U-Net architecture [34].

[15], in (4.4) we add Y to the distance transform. The intuition behind that is that we
also would like to have a non-zero loss when the predicted mask is strictly contained in
the ground truth.

4.6 Network Architecture

The model selected for the first learning task is based on the U-Net [24] architec-
ture. U-Net is a fully convolutional neural network. It is composed by a sequence of
dimensionally reducing convolutions and max pooling layers that aim to extract features
of different scales, followed by a sequence of deconvolutions that reuse the features ex-
tracted at every layer Fig. 4.8.

In order to increase the performance of the model, we will use a larger model through
feature extraction to improve the feature extracting capabilities of our U-Net model.
Our choice of network is Inception ResNet, for which weights pre-trained on a large
dataset [6] are available on the Keras platform. With the pre-trained model, we will use
the output of layers in the low, mid and top part of the network as feature extractors,
replacing the convolutions in the U-Net. From now on we will refer to this model as the
ResNet architecture.

These features, particularly for the middle layers, are thought to be task agnostic. This

34 Methodology

Ba
ck

bo
ne

(In
ce

pt
io

n
Re

sN
et

) cl
as

sif
ie

r

input

output

classifier

Figure 4.9: In blue the backbone encoder, in red the added convolutional blocks and
orange classifier layers.

could prove very helpful in our problem, since we want to minimize the effort spent on
learning task agnostic features. Often, when applying feature extraction, the backbone is
“frozen” to reduce the amount of training weights. After preliminary testing, we discov-
ered that fine-tuning our backbone leads to better performance. Our hypothesis is that
our images are quite different from those in [6]: the channel contain volumetric instead
of color information, and the ultra-sound images are significantly different to those taken
with a digital camera.

4.6.1 Few-shot Scenario

Our proposed few-shot model is largely based on the Prior Guided Feature Enrichment
Network (PFENet)[29] (see §3.3.2 for more details) using the ResNet50 architecture
[14] as the backbone, which in turn is pre-trained on ImageNet [6].

Initially, our intention was to use the provided weights for the model, trained on the
PASCAL VOC 2012 [8] dataset, and benchmark the performance of the network using
just one example. Unfortunately the predictions weren’t as expected, and we conjectured
that, since the model was trained using RGB images taken with a camera as the training

4.7 Statistical Significance 35

set, it was failing to extract features of gray-scale IVUS images.
The proposed solution is modifying the model training routines to accept the images

from dataset A, and using them to fine-tune PFENet to hopefully learn to understand
IVUS images, and then use those weights as the basis for our experiments.

More specifically, the model was trained using the lumen of dataset A as the training
classes, and the media as the validation class, using a 80/20 split of the dataset. The
reason for not training both lumen and media is that, per [29], we want to use a different
class for validation—instead of different samples for the same class.

For this model a fine-tuning step on the query dataset (Dataset B) will not be neces-
sary. Instead, along the predictions, the first frame of patient 01 will be provided to the
network, which will use it to extract features from the query frames (see §3.3.2). Notice
that this frame is included in the designated training fourth of the dataset, and therefore
evaluation can be performed on the same test examples without risk of overlap.

4.7 Statistical Significance

For our quantitative results, we compare the average performance of the models de-
scribed above. In order to do so, we will employ Student’s t-test. Our results will be
computed as the average of the loss of the predictions against the ground truth, in terms
of the Jaccard and Hausdorff distance.

We evaluate a total of four metrics for each sample: Hausdorff and Jaccard distances
for the media and lumen segmentation. The one-shot models in §4.6.1 will be the excep-
tion; only Hausdorff and Jaccard distances for lumen segmentation will be evaluated.

Our training set is non-standard in the sense that Dataset samples are groups of five
frames, of which we select a subset of three. Because of this, we can’t fulfil the require-
ment of independence. The frames however are 2-dependent, since a example will over-
lap with at most 3 frames.

Using the results in [23], we calculate the variance of m-dependent random variables
as

vm := γ(0) + 2

m∑
j=1

γ(j)

where γ(0) := Cov(Xt, Xt+h).
Another factor to consider is that models evaluated on the same set are clearly not

independent. However, the ordered pairs (Ŷ i
1 , Ŷ

i
2) are 2-independent, where Ŷ1 is the

output of the model 1 and Ŷ2 the model 2 evaluated on the i-th frame.

Chapter 5

Results

In this chapter we will analyse the results obtained after evaluating the models and
proceed to compare them.

5.1 Data Augmentation

The first goal of interest is testing whether the transformations described in 14.3 lead
to improvements. It is mention in that section that there is a possibility of using param-
eters or transformations that do not represent the reality and worsen the performance
of the model. We will use the bare U-Net model as our benchmark. It does not use any
form of transfer learning so we expect it to only learn from the dataset. As the training
loss we use the Jaccard loss, because we know from [25] that it has good performance.
As our evaluation metric we have chosen Hausdorff distance.

In Fig. 5.1 we observe a clear improvement when using either transform, particularly
on the precision of the model for the segmentation of the media. It is not clear, how-
ever if either of the data augmentations—affine transforms or elastic deformations—are
preferable when it comes to training. However,

Then, we evaluate the models using Inception ResNet as a backbone. The differ-
ences are less extreme, as seen in Fig. 5.2, but we can still see improvements when using
data augmentation. In particular, elastic deformations seem to lead to better performance
for the media segmentation task. Notice that this contradicts results from [25].

After this results, since we have seen that both affine and elastic transformations lead
to improvements, both will be used in combination when training the subsequent models.

36

5.2 Hausdorff Loss 37

nothing affine
transforms

elastic
deformations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Hausdorff Distance Media

nothing affine
transforms

elastic
deformations

Hausdorff Distance Lumen

Data augmentation for U-Net

Figure 5.1: Effects of data augmentation on the U-Net network.

nothing affine
transforms

elastic
deformations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Hausdorff Distance Media

nothing affine
transforms

elastic
deformations

Hausdorff Distance Lumen

Data augmentation for Inception Resnet

Figure 5.2: Effect of data augmentation when using feature extraction.

5.2 Hausdorff Loss

In equation (4.4) we introduce a training loss based on distance transforms. Wewould
like to know if using this loss variation will increase the performance of the model the

38 Results

same way the Jaccard loss did against the categorical crossentropy loss[25].
Let there be two identical models, using the architecture described in §4.6, except

for their training loss, where the model ResNetJ is trained using the Jaccard loss and
ResNetH is trained using our Hausdorff distance approximation. Both models are trained
using the same preprocessing steps; data augmentation is applied as mentioned in the
previous chapter (a combination of affine transformations and elastic deformations ap-
plied randomly as describe in §4.3).

Then our hypotheses are:

1. the distribution of the means for ResNetH will have a lower mean Hausdorff dis-
tance on the test set—since we are optimizing an approximation of the Hausdorff
distance.

2. based on 4.9, we expect to not see an increase on the mean Jaccard distance on the
test set for ResNetH (with respect to ResNetJ).

Additionally we expect to see an improvement in the quality of the segmentation masks
from a qualitative point of view.

ResNetJ ResNetH

0.0

0.2

0.4

0.6

0.8

1.0
p-value = 0.0000

Hausdorff Distance (media)

ResNetJ ResNetH

p-value = 0.0000

Hausdorff Distance (lumen)

Loss performance comparison

Figure 5.3: Comparison of the ResNetJ and ResNetH models, evaluated using Hausdorff
distance.

Indeed, we find a decrease of the error (Fig. 5.3), in terms of the Hausdorff distance,
for the segmentation of the media and lumen of 13.98% and 20.45% respectively when

5.2 Hausdorff Loss 39

using ResNetH ; this difference is statistically significant (p-value < 0.01). At the same
time, supporting hypothesis 2, we fail to reject the null hypothesis for the alternative of
the loss of model I having a lower population mean, with p-values of 0.279 and 0.949 for
the segmentation of the lumen and media, respectively.

In Section 4.5 we conjectured that the Hausdorff metric embedded some geometric
information about the mask, and that masks that were visually similar tended to have
similar Hausdorff distances to the query mask. To, qualitatively, test this hypothesis we
selected the 5 predictions with the worst score for each model, and then we compared
them visually.

From inspection it seems that the ResNetH is less likely to mistake shadows for the
lumen (see: Fig. 5.4, rows 3 and 4; Fig. 5.5, rows 4 and 5). It also appears like the
predictions of ResNetH—trained using an approximation of the Hausdorff distance—tend
to spread less. Interestingly, frames 24 and 1 for patient 7 and 8 respectively, appear
in both cases. This could be a consequence of these frames being “difficult” frames to
segment in general.

40 Results

pa
tie

nt
 0

3
[4

7/
50

]

Query Image Target

0.99mm

ResNetJ

0.04mm

ResNetH

pa
tie

nt
 0

7
[2

3/
25

]

1.04mm 0.79mm

pa
tie

nt
 0

8
[1

/5
0]

1.08mm 1.06mm

pa
tie

nt
 0

8
[3

/5
0]

1.14mm 0.97mm

pa
tie

nt
 0

7
[2

4/
25

]

1.17mm 0.96mm

Worst 5 Examples for ResNetJ
(Hausdorf distance, lumen)

Figure 5.4: Comparison of the predictions from ResNetJ and ResNetH for the 5 samples
the ResNetJ obtains the worst score.

5.2 Hausdorff Loss 41

pa
tie

nt
 0

8
[2

1/
50

]

Query Image Target

0.87mm

ResNetJ

0.89mm

ResNetH

pa
tie

nt
 0

7
[2

4/
25

]

1.17mm 0.96mm

pa
tie

nt
 0

8
[4

/5
0]

0.88mm 0.97mm

pa
tie

nt
 0

8
[3

/5
0]

1.14mm 0.97mm

pa
tie

nt
 0

8
[1

/5
0]

1.08mm 1.06mm

Worst 5 Examples for ResNetH
(Hausdorf distance, lumen)

Figure 5.5: Comparison of the predictions from from ResNetJ and ResNetH for the 5
samples where the ResNetH obtains the worst score.

42 Results

5.3 Few-shot Scenario

In the evaluation of the few-shot scenario we compare: the Inception ResNetmodel
defined in §4.6 (ResNetS) and PFENet. [29]. These models were trained on the Dataset
A, and then evaluated on the Dataset B using the first frame of the dataset as a sup-
port image. The datasets are considered different enough, and therefore the evaluation
is considered to be on a novel class. Note that for model I this means training for 20
epochs—empirically selected by monitoring the training loss.

Here the null hypothesis is that by using PFENet we don’t obtain significant improve-
ments for the performance on the novel dataset, using ResNetS as the benchmark.

Patient 1 Rest All Patients
0

10

20

30

40

50

60

70 ResNetS

PFENet

Patient 1 vs Rest (mean Jaccard Distance)

Figure 5.6: Resilience of ResNetS vs PFENet to diferent data

However, qualitatively we see that the predictions from the PFENet seem to be rea-
sonable, whereas ResNetS often fails to detect lumen at all. Quantitatively, we have that
ResNetS has a mean Jaccard distance of 0.67±0.19 and Hausdorff distance of 0.25±0.12

5.3 Few-shot Scenario 43

ResNetH PFENet
0.0

0.1

0.2

0.3

0.4

0.5

0.6
p-value = 0.0000

Jaccard Distance (media)

ResNetH PFENet

p-value = 0.0017

Hausdorff Distance (lumen)

Performance comparison

Figure 5.7: Comparison of ResNetH (trained on one fourth of the dataset), and PFENet
(trained on one sample), whith the respective p-values of the significance tests.

mm.1 PFENet, however has a mean Jaccard distance of 0.16 ± 0.05 and mean Haus-
dorff distance of 0.13± 0.05 mm. With this results we reject the null hypothesis (p-value
< 0.001).

Additionally, we would expect that the performance would be higher for the patient
1 than the rest—since the support frame comes from patient 1. Interestingly, as we can
see in 5.6, this does happen to ResNetS , but not to PFENet. This confirms the idea that
the PFENet [29] is resilient against overfitting and therefore suitable for the one-shot
scenario.

For the final test we will compare the performance of the PFENet against the best
model of §5.2. Surprisingly PFENet outperforms the Inception ResNet based architec-
ture on the segmentation of the lumen. Indeed we observe a 28% decrease on the mean
Jaccard distance, and a 30% decrease on the mean Hausdorff distance (see Fig. 5.7). 2

The improvement in performance is significant (p-value < 0.01).

1The images without a mask are discarded, otherwise the mean is not defined.
2These results might not agree with those on the table found in conclusions. This is because to be able to

use the m-dependent t-test we must compare on one of the folds for the ResNet, whereas usually we will
use all the folds since they are more representative of the distribution.

44 Results

Figure 5.8: Qualitative overview of ResNetS vs PFENet on random images

Chapter 6

Conclusions

IVUS image segmentation is a challenging problem. Not only is image segmentation
a particularly hard classification problem, but also the images tend to be quite difficult to
interpret, even by medical professionals.

Furthermore, the lack of data makes training Deep Learning algorithms particularly
challenging.

6.1 Contributions

In this project we extend the work done by [25], providing contributions in the pre-
processing of data, model and loss selection, and the few-shot learning scenario.

For the preprocessing side of the methods, we introduce min-max normalization of
the images and improvements in the implementations of data augmentation methods.
Min-max normalization is relevant particularly in the few-shot scenario, where we use
two distinct datasets simultaneously. For data augmentation we provide an alternative
elastic deformation algorithm, and we apply it asymmetrically, i.e. only on the masks, to
improve the results in [25].

For the model and loss selection, we provide a modular framework, implemented
as an installable Python package, for rapid development of models. We complement
our empirical study with novel theoretical results (see lemmas 4.7 and 4.9). Finally we
provide statistical justifications for the selection of our Hausdorff loss (see §5.2) instead
of the previously used Jaccard loss, as well as our usage of data augmentation.

The last topic studied in this project is the few-shot learning scenario. Here we study a
method to provide a trained model using only k samples; we select k = 1 training samples

45

46 Conclusions

(one-shot training). We use fine-tuning on a general purpose implementation (PFENet
[29]), and provide a model that, not only dramatically outperforms other models in the
one-shot training scenario , but also obtains excellent results compared to models trained
with a larger split (see §5.3).

6.2 Summary of Results

In this section we provide a summary of the results analysed in depth in §5. In Table
6.1 we display a comparison of notable results, including models D and F from [25].

Comparison of results
lumenJD lumenHD (mm) mediaJD mediaHD (mm)

Model D† 0.206 (0.135) 0.255 (0.297) 0.478 (0.170) 0.439 (0.332)
Model F† 0.236 (0.135) 0.235 (0.254) 0.455 (0.166) 0.318 (0.237)
ResNetH 0.189 (0.102) 0.154 (0.154) 0.496 (0.165) 0.258 (0.175)
ResNetJ 0.198 (0.123) 0.209 (0.232) 0.415 (0.155) 0.282 (0.215)
PFENet 0.158 (0.089) 0.129 (0.139)
ResNetS 0.666 (0.376) ∞ (nan)

Table 6.1: The results of Model D† and F†, originally by [25], are as evaluated using our
split.

Model D and F are based on the same ResNet architecture used in this report, where
model D uses affine transforms, and model F elastic deformations. Originally, [25] con-
cludes that model D is better and that elastic transforms do not lead to better improve-
ments. Using our improved implementation, we find out that that is not necessarily true.

Our proposed best models are ResNetH and PFENet (rows 3 and 6 of Table 6.1),
where:

• ResNetH uses an architecture inspired by U-Net [24] and a pre-trained Inception
ResNet as a feature extractor, and is trained using a combination of affine and
elastic deformations. It uses our Hausdorff loss implementation.

• PFENet is largely based on the implementation by [29], modified and fine-tuned
using IVUS images (from Dataset A).

Additionally, for comparison we show models ResNetJ and ResNetS . ResNetJ is iden-
tical to ResNetH , except it uses the Jaccard loss instead of the Hausdorff loss; ResNetS is

6.2 Summary of Results 47

ResNetH trained on the same example as PFENet.

6.2.1 Future Work

• Fine-tuning the PFENet on Dataset A made it usable for predicting on Dataset B.
Maybe this could be extended to the other models: first learn to extract features
from ultrasound images and then train on the target dataset.

• When training PFENet we realized that we didn’t have many classes to use for
episodic training. It could prove valuable to generate a dataset aggregating var-
ied medical imaging segmentation datasets.

• It is evident on §5.2 that there are some particular “difficult frames” because of
shadows and noise. I would be interesting to see that if training is done with a
selection of difficult frames we would see some improvements.

• IVUS images present granular artefacts (speckle patterns) that are a consequence
of ultrasound interferences. A speckle noise simulation could be valuable as a data
augmentation method.

Appendix A

First

A.1 Numerical Results

Here we will display the tables with the numerical results of the models used through-
out this report.

Data augmentation
lumenJD lumenHD (mm) mediaJD mediaHD (mm)

U-Netnone 0.27 (0.15) 0.42 (0.45) 0.54 (0.15) 0.47 (0.25)
U-Netaffine 0.22 (0.14) 0.25 (0.31) 0.50 (0.16) 0.32 (0.21)
U-Netelastic 0.21 (0.12) 0.20 (0.22) 0.50 (0.15) 0.29 (0.18)
ResNetnone 0.24 (0.15) 0.31 (0.36) 0.48 (0.15) 0.56 (0.36)
ResNetelastic 0.24 (0.13) 0.24 (0.25) 0.45 (0.16) 0.33 (0.25)
ResNetaffine 0.23 (0.15) 0.28 (0.30) 0.49 (0.17) 0.39 (0.28)

Table A.1: Comparison of data augmentation results

Loss
lumenJD lumenHD (mm) mediaJD mediaHD (mm)

ResNetH 0.20 (0.11) 0.17 (0.17) 0.44 (0.16) 0.28 (0.21)
ResNetJ 0.20 (0.12) 0.19 (0.20) 0.43 (0.16) 0.31 (0.23)

Table A.2: Comparison of the choice of loss used in §5.2

48

A.2 Additional Resources 49

Few-shot comparison
lumenJD lumenHD (mm) mediaJD mediaHD (mm)

PFENet 0.158 (0.089) 0.129 (0.139)
ResNetS 0.666 (0.376) ∞ (nan)
ResNetH 0.210 (0.118) 0.191 (0.193) 0.430 (0.165) 0.280 (0.195)

Table A.3: First two rows are the one-shot models, the last one serves as a reference.

A.2 Additional Resources

Figure A.1: Effects of different elastic transform parameters on the shape of the mask.

Bibliography

[1] Chirag Balakrishna, Sarshar Dadashzadeh, and Sara Soltaninejad. «Automatic de-
tection of lumen andmedia in the IVUS images using U-Net with VGG16 Encoder».
In: arXiv preprint arXiv:1806.07554 (2018).

[2] Simone Balocco et al. «Standardized evaluationmethodology and reference database
for evaluating IVUS image segmentation». In: Computerized Medical Imaging and
Graphics 38.2 (2014). Special Issue on Computing and Visualisation for Intravas-
cular Imaging, pp. 70–90. issn: 0895-6111. doi: https://doi.org/10.1016/j.
compmedimag.2013.07.001. url: https://www.sciencedirect.com/science/
article/pii/S0895611113001298.

[3] Qi Cai et al. «Memory Matching Networks for One-Shot Image Recognition». In:
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018, pp. 4080–
4088. doi: 10.1109/CVPR.2018.00429.

[4] Wikimedia Commons. Artificial neural network with layer coloring. File: Colored
neural network.svg. 2013. url: https://en.wikipedia.org/wiki/File:
Colored_neural_network.svg.

[5] François Chollet. In: (2022). url: https://keras.io/examples/vision/oxford_
pets_image_segmentation/.

[6] J. Deng et al. «Construction and Analysis of a Large Scale Image Ontology». In:
Vision Sciences Society. 2009.

[7] Estadística de defunciones según la causa de muerte. Últimos Datos. Nov. 2021. url:
https://www.ine.es/uc/tlPx9LBx.

[8] M. Everingham et al. The PASCAL Visual Object Classes Challenge 2012 (VOC2012)
Results. http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html.

50

https://doi.org/https://doi.org/10.1016/j.compmedimag.2013.07.001
https://doi.org/https://doi.org/10.1016/j.compmedimag.2013.07.001
https://www.sciencedirect.com/science/article/pii/S0895611113001298
https://www.sciencedirect.com/science/article/pii/S0895611113001298
https://doi.org/10.1109/CVPR.2018.00429
https://en.wikipedia.org/wiki/File:Colored_neural_network.svg
https://en.wikipedia.org/wiki/File:Colored_neural_network.svg
https://keras.io/examples/vision/oxford_pets_image_segmentation/
https://keras.io/examples/vision/oxford_pets_image_segmentation/
https://www.ine.es/uc/tlPx9LBx

BIBLIOGRAPHY 51

[9] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-Agnostic Meta-Learning for
Fast Adaptation of Deep Networks. 2017. doi: 10.48550/ARXIV.1703.03400. url:
https://arxiv.org/abs/1703.03400.

[10] Hector M Garcia-Garcia et al. «IVUS-based imaging modalities for tissue character-
ization: similarities and differences». In: The international journal of cardiovascular
imaging 27.2 (2011), pp. 215–224.

[11] Spyros Gidaris and Nikos Komodakis. «Dynamic Few-Shot Visual LearningWithout
Forgetting». In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition. June 2018, pp. 4367–4375. doi: 10.1109/CVPR.2018.00459.

[12] Benjamin Haeffele and René Vidal. «Global Optimality in Neural Network Train-
ing». In: July 2017, pp. 4390–4398. doi: 10.1109/CVPR.2017.467.

[13] Abdelaziz Hammouche et al. «Automatic IVUS lumen segmentation using a 3D
adaptive helix model». In: Computers in Biology and Medicine 107 (2019), pp. 58–
72. issn: 0010-4825. doi: https://doi.org/10.1016/j.compbiomed.2019.
01 . 023. url: https : / / www . sciencedirect . com / science / article / pii /
S0010482519300290.

[14] Kaiming He et al. Deep Residual Learning for Image Recognition. 2015. doi: 10.
48550/ARXIV.1512.03385. url: https://arxiv.org/abs/1512.03385.

[15] Davood Karimi and Septimiu E. Salcudean. «Reducing the Hausdorff Distance
in Medical Image Segmentation With Convolutional Neural Networks». In: IEEE
Transactions on Medical Imaging 39.2 (2020), pp. 499–513. doi: 10.1109/TMI.
2019.2930068.

[16] Sven Kosub. A note on the triangle inequality for the Jaccard distance. 2016. doi:
10.48550/ARXIV.1612.02696. url: https://arxiv.org/abs/1612.02696.

[17] Y. Lecun et al. «Gradient-based learning applied to document recognition». In:
Proceedings of the IEEE 86.11 (1998), pp. 2278–2324. doi: 10.1109/5.726791.

[18] Tomas Mikolov et al. Distributed Representations of Words and Phrases and their
Compositionality. 2013. doi: 10.48550/ARXIV.1310.4546. url: https://arxiv.
org/abs/1310.4546.

[19] Tomas Mikolov et al. Efficient Estimation of Word Representations in Vector Space.
2013. doi: 10.48550/ARXIV.1301.3781. url: https://arxiv.org/abs/1301.
3781.

https://doi.org/10.48550/ARXIV.1703.03400
https://arxiv.org/abs/1703.03400
https://doi.org/10.1109/CVPR.2018.00459
https://doi.org/10.1109/CVPR.2017.467
https://doi.org/https://doi.org/10.1016/j.compbiomed.2019.01.023
https://doi.org/https://doi.org/10.1016/j.compbiomed.2019.01.023
https://www.sciencedirect.com/science/article/pii/S0010482519300290
https://www.sciencedirect.com/science/article/pii/S0010482519300290
https://doi.org/10.48550/ARXIV.1512.03385
https://doi.org/10.48550/ARXIV.1512.03385
https://arxiv.org/abs/1512.03385
https://doi.org/10.1109/TMI.2019.2930068
https://doi.org/10.1109/TMI.2019.2930068
https://doi.org/10.48550/ARXIV.1612.02696
https://arxiv.org/abs/1612.02696
https://doi.org/10.1109/5.726791
https://doi.org/10.48550/ARXIV.1310.4546
https://arxiv.org/abs/1310.4546
https://arxiv.org/abs/1310.4546
https://doi.org/10.48550/ARXIV.1301.3781
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781

52 BIBLIOGRAPHY

[20] David Molony, Hossein Hosseini, and Habib Samady. «TCT-2 Deep IVUS: A ma-
chine learning framework for fully automatic IVUS segmentation». In: Journal of
the American College of Cardiology 72.13S (2018), B1–B1.

[21] Alex Nichol, Joshua Achiam, and John Schulman. On First-Order Meta-Learning
Algorithms. 2018. doi: 10.48550/ARXIV.1803.02999. url: https://arxiv.org/
abs/1803.02999.

[22] Takeshi Nishi et al. «Deep learning-based intravascular ultrasound segmentation
for the assessment of coronary artery disease». In: International journal of cardiol-
ogy 333 (2021), pp. 55–59.

[23] Sidney I. Resnick. A probability path. Birkhäuser, 2014.
[24] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Net-

works for Biomedical Image Segmentation. 2015. arXiv: 1505.04597 [cs.CV].
[25] Albert Sallés. Advanced Semantic Segmentation using Deep Learning. 2022.
[26] P.Y. Simard, D. Steinkraus, and J.C. Platt. «Best practices for convolutional neural

networks applied to visual document analysis». In: Seventh International Confer-
ence on Document Analysis and Recognition, 2003. Proceedings. Aug. 2003, pp. 958–
963. doi: 10.1109/ICDAR.2003.1227801.

[27] Jake Snell, Kevin Swersky, and Richard Zemel. «Prototypical Networks for Few-
shot Learning». In: Advances in Neural Information Processing Systems. Ed. by I.
Guyon et al. Vol. 30. Curran Associates, Inc., 2017. url: https://proceedings.
neurips.cc/paper/2017/file/cb8da6767461f2812ae4290eac7cbc42-Paper.

pdf.
[28] Flood Sung et al. «Learning to Compare: Relation Network for Few-Shot Learning».

In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June
2018, pp. 1199–1208. doi: 10.1109/CVPR.2018.00131.

[29] Zhuotao Tian et al. «Prior Guided Feature Enrichment Network for Few-Shot Seg-
mentation». In: IEEE Transactions on Pattern Analysis and Machine Intelligence 44.2
(Feb. 2022), pp. 1050–1065. issn: 1939-3539. doi: 10 . 1109 / TPAMI . 2020 .
3013717.

[30] Lucas Lo Vercio, Mariana Del Fresno, and Ignacio Larrabide. «Lumen-intima and
media-adventitia segmentation in IVUS images using supervised classifications of
arterial layers and morphological structures». In: Computer Methods and Programs
in Biomedicine 177 (2019), pp. 113–121.

https://doi.org/10.48550/ARXIV.1803.02999
https://arxiv.org/abs/1803.02999
https://arxiv.org/abs/1803.02999
https://arxiv.org/abs/1505.04597
https://doi.org/10.1109/ICDAR.2003.1227801
https://proceedings.neurips.cc/paper/2017/file/cb8da6767461f2812ae4290eac7cbc42-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/cb8da6767461f2812ae4290eac7cbc42-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/cb8da6767461f2812ae4290eac7cbc42-Paper.pdf
https://doi.org/10.1109/CVPR.2018.00131
https://doi.org/10.1109/TPAMI.2020.3013717
https://doi.org/10.1109/TPAMI.2020.3013717

BIBLIOGRAPHY 53

[31] Menghua Xia et al. «Extracting Membrane Borders in IVUS Images Using a Multi-
Scale Feature Aggregated U-Net». In: 2020 42nd Annual International Conference
of the IEEE Engineering in Medicine & Biology Society (EMBC). 2020, pp. 1650–
1653. doi: 10.1109/EMBC44109.2020.9175970.

[32] Ji Yang, Mehdi Faraji, and Anup Basu. «Robust segmentation of arterial walls in
intravascular ultrasound images using Dual Path U-Net». In: Ultrasonics 96 (2019),
pp. 24–33.

[33] Ji Yang et al. «IVUS-Net: an intravascular ultrasound segmentation network». In:
International Conference on Smart Multimedia. Springer. 2018, pp. 367–377.

[34] Mehrdad Yazdani. Example architecture of U-Net for producing k 256-by-256 image
masks for a 256-by-256 RGB image. 2019. url: https://upload.wikimedia.org/
wikipedia/commons/2/2b/Example_architecture_of_U-Net_for_producing_

k_256-by-256_image_masks_for_a_256-by-256_RGB_image.png.
[35] Chi Zhang et al. CANet: Class-Agnostic Segmentation Networks with Iterative Refine-

ment and Attentive Few-Shot Learning. 2019. doi: 10.48550/ARXIV.1903.02351.
url: https://arxiv.org/abs/1903.02351.

[36] Chi Zhang et al. «DeepEMD: Few-Shot Image Classification With Differentiable
Earth Mover‚Äôs Distance and Structured Classifiers». In: 2020 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR). June 2020, pp. 12200–
12210. doi: 10.1109/CVPR42600.2020.01222.

https://doi.org/10.1109/EMBC44109.2020.9175970
https://upload.wikimedia.org/wikipedia/commons/2/2b/Example_architecture_of_U-Net_for_producing_k_256-by-256_image_masks_for_a_256-by-256_RGB_image.png
https://upload.wikimedia.org/wikipedia/commons/2/2b/Example_architecture_of_U-Net_for_producing_k_256-by-256_image_masks_for_a_256-by-256_RGB_image.png
https://upload.wikimedia.org/wikipedia/commons/2/2b/Example_architecture_of_U-Net_for_producing_k_256-by-256_image_masks_for_a_256-by-256_RGB_image.png
https://doi.org/10.48550/ARXIV.1903.02351
https://arxiv.org/abs/1903.02351
https://doi.org/10.1109/CVPR42600.2020.01222

	Introduction
	Motivation
	Our Contribution
	Literature Review
	Structure of the Project

	Technical Background
	Neural Networks
	Optimization

	Convolutional Neural Networks

	State of the Art
	Data Augmentation
	Transfer Learning
	Fine-tuning
	Feature Extraction

	Few-shot Learning
	Meta-learning
	Metric Based Learning

	Methodology
	Data
	Preprocessing
	Data Augmentation
	Evaluation Metrics
	Loss Functions
	Network Architecture
	Few-shot Scenario

	Statistical Significance

	Results
	Data Augmentation
	Hausdorff Loss
	Few-shot Scenario

	Conclusions
	Contributions
	Summary of Results
	Future Work

	First
	Numerical Results
	Additional Resources

