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Introduction

In the middle of the 19th century, Bernhard Riemann began to develop the idea
of the today known as Riemann Surfaces, with the aim of constructing the theory
of analytic functions of complex variables in a more solid way. Similarly as in
differential geometry we develop a theory of manifolds that locally looks like Rn,
we can develop an analogous theory about manifolds that locally looks like Cn. In
other words, Riemann Surfaces are manifolds of complex dimension one and we
can consider them as curves. Treated as a curve, we could be interested in studying
the automorphisms of compact and connected Riemann Surfaces. Already at the
beginning of the 19th century, it was shown that the curves of genus g = 0 and
g = 1 had an infinite number of automorphisms. However, it remained to be
seen what happened for curves with g ≥ 2. It was not until 1878 that Schwarz
proved that for g ≥ 2 the group of automorphisms was finite (Schwarz’s Theorem).
Later, in 1893, Hurwitz went further and gave an upper bound of 84(g − 1) for
the number of automorphisms, namely Hurwitz’s Theorem. Thus, our principal
objective in this work has been to prove Hurwitz’s Theorem. In order to do it, we
have required several objects that have themselves much importance and we could
dedicate an entire paper for each of them.
Before describing how will be the work organized let’s give an idea of how we
will proceed. We will see that the group of automorphisms of X (compact and
connected Riemann Surface) permutes Weierstrass points (W(X)) which we will
prove are finite using the Wronskian. Once we will have described Aut(X) and
Perm(W(X)) we will define the morphism λ : Aut(X) → Perm(W(X)) which
is (0) or Z/2 and prove that Aut(X) is a finite group. After having proved the
finiteness of Aut(X), we will go to the quotient X/Aut(X) and using the Riemann-
Hurwitz formula find the bound of the Hurwitz Theorem.
In this work, we will start in Chapter 1 by introducing basic definitions of Rie-
mann Surfaces and presenting the most significant examples of them such as the
Riemann Sphere, the Complex Torus and Hyperelliptic Riemann Surfaces. Then,
in Chapter 2 we will enter the core of the work by studying functions on Riemann
Surfaces, especially meromorphic and holomorphic functions. We will as follows,
describe holomorphic maps between Riemann Surfaces that will lead us to the
well-known Riemann-Hurwitz formula. This formula is worthy of an entire work
because it allows us to study the relationships that our discrete invariants between
Riemann Surfaces have. Afterwards, in Chapter 3 we will introduce the language
of different forms that will be used later on. We will continue by presenting in
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Introduction iii

Chapter 4 finite group actions and the quotient Riemann Surface. Then, in Chap-
ter 5 we will present principal and canonical divisors to finally come up with the
Riemann-Roch Theorem. Apart from being highly versatile and generalisable it is
also a crucial theorem in Hurwitz Theory. It computes the dimension of certain
spaces of meromorphic differentials from properties of the so-called divisor and
the genus of the Riemann Surface. However, due to the length and complexity of
the proof and in order not to lengthen the work, we will not go into the proof of
the theorem in detail. Next, in the following Chapter 6 we will enter the final part
of the work. In this section, we will study the Wronskian to introduce the notion
of Weierstrass points. These would deserve further study because they have very
special properties in terms of meromorphic functions on Riemann Surfaces which
make them of great interest. Finally, in the last Chapter 7, we will be ready, with
all the notions we have presented, to expose and prove Schwarz’s Theorem and
Hurwitz’s Theorem.
To develop our work, our main source of information has been [1] but it has
also been completed using [2], specially to study the finiteness of the group of
automorphisms for g ≥ 2.
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Chapter 1

Riemann Surfaces: Basic
Definitions

1.1 Preliminaries

We will start this work by defining precisely what are Riemann Surfaces and we
will present several examples of them. Finally, we will give a few properties of
Riemann Surfaces that will be used later on.
Before proceeding to the definition of Riemann Surfaces, let’s recall some concepts
of Complex Analysis we will need.

Figure 1.1: Holomorphic function

Definition 1.1. Recall that a function f : Ω → C defined on an open set Ω is said
to be analytic or holomorphic at z0 ∈ Ω if one of the following three equivalent

1



2 Basic Definitions

conditions holds:

1. write w = u + iv where u = Re( f ) and v = Im( f ) then we want that the first
partials:

ux =
∂u
∂x

, uy =
∂u
∂y

, vx =
∂v
∂x

, vy =
∂v
∂y

(1.1)

exist and are continuous and further satisty the Cauchy-Riemann Equations:

ux = vy and vx = −uy ∀z in a neighborhood of z0. (1.2)

2. the limit lim∆z→0
f (z+∆z)− f (z)

∆z exists ∀ point z in a neighborhood of z0.

3. it exists a power series of the form ∑n≥0 an(z − z0)n which is convergent to
f (z) for each point z in a neighborhood of z0.

Proposition 1.2. The three above conditions are equivalent.

Definition 1.3. An injective holomorphic map is a holomorphic isomorphism i.e
f : U → C (U ⊂ C open subset) is holomorphic and f is injective. Then f (U) is
open and f−1 : f (U) → U is also holomorphic.

1.2 Formal definition of a Riemann Surface

In this subchapter we will organize the ideas of the previous one to construct a
formal definition of a Riemann Surface. To begin with, we will need to define a
few concepts.

Definition 1.4. Let’s start with X being a topological space:

1. A complex chart on X is a homeomorphism ϕ : U → V, where U ⊂ X
is an open set in X, and V ⊂ C is an open set in the complex plane. The
open subset U is called the domain of the chart ϕ. We say that the chart ϕ is
centered at p ∈ U when ϕ(p) = 0.

2. Let {Uα}{α∈A} be an open cover of X, i.e ∪{α∈A}Uα = X. A local parameter
(local coordinate, coordinate chart) is a pair (Uα, ϕα) of Uα with a homeo-
morphism ϕα : Uα → Vα to an open subset Vα ⊂ C.
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3. Two charts ϕ1 : U1 → V1, ϕ2 : U2 → V2 are said to be compatible if either
U1 ∩U2 = ∅, or the transition function T = ϕ2 ◦ ϕ1

−1 is holomorphic which
means that:

ϕ2 ◦ ϕ1
−1 : ϕ1(U1 ∩ U2) → ϕ2(U1 ∩ U2)

is holomorphic as a function of complex variable (see 1.2).

X
U1

U2

C C

ϕ1
ϕ2

V1 V2
T = ϕ2 ◦ ϕ−1

1

Figure 1.2: compatible charts

4. A complex atlas A on X is a collection A = {ϕα : Uα → Vα} of pairwise
compatible complex charts whose domains cover X, i.e X = ∪αUα.

5. Two complex atlases A1, A2 are said to be equivalent if A1 ∪ A2 is a complex
atlas. It constitutes an equivalence relation 1.

6. A complex atlas is said to be maximal if it can’t be included in any other one.
It can be proved that any atlas is included in a single maximal atlas and that
two atlases are equivalent iff they are included in the same maximal atlas.

7. A complex structure on X is a maximal atlas A on X, i.e, an equivalence
class of complex atlases on X. It is denoted by ∑

8. X is Hausdorff if for every two distinct points x, y ∈ X, there are disjoint
neighborhoods U and V of x and y, respectively.

1A binary relation is said to be an equivalence relation iff it is symmetric, reflexive and transitive.
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9. X is second countable or equivalently fulfills the second axiom of countabil-
ity if there exists a countable basis for its topology.

Definition 1.5. A Riemann Surface X is a topological space, Hausdorff, connected
and second countable that has a complex structure.

Proposition 1.6. Every Riemann surface is path-connected.

Proof. By definition, a Riemann surface is a complex manifold. Hence it is con-
nected and locally path-connected.

Proposition 1.7. Every Riemann surface is orientable.

Proof. A possible way of showing this is to calculate the determinant of the jaco-
bians of the transitions functions.
Suppose you have an n-dimensional complex manifolds M. That is, M is a (first
countable, Hausdorff) space such that every point p ∈ M has an open neighbor-
hood V homeomorphic to an open subset Ω ⊂ Cn,

ϕ : V → Ω homeomorphism

and when two such neighborhoods intersect, the transition functions are holomor-
phic,

ψ ◦ ϕ−1 : ϕ(V ∩ V ′) → ψ(V ∩ V ′) biholomorphism

By identifying Cn with Rn like so: (z1, ..., zn) ↔ (x1, y1, ..., xn, yn) where zk =

xk + iyk is the real/imaginary part decomposition, we get a real manifold structure
on M. We can calculate the jacobian matrices of the transition functions for both
structures.
Let’s set up some notation. The first coordinate chart will be:

ϕ : V → Ω

p 7→ (z1(p), ..., zn(p))

The second coordinate chart will be:

ψ : V ′ → Ω′

p 7→ (Z1(p), ..., Zn(p))

In the complex case, we have

Jacϕ(p)(ψ ◦ ϕ−1) = ( ∂[ψ◦ϕ−1]k

∂zl )1⩽k,l⩽n = ( ∂Zk(z1,...,zn)
∂zl )1⩽k,l⩽n = (ck

l )1⩽k,l⩽n ∈ GL(n, C),
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and in the real case you’ll find:

Jacϕ(p)(ψ
R ◦ (ϕR)−1) =

 ∂Xk(x1,y1,...,xn,yn)
∂xl

∂Xk(x1,y1,...,xn,yn)
∂yl

∂Yk(x1,y1,...,xn,yn)
∂xl

∂Yk(x1,y1,...,xn,yn)
∂yl


1⩽k,l⩽n

=

(
Re(ck

l ) −Im(ck
l )

Im(ck
l ) Re(ck

l )

)
1⩽k,l⩽n

∈ GL(2n, R),

using the Cauchy-Riemann equations. We will calculate the determinant of these
matrices, show that it is always > 0, which is equivalent to MR being orientable.
We move on to calculating the determinants of these. Consider the R−algebra

homomorphism

ρ : Mn(C) → M2n(R)

(ck
l )1⩽k,l⩽n 7→

(
Re(ck

l ) −Im(ck
l )

Im(ck
l ) Re(ck

l )

)
1⩽k,l⩽n

Since it is R-linear and the spaces involved are finite dimensional, it is continuous.
Also, being an algebra homomorphism, we have detρ(P−1AP) = det(ρ(P)−1ρ(A)ρ(P)) =
det(ρ(A)). Finally, the diagonalizable matrices are dense in Mn(C), so we can re-
strict our calculations to diagonal matrices in Mn(C). For these, the calculations
are easy:

det(ρ(Diag(c1, ..., cn))) =

det(Diag

((
Re(c1) −Im(c1)

Im(c1) Re(c1)

)
, ...,

(
Re(cn) −Im(cn)

Im(cn) Re(cn)

))
) =

∏n
i=1 det

(
Re(ci) −Im(ci)

Im(ci) Re(ci)

)
= ∏n

i=1 |ci|2 = |det(Diag(c1, ..., cn)|2,

so we conclude that

∀A ∈ Mn(C, detρ(A) = |detA|2

Finally, we can conclude that the transition function for the charts ϕR for MR have
postivie determinants, thus the real underlying manifold MR is orientable.

1.3 Examples of Riemann Surfaces

Let’s now introduce two important examples of Riemann Surfaces, with whom we
will work along this TFG.
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Figure 1.3: Riemann Sphere and Stereographic projection

Example 1.8. The unit 2−sphere S2 ⊂ R3 is a compact Riemann Surface which is
known as Riemann Sphere (1.3) and is defined by:

S2 = {(x, y, w) ∈ R3|x2 + y2 + w2 = 1} (1.3)

where we can identify the plane w = 0 as C, with (x, y, 0) being identified with
z = x + iy. We define the complex charts:

ϕ1 : S2\{(0, 0, 1)} → C ϕ2 : S2\{(0, 0,−1)} → C

ϕ1(x, y, z) =
x

1 − w
+ i

y
1 − w

ϕ2(x, y, z) =
x

1 + w
+ i

y
1 + w

with inverses:

ϕ−1
1 (z) =

(
2Re(z)
|z|2 + 1

,
2Im(z)
|z|2 + 1

,
|z|2 − 1
|z|2 + 1

)
ϕ−1

2 (z) =
(

2Re(z)
|z|2 + 1

,
−2Im(z)
|z|2 + 1

,
1 − |z|2
|z|2 + 1

)
We see that ϕ1 and ϕ2 are homeomorphism in S2 with the induced topology in R3.
Then, the transition function given by:

ϕ2 ◦ ϕ−1
1 : C\{0} → C\{0}

ϕ2 ◦ ϕ−1
1 (z) =

1
z

is holomorphic. Thus the two charts ϕ1 and ϕ2 are compatible. Therefore, A =

{ϕ1, ϕ2} is a complex atlas whose maximal atlas defines a complex structure over
S2, which is moreover Hausdorff, connected, compact and second numerable due
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to the fact that R3 verifies the second axiome of numerability and this topological
property is hereditary. Hence, it is a Riemann surface. In this context, Riemann
Sphere may be denoted by C∞ or C ∪ {∞} because S2 without a point is homeo-
morphic to C and the remaining point corresponds to the point at infinity.

Example 1.9. Next we will present the complex torus and see why we can consider
it a Riemann Surface.
Let’s start by fixing w1, w2 ∈ C which are linearly independent over R. Define L
to be the lattice, which is a subgroup of the additive group of C.

L = Zm1 + Zm2 = {m1w1 + m2w2|m1, m2 ∈ Z}

Let X = C/L be the quotient group, with projection map π : C → X. Using this
map, we can impose the quotient topology on X, i.e given a set U ⊂ X we say it is
open if and only if π−1(U) is open in C. In fact, we know that a map f : X → Y
between topological spaces is continuous if f−1(U) is open in X whenever U is
open in Y so we can say that π is continuous and preserves the connection of
spaces. Since C is connected, so is X. Actually π is an open mapping, that is, π

takes any open set of C onto a open set in X.
For any z ∈ C, define the closed parallelogram

Pz = {z + λ1w1 + λ2w2|λi ∈ [0, 1]}

Note that any point of C is congruent modulo L to a point of Pz. Therefore π maps
Pz onto X and since Pz is compact, so is X.
The lattice L is a discrete subset of C, so there is an ϵ > 0 such that |w| > 2ϵ

for every nonzero w ∈ L. Fix such an ϵ, and fix a point z0 ∈ C. Consider the
open disc D = D(z0, ϵ) centered at z0 and of radius ϵ. This choice of ϵ insures
that no two points of D(z0, ϵ) can differ by an element of the lattice L. For any
z0 and ϵ, π|D : D → π(D) maps D homeomorphically onto the open set π(D).
This restriction is onto, continuous and open (since π is). It is 1-1 followed by the
choice of ϵ.
We need to define now a complex atlas on X. Let’s fix ϵ as we have done before.
For each z0 ∈ C, let Dz0 = D(z0, ϵ), and define ϕz0 : π(Dz0) → Dz0 to be the inverse
of the map π|Dz0

. By what we have seen above, ϕ’s are complex charts on X.
Finally, what we have left to see is that these charts are pairwise compatible.
Choosing two point z1, z2 ∈ C and considering two charts ϕ1 = ϕz1 and ϕ2 = ϕz2

in the same way as before, let U be the intersection of π(Dz1) and π(Dz2), i.e
U = π(Dz1) ∩ π(Dz2). If U is empty, there is nothing to prove. If U is not empty,
let T(z) = ϕ2(ϕ

−1
1 (z)) = ϕ2(z) for z ∈ ϕ1(U).

We must check that T is holomorphic on ϕ1(U). Note that π(T(z)) = π(z) for all
z ∈ ϕ1(U), so T(z)− z = w(z) ∈ L for all z ∈ ϕ1(U). w : ϕ1(U) → L is continuous,
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and L is discrete; hence, w is locally constant on ϕ1(U) because it is constant on
the connected components of U. Thus, locally, T(z) = w + z for some fixed w ∈ L,
and is therefore holomorphic as we wanted to see. As a consequence, ϕ1 and ϕ2

are compatible, and the collection of charts {ϕz|z ∈ C} is a complex atlas on X.
Hence X is a compact Riemann Surface which is called complex torus.

Now, let’s introduce the notions we will use to characterise Affine Plane Curves.

Definition 1.10. Let V ⊂ C be a connected open subset of the complex plane, and
let f be a holomorphic function defined on all of V. Consider the graph X of f , as
a subset of C2:

X = {(z, f (z))|z ∈ V}

We can generalize that to any finite collection of holomorphic functions on V.

We would like to consider a locus X ⊂ C2 which is locally a graph. One way to
do it is to define X by requiring a complex polynomial of two variables f (z, w) to
go to zero. This would cut the dimension by one and make possible to work with
a Riemann Surface. To do that, we first need to impose a condition on f based on
the Implicit Function Theorem.

Theorem 1.11. (Implicit Function) Let f (z, w) ∈ C[z, w] be a polynomial, and let
X = {(z, w) ∈ C2| f (z, w) = 0} be its zero locus. Let p = (z0, w0) be a point of X,
i.e, f (p) = f (z0, w0) = 0. Suppose that ∂ f

∂w (p) ̸= 0.

Then there exists a function g(z) defined and holomorphic in a neighborhood of
z0, such that, near p, X is equal to the graph w = g(z).
Moreover g′ = − ∂ f

∂z / ∂ f
∂w .

Proof. Starting from ∂ f
∂w (p) ̸= 0, we can say without loss of generalization that

∂ f
∂w (p) > 0. Since f is an holomorphic function near p, we obtain that ∂ f

∂w is
continuous and so ∂ f

∂w > 0 at a neighborhood of (z0, w0). Therefore f (z0, w) is
strictly increasing in the neighborhood of (z0, w0). Since f (z0, w0) = 0 there exist
w1 such that f (z0, w1) > 0 and w2 such that f (z0, w2) < 0. Recovering the fact
that f is holomorphic near p, it follows that f is continuous and then ∀z near
z0, f (z, w1) > 0 and f (z, w2) < 0. For such an z near z0, since ∂ f

∂w > 0, f (z, w)

is increasing (as a function of w). Therefore there exists an unique w such that
f (z, w) = 0. We have just found a function of z which satisfies this property and
which proves that w = g(z) exists (and is unique).



1.3 Examples of Riemann Surfaces 9

To prove the second implication of the theorem we will start from f (z, g(z)) = 0
that we have already proven. Applying the chain rule to the above relation we
obtain what we were looking for:

∂ f
∂z × 1 + ∂ f

∂w × g′(z) = 0 =⇒ g′(z) = − ∂ f
∂z / ∂ f

∂w

where ∂ f
∂w ̸= 0 by assumption.

Definition 1.12. An affine plane curve is the locus of zeroes in C2 of a polynomial
f (z, w).
A polynomial f (z, w) is nonsingular at a root p if either partial derivative ∂ f

∂z or
∂ f
∂w is not zero at p.
The affine plane curve X of roots of f is nonsingular at p if f is nonsingular at p.
The curve X is nonsingular, or smooth, if it is nonsingular at each of its points.

Let X be a smooth affine plane curve defined by a polynomial f (z, w).
We will now see that X is a Riemann Surface.

Let p = (z0, w0) ∈ X. Taking ∂ f
∂w (p) ̸= 0(the case of ∂ f

∂z (p) ̸= 0 is analogous), using
TFI we would like to find a holomorphic function gp(z) such that in a neighbor-
hood U of p, X is the graph w = gp(z). We observe that the projection πz : U → C

mapping (z, w) to z is a homeomorphism from U to its image V ⊂ C, which is
open. By this, we obtain a complex chart on X. From the analogous case, we use
the projection πw, sending (z, w) to w near p.
Since X is smooth we know that either ∂ f

∂w ̸= 0 or ∂ f
∂z ̸= 0 at each point of X. Hence,

the domains of these complex charts cover X.

Another point to check is that any two of these charts are compatible.
The case in which both charts are obtained by the same projection, either πz or

πw is analogous. Then, if there is nonempty intersections with their domains, the
composition of the inverse of one with the other is the identity, which is holomor-
phic.

If each chart is obtained from a different projection, choose a point p = (z0, w0) ∈
U, where U is their common domain. Assume that near p, X is locally a graph for
some holomorphic function g. Then on πz(U) near z0, the inverse of πz sends z to
(z, g(z)). Thus πw ◦ π−1

z sends z to g(z), which is holomorphic.
Having seen that any two of the charts are compatible, we obtain a complex atlas
on X.
Moreover, the space X has the properties of being second countable and Hausdorff
because X ⊂ C2.
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Finally, the last thing to check to prove that X is a Riemann Surface is its connec-
tivity. An important theorem to see that is the following.

Theorem 1.13. If f (z, w) is an irreducible polynomial, then its locus of roots X is
connected. Hence if f is nonsingular and irreducible, X is a Riemann Surface.

Proof. The proof of this theorem is based on covering spaces but is very extensive
and not trivial. Thus it can be found in Chapter II, Section 2 of [3].

Another extensive source of examples for compact Riemann Surfaces are the so-
called smooth projective plane curves.
Let F(x, y, z) be a homogeneous (all the terms of the equation of the same degree in
the variables), nonsingular (no common solutions in P2 to F = ∂F

∂x = ∂F
∂y = ∂F

∂z = 0).
Therefore:

X = {[x, y, z] ∈ P2|F(x, y, z) = 0} (1.4)

is a compact Riemann Surface. Additionally, taking the three open sets that cover
P2 as U0, U1, U2:

U0 = {[x, y, z]|x ̸= 0}; U1 = {[x, y, z]|y ̸= 0}; U2 = {[x, y, z]|z ̸= 0}

the intersections Xi of X with Ui for i = {0, 1, 2} are affine plane curves looked at
C2.

Let’s finally present the example of Hyperelliptic Riemann Surfaces.
Let start with h(x) being a polynomial with deg(h) = 2g + 1+ ϵ, where ϵ can be 0
or 1. Assume h(x) has distinct roots. Then, let X be the smooth affine plane curve
defined by the equation y2 = h(x) where U = {(x, y) ∈ X|x ̸= 0} ⊂ X is an open
subset. However, when compacting, one has to be careful with the singularities
appearing on the line at infinity. This is solved through a normalization process
as described in Chapter II, Section 3 of [3].
Similarly, let Y be the smooth affine plane curve defined by the equation ω2 =

k(z) = z2g+2h(1/z) where V = {(z, ω) ∈ Y|z ̸= 0} ⊂ Y is an open subset. Observe
that the polynomial k(z) has distinct roots since h does.
According to this, we can define the isomorphism ϕ : U → V by:

ϕ(x, y) = (z, ω) =

(
1
x

,
√

k(z)
)
=

(
1
x

, zg+1 · y
)
=

(
1
x

,
y

xg+1

)
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The compact Riemann Surface Z we obtain via the glueing2 of X and Y together
along U and V via ϕ is called hyperelliptic Riemann surface.
Z has genus g and the holomorphic map π : Z → C∞ has degree 2.
Given the automorphism σ : (x, y) → (x,−y) named hyperelliptic involution,
we say a Riemann surface X is hyperelliptic if it has an involution σ such that
Z/σ = P1. Equivalently, there exists a nonconstant morphism Z → P1 ∼= S2 of
degree 2.

2see [1] p 59



Chapter 2

Functions and maps

2.1 Functions on Riemann Surfaces

To study functions on Riemann Surfaces we will need to use complex charts to
transport them to the complex plane and check the properties of the functions
there. Therefore, it is important to make sure that the property we are studying
does not depend on the choice of the chart.

Let X be a Riemann surface, let p be a point of X, and let f be a complex-valued
function defined in a neighborhood W of p.

Definition 2.1. f is said to be holomorphic at p if there exists a chart ϕ : U → V
with p ∈ U, such that the composition f ◦ ϕ−1 is holomorphic at ϕ(p). We say f is
holomorphic in W if it is holomorphic at every point of W.

Lemma 2.2. The previous definition leads us to:

1. f is holomorphic at p if and only if for every chart ϕ : U → V with p ∈ U,
the composition f ◦ ϕ−1 is holomorphic at ϕ(p);

2. f is holomorphic in W if and only if there exists a set of charts {ϕi : Ui → Vi}
with W ⊂ ∪iUi, such that f ◦ ϕ−1

i is holomorphic on ϕi(W ∩ Ui) for each i;

3. if f is holomorphic at p, f is holomorphic in a neighborhood of p.

Definition 2.3. If W ⊂ X is an open subset of a Riemann surface X, we will denote
the set of holomorphic functions on W by OX(W):

OX(W) = O(W) = { f : W → C| f is holomorphic}.

12



2.1 Functions on Riemann Surfaces 13

O(W) is a C-algebra.

Definition 2.4. Taking f holomorphic in a punctured neighborhood1 of p ∈ X.

1. f has a removable singularity at p if and only if there exists a chart ϕ : U →
V with p ∈ U, such that the composition f ◦ ϕ−1 has a removable singularity
at ϕ(p).

Investigating the behaviour of f (x) for x near p, if | f (x)| is bounded in a
neighborhood of p, then f has a removable singularity at p. Furthermore,
the limit limx→p f (x) exists, and if we define f (p) to be this limit, f is holo-
morphic at p.

2. f has a pole at p if and only if there exists a chart ϕ : U → V with p ∈ U,
such that f ◦ ϕ−1 has a pole at ϕ(p).

As before, if | f (x)| approaches ∞ as x approaches p, then f has a pole at p.

3. We say f has an essential singularity at p if and only if there exists a chart
ϕ : U → V with p ∈ U, such that f ◦ ϕ−1 has an essential singularity at ϕ(p).

Regarding f , we say it has an essential singularity at p if | f (x)| has no limit
as x approaches p.

Definition 2.5. A function f on X is said to be meromorphic at a point p ∈ X if
it is either holomorphic, has a removable singularity, or has a pole, at p according
to the definitions we have presented before. If f is meromorphic at every point of
an open set W we say that f is meromorphic at W.
Similarly as we have done previously, being W ⊂ X an open subset of a Riemann
Surface X, we denote the set of meromorphic functions on W by MX(W):

MX(W) = M(W) = { f : W → C| f is meromorphic}.

Example 2.6. Any rational function of the form f (z) = p(z)/q(z) is meromorphic
on all the Riemann Sphere C∞.
Indeed, given a Riemann Surface X, any function h which is meromorphic at a
point p ∈ X is locally the ratio of two holomorphic functions.

Definition 2.7. Let’s take f a defined and holomorphic function in a punctured
neighborhood of p ∈ X, a chart ϕ : U → V on X with p ∈ U and the local
coordinate z = ϕ(x) for x near p.
If f ◦ϕ−1 is holomorphic in a neighborhood of z0 = ϕ(p) we can define the Laurent
series for f about p with respect to ϕ (or respect to z) as the following expansion
around z0:

f (ϕ−1(z)) = ∑
n

cn(z − z0)
n (2.1)

1a set of the form U − {p}, where U is a neighborhood of p
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The respective coefficients {cn} of this series are known as the Laurent coeffi-
cients.

Moreover, the Laurent series is a useful tool to study the singularities of f .

Lemma 2.8. 1. f has a removable singularity at p if and only if one of it Laurent
series has no negative terms.

2. f has a pole at p if and only if one of it Laurent series finitely many, but not
zero as the first case, negative terms.

3. f has an essential singularity at p if and only if any one of its Laurent series
has infinitely many negative terms.

Definition 2.9. Let f be a meromorphic function at a point p ∈ X. Given the
Laurent series we have presented in 2.7, we can define the order of f at p such as:

ordp( f ) = min{n|cn ̸= 0}.

The ordp( f ) is well defined, i.e independent of the choice of local coordinate to
define the Laurent series.

Lemma 2.10. Suppose f is meromorphic at p.
Then f is holomorphic at p if and only if ordp( f ) ≥ 0.

1. f (p) = 0 if and only ordp( f ) = n ≥ 1 and we say f has a zero of order n at
p.

2. f has neither a zero nor a pole if and only if ordp( f ) = 0.

3. On the other hand, ordp( f ) = −n < 0 if and only if f has a pole of order n
at p.

We will now present several theorems involving meromorphic and holomorphic
functions which are analogous to those we have working with functions defined
on open sets U ⊂ C.

Theorem 2.11. (Discreteness of zeroes and poles) Let f be a meromorphic func-
tion defined on a connected open set W of X and which is not identically zero.
Then the zeroes and the poles of f form a discrete subset of W.
If the Riemann surface is compact, then the number of zeroes and poles is finite.
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Theorem 2.12. Suppose that f is holomorphic on all of a compact Riemann sur-
face. Then f is a constant function.

Proof. Since f is holomorphic in X, we know that | f | is a continuous function.
Also, since X is compact, | f | achieves its maximum at some p ∈ X. Since X is
connected, by the Maximum Modulus Theorem we have that f must be constant
in X.

The above theorem is analogous to Liouville’s Theorem on complex domains.

2.2 Examples of Meromorphic Functions

Theorem 2.13. Any meromorphic function on C∞ is a rational function. We
have already seen in 2.6 that the converse is also true. Therefore, we have that
{meromorphic functions} = {rational functions} for functions on C∞.

Corollary 2.14. If f is a meromorphic function on C∞, as a rational function on
C∞ is a quotient of two polynomials with the same degree, then:

∑p ordp( f ) = 0

We will see in 2.38 that this is true in general, for any meromorphic function on a
compact Riemann Surface.

Lemma 2.15. Let f be any nonconstant meromorphic function on a complex torus
X = C/L. Then:

∑p ordp( f ) = 0

In both cases, this statement is significative and useful because it means that the
number of zeroes must be equal to the number of poles according to the order we
have set.

On Smooth Plane Curves X ⊂ C2 that were defined by f (x, y) = 0 we present the
following constraint for the construction of meromorphic functions.

Proposition 2.16. Let X be a smooth affine plane curve defined by an irreducible
nonsingular polynomial f (x, y) = 0. Then any ratio of polynomials r = g(x, y)/h(x, y)
is a meromorphic function on X as long as f does not divide the denominator h.
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2.3 Holomorphic Maps Between Riemann Surfaces

In the first section of this chapter we have already presented functions on Riemann
Surfaces but functions between Riemann Surfaces remain to be seen.

Definition 2.17. Let X and Y be Riemann Surfaces. A mapping F : X → Y is
holomorphic at p ∈ X if and only if there exists charts ϕ1 : U1 → V1 on X with
p ∈ U1 and ϕ2 : U2 → V2 on Y with F(p) ∈ U2 such that ϕ2 ◦ F ◦ϕ−1

1 is holomorphic
at ϕ1(p) (FIG. 2.1).
If F is defined on an open set W ⊂ X, then we say F is holomorphic on W if F is
holomorphic at each point of W.
In particular, F is a holomorphic map if and only if F is holomorphic on all of X.

X YF
U1 U2

• •
p

F(p)

V1 V2

•
•

ϕ1(p)

ϕ2(F(p))

ϕ1 ϕ2

ϕ2 ◦ F ◦ ϕ−1
1

C C

Figure 2.1: Holomorphic Maps between Riemann Surfaces

Example 2.18. 1. The identity mapping id : X → X is holomorphic for any
Riemann Surface X

2. The holomorphic map F : X → Y with Y being the complex plane is simply
a holomorphic function on X, as we have seen in the previous sections.

Remark 2.19. Similarly as we have seen in the previous subchapter, the holomor-
phicity of a map can be checked with any pair of charts.

Lemma 2.20. Let F : X → Y be a holomorphic map between Riemann Surfaces.
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1. F is continuous and C∞.

2. The composition of holomorphic maps is holomorphic.

3. The composition of a holomorphic map with a holomorphic function is holo-
morphic.

For every open set W ⊂ Y, F induces a C-algebra homomorphism:

F∗ : OY(W) → OX(F−1(W))

where F∗(g) = g ◦ F taking g as a holomorphic function on W.

4. The composition of a holomorphic map with a meromorphic function is
meromorphic. The same construction as before is analogous for meromor-
phic functions:

F∗ : MY(W) → MX(F−1(W))

where now g is a meromorphic function on W.

Definition 2.21. An isomorphism between Riemann Surfaces is a holomorphic
map F : X → Y which is bijective and has a holomorphic inverse.
As we already know from previous courses if Y = X the isomorphism is called
automorphism.

We will now present several results concerning holomorphic maps that would
be useful later and are consequences of well-known theorems on functions on
1-complex variable.
Let X and Y be Riemann surfaces:

Proposition 2.22. (Open Mapping Theorem) Let F : X → Y be a nonconstant
holomorphic map. Then F is an open mapping, which means that it maps open
sets to open sets.

Proposition 2.23. (Identity Theorem) Let F, G two holomorphic maps between X
and Y. If F = G on S ⊂ X with a limit point in X, then F = G.

Proposition 2.24. Let X be compact and F : X → Y a nonconstant holomorphic
map. Then Y is compact and F is onto.
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Proof. Since X is open and F is holomorphic, we have by 2.22 that F(X) is open in
Y.
Additionally, since X is compact, F(X) ⊂ Y must be compact and closed because
Y is Hausdorff by the definition of Riemann surface.
Finally, as F(X) is at the same time open and closed it must be all of Y. This proves
that F is onto and Y is compact.

Proposition 2.25. (Discreteness of preimages) Let F : X → Y be a nonconstant
holomorphic map. Then ∀y ∈ Y, F−1(y) is a discrete subset of X.
In the case of X, Y being compact, F−1(y) is a nonempty finite set for every y ∈ Y.

2.4 Global Properties of Holomorphic Maps

We will start this part introducing the fact that a holomorphic map between two
Riemann surfaces has a standard normal form in some local coordinates. The
following result will let us express any F : X → Y locally.
Let X and Y be Riemann surfaces.

Proposition 2.26. (Local Normal Form) Let F : X → Y be a holomorphic map
defined at p ∈ X and which is not constant. Then ∃!m ∈ Z, m ≥ 1 such that for
every chart ϕ2 : U2 → V2 on Y centered at F(p), there exist a chart ϕ1 : U1 → V1

on X centered at p fulfilling ϕ2(F(ϕ−1
1 (z))) = zm.

Proof. Let fix a chart ϕ2 on Y centered at F(p) and any chart ψ : U → V on X
centered at p. Then the function T(ω) = ϕ2(F(ψ−1(ω))) has a Taylor series of the
form:

T(ω) =
∞

∑
i=m

ciω
i with cm ̸= 0 and m ≥ 1

Then, we can write T(ω) as the product T(ω) = ωmS(ω) where S(ω) is a holo-
morphic function at ω = 0, and S(0) ̸= 0. Thus, there exists a function R(ω)

such that R(ω)m = S(ω). Therefore, taking that into account, we can write
T(ω) = ωmS(ω) = ωmR(ω)m = (ωR(ω))m = η(ω)m. Let’s now derive η(ω):
η′(ω) = (ωR(ω))′ = R(ω) + ωR′(ω) and applying it to ω = 0, we obtain
η′(0) = R(0) ̸= 0.
Then, applying the Implicit Function Theorem (1.11), as η′(0) = R(0) ̸= 0, we
have that near 0 η(ω) is invertible and holomorphic.
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Finally, using the chart ψ : U → V on X, we can construct another chart on X
ϕ1 = η ◦ ψ which is defined and centered at p. If we see η as defining a new
coordinate z = η(ω) = ωR(ω), z and ω are related z = ωR(ω). Thus,

ϕ2(F(ϕ−1
1 (z))) = ϕ2(F(ψ−1(η−1(z))))

= T(η−1(z)) = T(ω) = (ωR(ω))m = zm

Definition 2.27. The multiplicity of F at p, denoted multp(F), is the unique integer
m such that there are local coordinates near p and F(p) with F having the form
z 7→ zm. Recall that multp(F) ≥ 1.

Definition 2.28. Let F : X → Y be a nonconstant holomorphic map.
A point p ∈ X is a ramification point for F if multp(F) ≥ 2.
A point y ∈ Y is a branch point for F if it is the image of a ramification point.

Figure 2.2: Ramification and branch points



20 Functions and maps

Lemma 2.29. The points of the domain where F has multiplicity at least two form
a discrete set.
Therefore, the ramification and branch points for a holomorphic map form discrete
subsets of the domain and range respectively.

Lemma 2.30. Let X be a smooth affine plane curve defined by f (x, y) = 0. Define
π : X → C by π(x, y) = x. Then π is ramified at p ∈ X if and only if (∂ f /∂y)(p) =
0.

The following lemma will help us to relate the multiplicity defined for a holomor-
phic map between Riemann surfaces to the order which is defined for a meromor-
phic function.

Lemma 2.31. Let f be a meromorphic function on a Riemann surface X, with
associated holomorphic map F : X → C∞.

1. If p ∈ X is a zero of f , then multp(F) = ordp( f ).

2. If p is a pole of f , then multp(F) = − ordp( f ).

3. If p is neither a zero or a pole of f , then multp(F) = ordp( f − f (p)).

We will now introduce the concept of degree of a holomorphic map between com-
pact Riemann surfaces X, Y which is motivated by the following property.

Proposition 2.32. Let F : X → Y be a nonconstant holomorphic map. For each
y ∈ Y, define dy(F) to be the sum of the multiplicities of F at the points of X
mapping to y:

dy(F) = ∑p∈F−1(y) multp(F)

Thus dy(F) is constant and independent of y.

Proof. The idea is to see that y 7→ dy(F) is a locally constant function from Y to Z

and since Y is connected, a locally constant function must be constant.

Definition 2.33. The degree of F, denoted deg(F), is the integer dy(F) for any
y ∈ Y.
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Corollary 2.34. A holomorphic map between Riemann Surfaces is an isomorphism
if and only if it has degree one.

Proposition 2.35. If X is a compact Riemann Surface having a meromorphic func-
tion f with a single simple pole, then X is isomorphic to C∞

Remark 2.36. Let F : X → Y be a nonconstant holomorphic map between compact
Riemann Surfaces. It is sometimes called a branched covering because it is a
covering map away from the branch points, which is a finite set. Over these points
the map behaves in a good way.

Proposition 2.37. We admit without a proof that every compact Riemann Sur-
face admits nonconstant meromorphic functions on X and therefore nonconstant
holomorphic maps from X to C∞.

Now using the theory of the degree we would be able to prove the generalization
of results such as the ones presented in corollary 2.14 and lemma 2.15

Proposition 2.38. Let f be a nonconstant meromorphic function on a compact X.

∑p ordp( f ) = 0.

Proof. From 2.37, let F : X → C∞ be the associated nonconstant holomorphic map
to C∞.
Let {xi} be the points of X mapping to 0 (i.e the zeroes of f ) and {yj} those
mapping to ∞ (i.e the poles of f ).
Let d = deg(F) and by its definition we obtain that:

d = ∑
i

multxi(F) and d = ∑
i

multyj(F)

As we know, the only points of X where f has nonzero order are its zeroes and
poles, in our case {xi} and {yj} resp. Additionally, according to the lemma 2.31,
we have:

∑
p

ordp( f ) = ∑
i

ordxi( f ) + ∑
j

ordyj( f ) = ∑
i

multxi(F)− ∑
j

multyj(F) = 0
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2.5 Hurwitz’s Formula

Due to the constancy of the degree for a holomorphic map between compact Rie-
mann Surfaces (2.32), a formula using the Euler number theory relates the genus
of the domain and range of the map with its degree and ramification. This for-
mula was named after Hurwitz and will be explained in this section. Let’s first
review the following notions.
Let X be a compact 2−manifold.

Definition 2.39.

1. A triangulation of X is a decomposition of X into closed subsets and home-
omorphic to a triangle, such that any two of them are either disjoint, meet
only at a single vertex, or at a single edge.

2. Given a triangulation of X with v vertices, e edges and t triangles, the Euler
number of X with respect to the chosen triangulation is the integer χ =

v − e + t.

3. By the Classification Theorem of Surfaces, any connected and compact sur-
face is homeomorphic to the connected sum of g tori (if S is orientable, which
is the case of X) or of g projective planes (if S is not orientable). This constant
is defined as the genus of S.

Remark 2.40. We can also say that in particular, a surface of genus g is topologi-
cally a sphere with g handles. For the Riemann Sphere and the Complex Torus we
have respectively g = 0 and g = 1 (FIG. 2.3).

Figure 2.3: Surface of genus 1

Proposition 2.41. χ is independent of the choice of triangulation. For a compact
orientable 2-manifold without boundary of topological genus g, χ = 2 − 2g.
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Proof. It belongs to a previous course in topology.

Theorem 2.42. (Hurwitz’s formula) Let F : X → Y be a nonconstant holomorphic
map between compact Riemann surfaces. Then:

2g(X)− 2 = deg(F)(2g(Y)− 2) + ∑
p∈X

[multp(F)− 1] (2.2)

Remark 2.43. We can sometimes see this formula divided by 2 or in terms of the
Euler number as:

χ(X) = deg(F)χ(Y)− ∑
p∈X

[multp(F)− 1]

Remark 2.44. The number multp(F)− 1 is sometimes called the branch number
of F at p and it is denoted by bF(p).
Moreover, B = ∑

p∈X
[multp(F)− 1] = ∑

p∈X
bF(p) is called the total branching num-

ber.
Rewriting 2.2, and dividing by 2 we obtain:

g(X) = deg(F)(g(Y)− 1) +
B
2

Proof. 2.42
What we will want to prove is that the right part of 2.2 corresponds to the Euler
number of X with a negative sign. To do so, we will like to find the number of
edges, triangles and vertices of X.

Figure 2.4: Scenario of the proof of Hurwitz’s formula

Let’s begin by noting that since X is compact, the set of ramification points is finite
and so is the sum which is restricted to the ramification points of F.
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We take a particular triangulation of Y with e edges, v vertices and t triangles in
which each branch point of F corresponds to a vertex. This choice of the triangu-
lation can be done as we have proved that the Euler number is independent of the
triangulation.
We lift this triangulation of Y to X via the map F and we obtain a triangulation
with v′, e′ and t′ on X. Due to the way we have chosen the triangulation of Y,
we observe that every vertex on X corresponds to a ramification point of F. This
particular location of the ramification points (exclusively over the vertices of the
triangles of X) provides that each triangle of Y lifts to deg(F) triangles in X.
Therefore, having t in Y, we obtain that:

t′ = deg(F)t

Similarly,

e′ = deg(F)e

It does not happen the same with v′. Taking a vertex q ∈ Y, its number of preim-
ages in X is given by |F−1(q)| and can be written as:

|F−1(q)| = ∑
p∈F−1(q)

1 = deg(F) + ∑
p∈F−1(q)

[1 − multp(F)].

This is fullfied for a single vertex of Y. Therefore, taking all the vertices of Y and
making its preimages we obtain:

v′ = ∑
vertex q of Y

F−1(q) = ∑
vertex q of Y

(deg(F) + ∑
p∈F−1(q)

[1 − multp(F)]) =

deg(F)v − ∑
vertex q of Y

( ∑
p∈F−1(q)

[multp(F)− 1]) = deg(F)v − ∑
vertex p of X

[multp(F)− 1]

Now that we have computed t′, e′, v′, we can express −χ(X) as:

2g(X)− 2 = −χ(X) = −v′ + e′ − t′

= −deg(F)v + ∑
vertex p of X

[multp(F)− 1] + deg(F)e − deg(F)t

= −deg(F)χ(Y) + ∑
vertex p of X

[multp(F)− 1]

= deg(F)(2g(Y)− 2) + ∑
p∈X

[multp(F)− 1]

Example 2.45. Consider the Fermat curve given by:

F3 = {[x, y, z] ∈ CP2 : x3 + y3 + z3 = 0} (2.3)

F3 is a compact Riemann surface and we have a natural mapping:
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F : F3 → CP1

[x, y, z] 7→ [x, y]

Fix [x, y] ∈ CP1. Then either:

1. [x, y] ∈ {[1,−1], [1,−ω], [1,−ω2]} where w = exp(2πi/3), in which case

F−1({[x, y]}) = {[x, y, 0]}

or

2. F−1({[x, y]}) = {[x, y,−α], [x, y,−ωα], [x, y,−ω2α]}
where α3 = x3 + y3 ̸= 0

The degree of F is 3 and there exists exactly 3 ramification points which are
[1,−1, 0], [1,−ω, 0], [1,−ω2, 0], each of them having ramification index 3.
Taking into account that CP1 ≈ S2 has genus 0, 2.2 gives us:

2g(X)− 2 = deg(F)(2g(Y)− 2) + ∑
p∈X

[multp(F)− 1]

2g(F3)− 2 = 3(20 − 2) + [(3 − 1) + (3 − 1) + (3 − 1)] = 0

Therefore, we obtain g(F3) = 1.
More generally, the implication of 2.2 for the genus of a Fermat curve given by:

Fd = {[x, y, z] ∈ CP2 : xd + yd + zd = 0}

is that

g = (d−1)(d−2)
2

In fact, this formula generally holds for a smooth projective curve of degree d.

Proposition 2.46. A Riemann Surface X can never map (nontrivially) to a Riemann
Surface Y of a higher genus. That means we always have g(X) ≥ g(Y)

Proof. • If g(Y) = 0, then it is clear that g(X) ≥ g(Y) because we always have that
g ≥ 0.
• In the case of g(Y) ≥ 1, using 2.2 and solving for g(X) we obtain that:

g(X) ≥ g(Y) + (deg(F)− 1)(g(Y)− 1) +
∑

p∈X
[multp(F)−1]

2

We are done because deg(F) ≥ 1 and g(Y)− 1 ≥ 0.



Chapter 3

Differential forms

3.1 Basic definitions

The aim of this chapter is to introduce an object with which we can integrate on
Riemann Surfaces. These objects are called forms.
1-forms allows us to consider line integrals when we want to integrate around a
path.
Similarly, if we want to compute a surface integral over a suitable 2-dimensional
piece of a Riemann surface we need to work with 2-forms. However, we will not
comment on them in this work.

Remark 3.1. In this chapter, we may use form, differential form or differential indis-
tinctly to refer to the same object.

Definition 3.2. A 0-form on X is a function on X.

Definition 3.3. A 1-form ω on X is an (ordered) assignment of two continuous
functions f and g to each local coordinate z(= x + iy) on X such that:

f (x, y)dx + g(x, y)dy (3.1)

is invariant under coordinate changes.

Remark 3.4. The condition of invariance under coordinate changes means that if
z̃ is another local coordinate on X such as its domain intersects non-trivially the
domain of z and ω assigns the functions f̃ , g̃ to z̃, then:[

f̃ (z̃)
g̃(z̃)

]
=

[
∂x
∂x̃

∂y
∂x̃

∂x
∂ỹ

∂y
∂ỹ

] [
f̃ (z(z̃))
g̃(z(z̃))

]
(3.2)

on the intersection of the domains of z and z̃. Observe that the 2 × 2 matrix is the
Jacobian matrix of the coordinate change z̃ 7→ z

26
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3.2 Holomorphic 1-forms

Definition 3.5. A holomorphic 1-form in the coordinate z on an open set V ⊂ C

is a 1-form
w = f (z)dz

where f is a holomorphic function on V.

We now want to work with this object on Riemann surfaces. To do so we need
complex charts that have compatibility conditions whenever two of them have
overlapping domains.

Definition 3.6. Let V1 and V2 be open sets, ω1 = f (z)dz a holomorphic 1-form
in the coordinate z defined on V1 and ω2 = g(w)dw a holomorphic 1-form in the
coordinate w on V2.
We say that ω1 transforms to ω2 under a holomorphic mapping T from V2 to V1

defined by z = T(w) (and dz = T′(w)dw) if g(w) = f (T(w))T′(w).

Given that condition we are able to define holomorphic 1-form on X

Definition 3.7. A holomorphic 1-form on X is a collection of holomorphic 1-forms
{ωϕ}, one for each chart ϕ : U → V in the coordinate of V.
Given two charts ϕi : Ui → Vi (for i = 1, 2) if they have overlapping domains, then
ωϕ1 transforms to ωϕ2 under the transition function T = ϕ1 ◦ ϕ−1

2

In order to simplify the work, to define a holomorphic 1-form on X it is enough
to give holomorphic 1-form on the charts of some atlas as we will see at 3.8

Lemma 3.8. Let A be a complex atlas on X. Suppose that holomorphic 1-forms
are given for each chart of A, which transform to each other on their common
domains. Then there exists a unique holomorphic 1-form on X extending these
holomorphic 1-forms on each of the charts of A.

3.3 Meromorphic 1-forms

Definition 3.9. A meromorphic 1-form in the coordinate z on an open set V ⊂ C

is a 1-form
w = f (z)dz

where f is a meromorphic function on V.

We require the same compatibility conditions that we have asked for at the previ-
ous section.
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Definition 3.10. Let V1 and V2 be open sets, ω1 = f (z)dz a meromorphic 1-form
in the coordinate z defined on V1 and ω2 = g(w)dw a meromorphic 1-form in the
coordinate w on V2.
We say that ω1 transforms to ω2 under a meromorphic mapping T from V2 to V1

defined by z = T(w) (and dz = T′(w)dw) if g(w) = f (T(w))T′(w).

As before, to transport these notions to a Riemann surface we would have the
following:

Definition 3.11. A meromorphic 1-form on X is a collection of meromorphic 1-
forms {ωϕ}, one for each chart ϕ : U → V in the coordinate of V.
Given two charts ϕi : Ui → Vi (for i = 1, 2) if they have overlapping domains, then
ωϕ1 transforms to ωϕ2 under the transition function T = ϕ1 ◦ ϕ−1

2

Finally, similarly as the case of holomorphic 1-forms, given an atlas A, it is only
necessary to use the charts in A to define a meromorphic 1-form in X.

Lemma 3.12. Let A be a complex atlas on X. Suppose that meromorphic 1-forms
are given for each chart of A, which transform to each other on their common
domains. Then there exists a unique meromorphic 1-form on X extending these
meromorphic 1-forms on each of the charts of A.

Let ω be a meromorphic 1-form efined in a neighborhood of a point p. Choosing a
local coordinate centered at p,we may write ω = f (z)dz where f is a meromorphic
function at z = 0.

Definition 3.13. Similarly as we have done in 2.9 we can define the order of ω at
p, denoted by ordp(ω), as the order of f at 0 in the way we have defined it at 2.9.

Remark 3.14. We can define a meromorphic or holomorphic 1-form ω on X by
giving a single formula in a single chart. This can be done by the Identity Theorem
for meromorphic functions and forms 1. However, it is important to check that the
formula transforms uniquely to give a meromorphic 1-form on all of X.

Remark 3.15. Let f be a meromorphic function on X which can be used as a local
coordinate at a point p where the function f is holomorphic and has ordp( f −
f (p)) = 1. This is the case for all the points on X with the exception of a discrete
set.
Given such an f , any meromorphic 1-form ω can be written as g(z)d f for a suitable
meromorphic function g.

1if two 1-forms agree on an open set, they must be identical
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3.4 The Residue Theorem for 1-forms

Definition 3.16. Let ω be a 1-form on X which is meromorphic at a point p ∈ X.
The residue of ω at p, denoted by Resp(ω), is the coefficient c−1 in the following
Laurent series for ω at p:

w = f (z)dz =

(
∞

∑
n=−M

cnzn

)
dz (3.3)

where z is the local coordinate centered at p and c−M ̸= 0, so that ordp(ω) = −M.

The following lemma will help us to see how is the coefficient c−1 well defined
and so is the residue of the meromorphic 1-form ω at p.

Lemma 3.17. Let ω be a meromorphic 1-form defined in a neighborhood of p. Let
γ be a small path on X enclosing just p and any other pole of ω. Then:

Resp(ω) =
1

2πi

∫
γ

ω (3.4)

We can conclude that the residue of ω is well defined because the integral in 3.4
is independent of the choice of the chart and by extension of the chosen local
coordinate used z in 3.3.

Lemma 3.18. Let f be a meromorphic function at p ∈ X. Then d f / f is a mero-
morphic 1-form at p, and

Resp(d f / f ) = ordp( f ) (3.5)

Theorem 3.19. (The Residue Theorem)
Let ω be a meromorphic 1-form on a compact Riemann surface. Then:

∑
p∈X

Resp(ω) = 0 (3.6)



Chapter 4

Group Actions on Riemann
Surfaces

4.1 Finite Group Actions

In this part of the work we will study group actions G on compact Riemann
Surfaces X and focus on the Riemann Surface given by X/G.
For this chapter, let’s take G as a finite group.

Definition 4.1.

1. An action of G on X is a map G × X → X, which we will denote by (g, p) 7→
g · p, which satisfies

(a) (gh) · p = g · (h · p) for g, h ∈ G and p ∈ X, and

(b) e · p = p for p ∈ X, where e ∈ G is the identity

2. The orbit of a point p ∈ X is the set G · p = {g · p|g ∈ G}. If we consider
a subset A ⊂ X, then the set of orbits of points in A is denoted by G · A =

{g · a|g ∈ G, a ∈ A}.

3. The stabilizer of a point p ∈ X is the subgroup Gp = {g ∈ G|g · p = p}. We
often call it the isotropy subgroup of p.

Note that points in the same orbit have conjugate stabilizers: Gg·p = gGpg−1.
Considering that G is finite:

|G · p||Gp| = |G|

4. The kernel of an action of G on X is the subgroup K = {g ∈ G|g · p = p for
all p ∈ X}. It is the intersection of all stabilizer subgroups. We will usually
consider that the kernel is trivial. In this case, we call it an effective action.

30



4.2 The Quotient Riemann Surface 31

5. We say that the action is continuous (resp. holomorphic), if for every g ∈ G,
the bijection p 7→ g · p is a continuous (resp. holomorphic) map from X to
X. We get an automorphism of X if it is holomorphic.

6. The quotient space X/G is the set of orbits.

The quotient map that sends a point to its orbit is given by π : X → X/G.
We give the quotient topology to the quotient space by declaring a subset
U ⊂ X/G to be open if and only if π−1(U) is open in X.

In the following sections we would like to provide X/G with a complex structure
so that π is a holomorphic map.
Before doing that, let’s present two characteristics of the Stabilizer Subgroups.
Let’s take G a group acting holomorphically and effectively on X.

Proposition 4.2. Fix a point p ∈ X.
Suppose that Gp is finite. Then Gp is a finite cyclic group.
Particularly, if G is also finite, then all stabilizer subgroups are finite cyclic sub-
groups.

Proposition 4.3. Let G be finite. Then the points of X with nontrivial stabilizers
are discrete.

4.2 The Quotient Riemann Surface

Throughout this section, let G be a finite group acting holomorphically and effec-
tively on X.
As we said before, we would like to provide X/G with a complex structure. To
do that we must find complex charts and the following proposition will point the
way towards defining charts on X/G.

Proposition 4.4. Let G be a finite group acting holomorphically and effectively on
X. Fixing a point p ∈ X, there is an open neighborhood U of p such that:

1. For g ∈ Gp, where Gp is the stabilizer of p, we have that g · u ∈ U for u ∈ U.

2. For g ̸∈ Gp, g · U and U are disjoint.

3. α : U/Gp → X/G is a homeomorphism onto an open subset of X/G.

4. p is the only point in U fixed by any element g ∈ Gp.
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According to this, to define charts in X/G we will need to define charts in U/Gp

and transport them to X/G via the homeomorphism α. Let p ∈ X and p̄ ∈ X/G
the orbit of this point. Suppose m = |Gp| ≥ 2. We are interested in finding an
appropiate function from a neighborhood W of p̄ to C. Additionally, we may
assume that, away from p and taking U as a Gp-invariant neighborhood of p, the
projection π : U → U/Gp is m−to−1. The function h defined as follows would be
a Gp-invariant on a neighborhood of p:

h : U π−→ U/Gp
α−→ W

ϕ−→ C

h(z) = ∏
g∈Gp

g(z) (4.1)

where z is a local coordinate centered at p. Given h, that has multiplicity m at p, we
can shrink U to the neighborhood of p where h is Gp−invariant. By construction,
h is holomorphic and Gp invariant and we can define the projection h̄ : U/Gp → C

which is a homeomorphism since it is 1-1, continuous and open. Finally, we are
able to give the chart map ϕ on W as:

ϕ : W α−1

−−→ U/Gp
h̄−→ V ⊂ C

where α−1 is a homeomorphism since α is a homeomorphism.

Theorem 4.5. Taking the complex charts from above on X/G, X/G becomes a
Riemann surface.
Also, π : X → X/G is holomorphic of degree |G| and multp(π) = |Gp| for any
point p ∈ X.

Proof. The charts we have defined for X/G cover X/G. What we have to do now
is check if these complex charts are all compatible and give a complex structure
on X. To do it, we will separate the proof in different cases according to the value
of m.

• If m ≥ 2, since the points with nontrivial stabilizers are discrete (4.3), we
may assume that no two charts domains meet.

• If the two charts are constructed in the m = 1 case, these charts are compati-
ble since the original charts on X are compatible.

• Let’s now suppose that one chart ϕ1 : U1 → V1 is constructed with m = 1
and the other ϕ2 : U2 → V2 is constructed with m ≥ 2, where U1 and U2 are
the associated open sets in X used to construct these charts.
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Let r̄ ∈ U1
⋂

U2 and lift r to r ∈ U1
⋂

U2. If U1
⋂

U2 = ∅, then we can replace
U1 by a translate U′

1 under the group so that U′
1
⋂

U2 ̸= ∅.

Now, let ω be the local coordinate in U1 and U1. On the other hand, let z
be the local coordinate in U2 and h(z) the local coordinate in U2, where h
is the one we have defined in 4.1. As we have seen before, the function h is
holomorphic and since z and ω are themselves compatible, we obtain that
ϕ1 and ϕ2 are compatible.

Finally, since G is finite and X is Hausdorff (Riemann Surface), we have that
X/G is also Hausdorff. Moreover, since X is connected and π : X → X/G is
onto, X/G is also connected. Then, as X/G is Hausdorff and connected, we
have that these charts make X/G a Riemann Surface.

The projection π is holomorphic and deg(π) = |G| by the way we have
defined the charts on X/G. Finally, multp(π) = multp(h) = |Gp|.

Lemma 4.6. Let π : X → Y = X/G. For every branch point (see 2.28) y ∈ Y there
is an integer r ≥ 2 such that π−1(y) has |G|/r points on X and at each of these,
the multiplicity of π is r.

Corollary 4.7. Let y1, ..., yk be k branch points in Y = X/G with π having mul-
tiplicity ri at each of the |G|/ri points above yi. Then, applying the Hurwitz’s
formula (see 2.2):

2g(X)− 2 = deg(π)(2g(X/G)− 2) + ∑
π−1(yi)∈X

[multπ−1(yi)
(π)− 1]

= |G|(2g(X/G)− 2) +
k

∑
i=1

|G|
ri

(ri − 1)

= |G|[2g(X/G)− 2 +
k

∑
i=1

(1 − 1
ri
)] = |G|[2g(X/G)− 2 + R]

Lemma 4.8. Suppose the integers r1, ..., rk with ri ≥ 2, as stated in 4.6. Then, R can
take different values in the following cases:

1.

R < 2 ⇐⇒ k, {ri} =


k = 1, any r1;
k = 2, any r1, r2; or
k = 3, {ri} = {2, 2, any r3}; or
k = 3, {ri} = {2, 3, 3}, {2, 3, 4} or{2, 3, 5}
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2.

R = 2 ⇐⇒ k, {ri} =


k = 3, {ri} = {2, 2, 6}, {2, 4, 4} or {3,3,3} or

k = 4, {ri} = {2, 2, 2, 2}

3. If R > 2, then in fact R ≥ 2 + 1
42

Proof. The cases 1. and 2. can be computed easily taking into account that the
highest 1 − 1

ri
is 1

2 (for ri = 2) and as we take higher ri, 1 − 1
ri

decreases.
The value obtained in 3. is achieved when k = 3 for r1 = 2, r2 = 3 and r3 = 7 as
R = 1

2 +
2
3 +

6
7 = 85

42 = 2 + 1
42 (≈ 2.02). It is the lowest value, higher than 2, that we

can reach because:

1
2
+

2
3
+

5
6
= 2

1
2
+

2
3
+

7
8
=

49
24

≈ 2.04



Chapter 5

Divisors and Riemann-Roch
Theorem

This chapter is crucial for the construction of the rest of the paper. We will first
introduce the divisors and discuss their properties and then present the Riemann-
Roch Theorem. Finally, we will end up by discussing some of the consequences of
this theorem.

Definition 5.1. We define the group of functions D : X → Z as the group ZX

which is a group under pointwise addition.
The points p ∈ X where D(p) ̸= 0 are said to be the support of D.
Then D is a divisor on X if its support is a discrete subset of X. We denote by
Div(X) the divisors on X that form a group under pointwise addition. We denote
D with the following summation notation:

D = ∑
p∈X

D(p) · p

which is a finite sum because the set of points p where D(p) ̸= 0 is a discrete
subset of X, according to the definition.

Remark 5.2. In the particular case of a compact Riemann Surface a function D is
said to be a divisor if and only if its support is finite.

Definition 5.3. On a compact Riemann surface we can define the degree of D as:

deg(D) = ∑
p∈X

D(p).

which is a group homomorphism. Its kernel is the subgroup denoted by Div0(X)

formed by the divisors of degree 0.

35
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Down below we will describe two types of divisors having an interest in our
work. We will firstly introduce principal divisors and then canonical divisors
which are, respectively, the divisors of meromorphic functions and the divisors of
meromorphic 1-forms.

Definition 5.4. A principal divisor on X is the divisor defined by the order func-
tion (see 2.9) as:

div( f ) = ∑
p

ordp( f ) · p

where f is a meromorphic function on X. We denote the set of principals divisors
on X as PDiv(X).

Lemma 5.5. Let f and g be nonzero meromorphic functions on X. Then, we have
the following properties related with principal divisors:

1. div( f g) = div( f ) + div(g)

2. div( f /g) = div( f )− div(g)

3. div(1/ f ) = −div( f )

We see from this lemma that PDiv(X) is a subgroup of Div(X).
If in particular X is compact, then we have a stronger property which is that
PDiv(X) is a subgroup of Div0(X).

We have an equivalent lemma to 2.38 with divisors.

Lemma 5.6. Let f be a nonzero meromorphic function on a compact Riemann
surface, then deg(div( f )) = 0.

Definition 5.7. We can define the divisors of zeroes of f and the divisors of poles
of f , denoted respectively by div0( f ) and div∞( f ) as:

div0( f ) = ∑
p with ordp( f )>0

ordp( f ) · p

div∞( f ) = ∑
p with ordp( f )<0

(− ordp( f )) · p

In terms of the divisor of f we have the expression:

div( f ) = div0( f )− div∞( f ) (5.1)

Let’s now introduce the divisors of meromorphic 1 − f orms in a similar way.
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Definition 5.8. Let ω be a meromorphic 1-form on X. A canonical divisor on X,
denoted by div(ω) is a divisor defined by the order function:

div(ω) = ∑
p

ordp(ω) · p.

The set of canonical divisors on X is denoted by KDiv(X).

Lemma 5.9. Given two meromorphic 1-forms on X, with ω1 different to 0, there is
a unique meromorphic function f on X with ω2 = f ω1.

Corollary 5.10. The difference of any two canonical divisors is principal. There-
fore, for any nonzero ω we have:

KDiv(X) = div(ω) + PDiv(X)

Moreover, we also have the concept of div0(ω) and div∞(ω) which are defined
similarly to 5.7.
Let now F : X1 → X2 be a nonconstant holomorphic map between Riemann
surfaces.

Definition 5.11. The ramification divisor of F is the divisor on X1 denoted by RF

and defined by:
RF = ∑

p∈X
[multp(F)− 1] · p

The branch divisor of F is the divisor on X2 denoted by BF and defined by:

BF = ∑
y∈X2

[ ∑
p∈F−1(y)

(multp(F)− 1)] · y

Remark 5.12. The Hurwitz’s formula in 2.2 can be formulated in terms of the
degree of the ramification divisor:

2g(X)− 2 = deg(F)(2g(Y)− 2) + deg(RF)

Let’s introduce now the concept of spaces of functions and forms associated to a
divisor. A main use of divisors is to organize the meromorphic functions on X by
employing the order function. To do so, we need to establish that ordp( f ) = ∞ if
f is identically 0 in a neighborhoord of p where ∞ > n for n ∈ Z.
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Definition 5.13. Let D be a divisor on X. The space of meromorphic functions
with poles bounded by D is the set of meromorphic functions (can be thought of
as a complex vector space) denoted by L(D) and defined by:

L(D) = { f ∈ M(X)|div( f ) ≥ −D}.

For f ∈ L(D) one of the following two conditions must be fulfilled. At a discrete
set of points of X, either poles are being allowed to specified order and no worse
or zeroes are being required to at least some specified order.

Definition 5.14. We can define a partial ordering on the set Div(X). We can write
that D ≥ 0 if D(p) ≥ 0 for all p ∈ X.
For D1, D2 ∈ Div(X), we have that D1 ≥ D2 if D1 − D2 ≥ 0.
The definition is equivalent for ">", "<" and "≤".
Given two nonnegative divisors P and N with disjoint support, any divisor D can
be written as:

D = P − N (5.2)

Proposition 5.15. Let D1 ≤ D2 where D1, D2 are two divisors on X. As any
function with poles bounded in D1 has poles bounded in D2, we have that:

L(D1) ⊂ L(D2) (5.3)

Proposition 5.16. Generally, recalling that a meromorphic function is holomorphic
if and only if div( f ) ≥ 0, then:

L(0) = O(X) = {holomorphic functions on X}.

In the particular case of X being compact, where the only holomorphic functions
are the constant ones:

L(0) = {constant functions on X} ∼= C (5.4)

Proposition 5.17. If D is a divisor on a compact X with deg(D) < 0, then L(D) =

{0}.

We have an analogous definition of L(D) for meromorphic 1-forms.
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Definition 5.18. We denote by L(1)(D) the space of meromorphic 1-forms with
poles bounded by D. It is defined by the set:

L(1)(D) = {ω ∈ M(1)(X)|div(ω) ≥ −D}.

As before, L(1)(D) determines a complex vector space.

Proposition 5.19. L(1)(0) = Ω1(X), the space of global holomorphic 1-forms on X.

As it follows, we present a few useful results concerning the bounds of L(D).

Lemma 5.20. 1. Let D be a divisor on X and a point p ∈ X. Then either L(D −
p) = L(D) or L(D − p) has codimension one in L(D).

2. In the particular case of X being compact, L(D) has a finite dimension. Writ-
ing D as in 5.2, dim L(D) ≤ 1 + deg(P).

For D being a nonnegative divisor, dim L(D) ≤ 1 + deg(D)

This shows that for compact Riemann surfaces, the spaces L(1)(D) are finite-
dimensional.

Remark 5.21. For commodity, dim L(D) and dim L(K − D) would be written as
l(D) and l(K − D), respectively.

The following is a deep theorem that we will admit without a deep proof.

Theorem 5.22. (Riemann-Roch Theorem) Let g be the genus of an algebraic curve.
Then for any divisor D and any canonical divisor K, we have:

l(D) = l(K − D) + deg(D) + 1 − g (5.5)

Let’s introduce some particular cases to illustrate the use of this theorem.

Corollary 5.23.

1. If D = 0, as we have seen in 5.4,

L(0) = { f ∈ M(X)|div( f ) ≥ 0} ∼= C.

Therefore, l(0) = 1 and using 5.5:

l(0) = l(K) + deg(0) + 1 − g =⇒ l(K) = g (5.6)
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2. If D = K, 5.5 turns to:

l(K) = l(0) + deg(K) + 1 − g

using that l(0) = 1 and 5.6, we obtain:

g = l(K) = 1 + deg(K) + 1 − g =⇒ deg(K) = 2g − 2

Corollary 5.24. We have previously seen that either l(D + p) = l(D) or l(D + p) =
l(D) + 1.
Let’s take D as D + p in 5.5

l(D + p) = l(K − D − p) + deg(D + p) + 1 − g

= l(K − D − p) + deg(D) + deg(p) + 1 − g

= l(K − D − p) + deg(D) + 2 − g

(5.7)

1. If l(D + p) = l(D), using 5.7 and 5.5 for l(D) we obtain that:

l(K − D − p) + deg(D) + 2 − g = l(K − D) + deg(D) + 1 − g

=⇒ l(K − D − p) = l(K − D)− 1

2. If l(D + p) = l(D) + 1, using 5.7 and 5.5 for l(D) + 1 we obtain that:

l(K − D − p) + deg(D) + 2 − g = l(K − D) + deg(D) + 2 − g

=⇒ l(K − D − p) = l(K − D)

Definition 5.25. We say that n ∈ N with n > 0 is a gap number for |D| at p if:

l(D − np) + 1 = l(D − (n − 1)p)

Taking D = K as the canonical divisor, where l(K) = g,

l(K − np) + 1 = l(K − (n − 1)p)

l(np) + 2g − 2 − n + 1 − g + 1 = l((n − 1)p) + 2g − 2 − n + 1 + 1 − g

where we have used 5.5 to compute the last equation. Finally, comparing terms
side to side, we obtain:

l((n − 1)p) = l(np)

Definition 5.26. The set of gap numbers for |D| at p is denoted by Gp(|D|).

Remark 5.27. A linear system Q is called a gr
d if dim Q = r and deg(Q) = d.
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Lemma 5.28. Let Q be a nonempty gr
d on X. Fixing a point p ∈ X we have that

Gp(Q) is a finite set that has cardinal 1 + r.

Definition 5.29. Let p ∈ X, we say that:

1 < α1 < α2 < ... < αg = 2g (5.8)

be the first g "non-gaps".

Proposition 5.30. For each integer j, 0 < j < g, we have

αj + αg−j ⩾ 2g (5.9)

Proof. To prove this condition, we will suppose that αj + αg − j < 2g. Thus for
each k ⩽ j, we would also have αk + αg−j < 2g. Since the sum of "non-gaps" is a
"non-gap", we would have at least j "non-gaps" strictly between αg−j and αg. Thus
at least (g − j) + j + 1 = g + 1 ⩽ 2g "non-gaps". This contradicts the fact that there
are only g "non-gaps" so αj + αg−j ⩾ 2g, as we wanted to prove.

Proposition 5.31.

1. If α1 = 2, then αj = 2j and αj + αg−j = 2g for 0 < j < g.

2. If α1 > 2, then for some j with 0 < j < g, we have αj + αg−j > 2g.

Corollary 5.32. From the previous proposition, we obtain that:

g−1

∑
j=1

αj ⩾ g(g − 1) (5.10)

Finally, let’s see some results of the application of the Riemann-Roch Theorem.

Lemma 5.33. Let X be a compact Riemann surface. If l(p) > 1, for some p ∈ X,
then X is isomorphic to C∞.

Proof. By the hypothesis, we have that there must be a nonconstant meromorphic
function f in L(p). This function f has a unique simple pole allowed in p and
the associated holomorphic map F : X → C∞ has degree one. Therefore X is
isomorphic to the Riemann Sphere.
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Proposition 5.34. Every X of genus 0 is isomorphic to C∞.

Proof. Let fix any point p ∈ X. Then, being K a canonical divisor with deg(K) =
2g − 2 = −2 (by 5.23), we have that deg(K − p) = −3. Due to the fact that this
degree is negative, we have that L(K − p) = 0. Finally, let apply 5.5 to D = p:

l(p) = l(K − p) + deg(p) + 1 − g = 0 + 1 + 1 − 0 = 2

Finally, according to 5.33, we conclude that X ∼= C∞.

Proposition 5.35. Every compact Riemann surface of genus 1 is isomorphic to the
complex torus.

Proof. See [1].

Proposition 5.36. Every compact Riemann surface of genus 2 is hyperelliptic.

Proof. Consider a canonical divisor K with deg(K) = 2g − 2 = 4 − 2 = 2 (by 5.23).
By 5.6 we have that l(K) = g = 2 so we can assume that K > 0. Thus, there is a
nonconstant function f ∈ L(K) and the associated holomorphic map F : X → C∞

has degree 2. Then, X is hyperelliptic.



Chapter 6

The Wronskian and Weierstrass
Points

First of all, to give a proper definition of the Wronskian, which will lead us to
Weierstrass Points, we need to introduce higher-order forms on X.

Definition 6.1. A meromorphic n-fold differential (instead of form to avoid con-
fusion) in the coordinate z on an open set V, where f is a meromorphic function,
is an expression of the form

µ = f (z)(dz)n

As long as we have done in this work, there is a compatibility condition for these
objects. Given two meromorphic n-fold differential µ1 = f (z)(dz)n and µ2 =

g(w)(dw)n, in a coordinate z on an open set V1 and in a coordinate w on an open
set V2 resp., we can define a holomorphic mapping z = T(w) from V1 to V2.
µ1 transforms to µ2 under T if g(w) = f (T(w))T′(w)n.

Given that, we are able to understand the Wronskian as higher order forms on X.
Taking the divisor as the canonical one, K, we fix a local coordinate z centered at
p ∈ X and any basis {φki} for L(K). Setting gki = zK(p)φki for each i between 1
and r + 1 (where r = g − 1 = dim |K| = l(K)− 1). Explicitly, gki is given by:

gk1 : α0 + α1φk1 + ... + αg φkg = 0

gk2 : zk1(α1
a−k1

zk1
+ ...) = 0

[...]

gkg : zkg(αg
a−kg

zkg
+ ...) = 0
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where every gki for i ∈ {1, ..., g} is holomorphic at p. As we have taken D = K,
we have that l(D) = l(K) = g and thus g = r + 1. Due to this, we can also write
i ∈ {1, ..., r + 1}.

Remark 6.2. Do not confuse the g of the genus with the gki of the basis.

Definition 6.3. Given this, we can define the Wronskian to be the function:

Wz(gk1 , ..., gkr+1)(z) = det


gk1(z) g′k1

(z) g(2)k1
(z) ... g(r)k1

(z)

gk1(z) g′k1
(z) g(2)k1

(z) ... g(r)k2
(z)

...
...

... . . .
...

gkr+1(z) g′kr+1
(z) g(2)kr+1

(z) ... g(r)kr+1
(z)

 (6.1)

which is holomorphic because every gki is holomorphic.

Definition 6.4. A point p ∈ X with local coordinate z is a Weierstrass point for |K|
if and only if for any basis {φk1 , ..., φkr+1} for L(K), the Wronskian Wz(zK(p)φk1 , ...,-
zK(p)φkr+1) is zero at p.

Lemma 6.5. The Wronskian is well defined by |K| itself, and not by the choice of
basis.

Definition 6.6. A point p is a Weierstrass point on X if and only if L(gp) has a
nonconstant function in it, or, equivalently, if and only if l(gp) ⩾ 2.

Definition 6.7. The Weierstrass weight of a point p is:

w(p) =
g

∑
i=1

(ni − i) (6.2)

We have that p is a Weierstrass point if and only if w(p) > 0.

Lemma 6.8. Taking |K| on X with dim |K| = r = g − 1, we have:

deg(div(W(|K|)) = ∑
p

ordp(W(|K|)) = r(r+ 1)(g− 1) = (g− 1)g(g− 1) = g(g− 1)2

Lemma 6.9. Taking D = K, the order of the Wronskian at p ∈ X can be expressed
as:

ordp(Wz(zK(p)φk1 , ..., zK(p)φkr+1)) = ordp(z(r+1)K(p)Wz(φk1 , ...φkr+1))

= (r + 1)K(p) + ordp(W(|K|))
= gK(p) + ordp(W(|K|))
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Lemma 6.10. We have that the Weierstrass weight of a point p is defined as the
order of the Wronskian at p, as we have defined before in 6.9. So:

ordp(Wz(zK(p)φk1 , ..., zK(p)φkr+1)) = w(p) =
g

∑
i=1

(ni − i)

We will now see which is the total weight of the Weierstrass points.

Theorem 6.11. Taking the same conditions as before (deg(K) = d = 2g − 2), we
obtain that:

∑
p∈X

w(p) = (r + 1)(d + rg − r) = g(2g − 2 + g(g − 1)− g + 1)

= g(2g − 2 + g2 − g − g + 1) = g(g2 − 1) = g3 − g
(6.3)

Proof. As it has been said in 6.10, we can compute the following:

∑
p

w(p) = ∑
p

ordp(Wz(zK(p)φk1 , ..., zK(p)φkr+1))

= ∑
p
(r + 1)K(p) + ordp(W(|K|))(see 6.9)

= (r + 1)d + g(g − 1)2(see 6.8) = g(2g − 2) + g(g − 1)2

= g(2g − 2 + (g − 1)2) = g(2g − 2 + g2 − 2g + 1) = g(g2 − 1)

= g3 − g

Theorem 6.12. For g ⩾ 2, the weight of a point is ⩽ g(g − 1)/2. This bound is
attained only for a point p where the "non-gap" sequence begins with 2.

Proof. Let 2 ⩽ α1 < α2 < ... < αg = 2g be the first g "non-gaps" at p and 1 = n1 <

n2 < ... < ng < 2g be the g−"gaps" at p. The αi’s and the ni’s are complementary
in {1, ..., 2g}. Then, by the definition 6.7, we have:

w(p) =
g

∑
i=1

(ni − i) =
2g

∑
i=1

i −
g

∑
i=1

αi −
g

∑
i=1

i

=
2g−1

∑
i=g+1

i −
g−1

∑
i=1

αi ⩽
3g
2
(g − 1)− g(g − 1) = g(g − 1)/2

where we have used 5.10 and with equality holding if and only if α1 = 2 (hyper-
elliptic case).
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Once we have found the weights of Weierstrass points, it is time to compute how
many of them we can have.

Proposition 6.13. For X with g ⩾ 2, there are between 2g + 2 and g3 − g Weier-
strass points. The lower bound, 2g + 2, occurs only in the hyperelliptic case.

Proof. To compute the number of Weierstrass points, we will use that:

#Weierstrass points =

∑
p∈X

w(p)

w(p)

According to 6.3 and 6.12, we obtain the lower bound. The upper bound is ob-
tained because the minimum weight of a point is 1.



Chapter 7

Hurwitz’s Theorem

From all we have seen, given X, we can say that Weierstrass points are points
intrinsically defined to X. This property, among others, will help us in this chapter
to construct the necessary to prove Schwarz’s Theorem and Hurwitz’s Theorem.

Proposition 7.1. Let X be a compact Riemann surface with genus g ≥ 2. If 1 ̸=
T ∈ Aut(X), then T has at most 2g + 2 fixed points.

Proof. First, since X is compact and the fixed point set of T is discrete, the fixed
point set of T is finite. Let P ∈ X be a not fixed point of X. Then, there is a
meromorphic function f on X whose divisor of poles of f (5.7) is Pr with 1 ≤ r ≤
g + 1. Considering the function h = f − f ◦ T, its divisor of poles is Pr(T−1P)r and
the function h has therefore 2r ≤ 2g + 2 zeros. Since, as we can see, each point of
T is a zero of h, we can conclude that T has at most 2g + 2 fixed points.

Defining W(X) to be the set of Weierstrass points on X, we have from 6.13 that
this set is finite.

Proposition 7.2. If T ∈ Aut(X), then T(W(X)) = W(X). Specifically, we define
Perm(W(X)) as the permutation group of the Weierstrass points.

Proof. The demonstration derives from the fact that the gap sequences at P ∈ X
and at TP are the same.

Proposition 7.3. Let X be compact with genus g. It is hyperelliptic if and only
if there exists a conformal involution J on X (J ∈ Aut(X) with J2 = 1) that fixes
2g + 2 points. J can also be called hyperelliptic involution.
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Proof. If X is hyperelliptic, there exists a conformal involution J such that X/J =

P1. Using Riemann-Hurwitz formula (2.2) we have that there are 2g + 2 ramifica-
tion points and thus 2g + 2 fix points of J.
Conversely, let J be a conformal convolution of X with 2g + 2 fixed points. Let
consider the subgroup < J > of order 2 and the two sheeted covering X → X/ <

J > which is branched at the 2g + 2 fixed points of J. Applying again (2.2) we
obtain that g(M/ < J >) = 0 and thus X has a meromorphic function of degree 2
and X is hyperelliptic.

Corollary 7.4. The homomorphism

λ : Aut(X) → Perm(W(X)) (7.1)

is injective unless X is hyperelliptic, in which case Ker(λ) =< J >.

Proof. Let’s focus on the case where X is not hyperelliptic. We have seen in 6.13
that in this case the number of Weierstrass points is strictly higher than 2g + 2.
However, we know from 7.1, that if 1 ̸= T ∈ Aut(X), then T has at most 2g + 2
fixed points. Therefore, the only possibility remaining is to be the identity map
and thus we obtain the injectivity.

Theorem 7.5. (Schwarz’s Theorem) Let X be a Riemann surface with genus g ≤ 2,
then Aut(X) is a finite group.

Proof. We have defined in 7.4 the homomorphism λ that maps Aut(X) to the per-
mutation group of the Weierstrass points, Perm(W(M)).
We know that Perm(W(M)) is finite because the set of Weierstrass points is fi-
nite.
To prove the finiteness of Aut(X), let’s recall that generally, given

λ : Aut(X) → Perm(W(X)),

=⇒ dim(Aut(X)) = dim(Ker(λ)) + dim(Im(λ))

and by definition dim(Im(λ)) ≤ dim(Perm(W(M))).
Therefore, if Ker(λ) is finite and Perm(W(M)) either is, as we have stated, we have
that Aut(X) is also finite.
If X is hyperelliptic, then by 7.4 we had that Ker(λ) =< J > which is finite because
J2 = 1.
In the case of X being not hyperelliptic, the finiteness of Ker(λ) is fulfilled because
λ was injective.
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Theorem 7.6. (Hurwitz’s Theorem) Let G be a finite group acting holomorphically
and effectively on a compact Riemann surface X of genus g ≥ 2. Then, we can
find the following bound:

|G| ≤ 84(g − 1) (7.2)

Since Aut(X) acts effectively and holomorphically on X, we can replace G by
Aut(X).

Proof. To start with this proof, we will recall 4.7:

2g − 2 = |G|[2g(X/G)− 2 +
k

∑
i=1

(1 − 1
ri
)] = |G|[2g(X/G)− 2 + R] (7.3)

where R =
k
∑

i=1
(1 − 1

ri
). From the Riemann-Hurwitz’s formula, we claimed that

g(X) ≥ g(X/G). Because of this, let’s divide the proof into two cases.

1. Assume g(X/G) = 0. Then:

2g − 2 = |G|[R − 2] (7.4)

Observe that in 7.4, the left part, 2g− 2 ≥ 2, because g ≥ 2. Due to this, from
the right part of 7.4, we find that R > 2 and in 4.8 we obtained that in this
case, R ≥ 2 + 1

42 .

Therefore, to sum up:

|G| = 2g − 2
R − 2

=
2(g − 1)

R − 2
≤ 2 · 42(g − 1) = 84(g − 1)

2. Assume g(X/G) ≥ 1. We can suppose two cases: R = 0 and R ̸= 0. Let’s
study both.

(a) If R = 0 there is no ramification to the quotient map. We have from 7.3
that:

2g − 2 = |G|[2g(X/G)− 2] =⇒ g − 1 = |G|[g(X/G)− 1] (7.5)

From 7.5, we see that the case g(X/G) = 1 can’t be taken because we
will find g = 1!! This leads us to g(X/G) ≥ 2, which implies that
|G| ≤ g − 1 (and |G| ≤ 84(g − 1) either).

(b) If R ̸= 0, this forces R ≥ 1/2. Taking into account that we have also
assumed g(X/G) ≥ 1, we obtain from 7.3:

2g(X/G)− 2 + R ≥ 2 − 2 + 1/2 = 1/2

Applying this into 7.3 we conclude that:

|G| ≤ 4(g − 1)
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Example 7.7. Finally, a well-known example of a curve of genus 3 that attains the
upper bound of Hurwitz’s Theorem is Klein’s quartic, x3y + y3z + z3x = 0 in P2.
It has exactly 84(3 − 1) = 168 automorphisms.
Let’s explicitly describe Aut(X). Let ζ = exp 2πi

7 be the primitive 7−th root of
unity. Firstly:

S : [t0, t1, t2] → [ζt0 : ζ2t1 : ζ4t2]

defines an automorphism of order 7.
Then, let U be the cyclic permutation of coordinates of order 3 defined by:

U : [t0 : t1 : t2] → [t1 : t2 : t0]

We observe that the subgroup generated by S and U is a semidirect product of
order 21 (USU−1 = S4). Finally, let T the automorphism of order 2 described by
the matrix:

T =
i√
7

 ζ − ζ6 ζ2 − ζ5 ζ4 − ζ3

ζ2 − ζ5 ζ4 − ζ3 ζ − ζ6

ζ4 − ζ3 ζ − ζ6 ζ2 − ζ5


The group generated by U and T is the dihedral group of order 6 (TUT−1 = U2).
To sum up, using Sylow’s Theorem and by Hurwitz’s Theorem we conclude that
Aut(X) = G =< S, T, U >. This group is named projective special linear group
PSL(2, 7), isomorphic to PSL(3, 2).

Definition 7.8. A compact Riemann Surface of genus g for which the maximum of
7.2 is achieved, is named Hurwitz surface or Hurwitz curve. The Fuchsian group
of a Hurwitz Surface is a finite index torsionfree normal subgroup of the (2,3,7)
triangle group, as we have defined in 7.7. The finite quotient group is precisely
the automorphism group of these Hurwitz surfaces.
However, it does not exist Hurwitz surfaces for each genus. The sequence of
allowable values of the genus g for which we find Hurwitz surfaces is given by:

3, 7, 14, 17, 118, 129, 146, 385, ... (sequence A179982 in the OEIS)

After Klein’s quartic, the following well-known Hurwitz surface with g = 7 is
Macbeth surface, with 504 automorphisms.
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