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Dynamical properties of the Zhang model of self-organized criticality
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INFM, Unitá di Venezia and Dipartimento di Scienze Ambientali, Universita` degli Studi di Venezia, I-30123 Venezia, Italy
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Critical exponents of the infinitely slowly driven Zhang model of self-organized criticality are computed for
d52 and 3, with particular emphasis devoted to the various roughening exponents. Besides confirming recent
estimates of some exponents, new quantities are monitored, and their critical exponents computed. Among
other results, it is shown that the three-dimensional exponents do not coincide with the Bak-Tang-Wiesenfeld
@Phys. Rev. Lett.59, 381 ~1987!; Phys. Rev. A38, 364 ~1988!# ~Abelian! model, and that the dynamical
exponent as computed from the correlation length and from the roughness of the energy profile do not
necessarily coincide, as is usually implicitly assumed. An explanation for this is provided. The possibility of
comparing these results with those obtained from renormalization group arguments is also briefly addressed.
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I. INTRODUCTION

Despite more than a decade of intensive studies, the
nomenon named self-organized critically~SOC! by Bak,
Tang, and Wiesenfeld~BTW! @1# is far from being fully
understood. The name SOC originates from the fundame
property that an open system, externally driven in a~infi-
nitely! slow fashion, settles into a critical state with no cha
acteristic time and length scales, without any parameter
ing; see, e.g., Ref.@2# for a review.

Although many recipes have been proposed as toy mo
to mimic this behavior, the original sandpile model@1# still
carries most of the information presented on this pheno
enon. A variation of this model was introduced a couple
years later by Zhang@3#. The basic differences with respe
to the BTW model were as follows: first, the variable d
scribing the state of the lattice site could take continuo
rather than discrete values; and second, the BTW mode
Abelian @4# while the Zhang model is not. In spite of thes
differences, extensive recent numerical simulations@5# on
the two-dimensional Zhang model opened the possibility t
they both belong to the same universality class, in disag
ment with the original scaling prediction by Zhang@3#. Apart
from the aforementioned investigation@5#, the Zhang model
was already studied in different dimensionalities in Ref.@6#
where estimates for some critical exponents, notably the a
lanche size exponentts , were given. However, these est
mates, whose main aim was to test the robustness of un
sality of the model under anisotropy of the ener
repartition, appeared to be based on small sizes and stati

On the other hand, a Langevin counterpart of the Zha
model was repeatedly studied by renormalization group~RG!
methods@7–10#, and predictions for critical exponents in
one-loop working scheme were drawn. The dynamical ex
nentz, as calculated from the correlation function in the ca
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when the additive noise has a typical time scale much lar
than the relaxation time scale@8#, turned out to be very close
to the one relating the correlation length and the relaxat
time in the standard dynamical scaling hypothesis@11# in the
Zhang model.

It is then desirable to have a more complete numer
investigation touching upon those issues appearing in the
calculations and those which were previously neglected. T
is indeed the aim of the present work, where a fairly co
plete analysis of the model in different dimensionalities
carried out, and compared, when possible, with previous
merical and RG work. By doing this we found a few une
pected results.

First, the three-dimensional results do not support
conjecture that the Zhang and BTW models belong to
same universality class. Second, whereas it is true that
exponentz of the Zhang model is very close to the on
obtained by RG techniques as previously discussed,
roughening exponent is not@8#. Finally, the critical exponent
z is different when calculated from the dynamical scalin
ansatz and when computed from the roughness expon
This latter discrepancy can be fixed in our case by noting
the correlation length~maximum avalanche distance! does
not scale linearly with system sizeL.

The plan of the paper is as follows. In Sec. II the mode
defined, whereas in Sec. III all relevant quantities concurr
to identify the critical behavior of the model are laid dow
Section IV contains the results of this effort and compariso
with earlier ones. Finally, some concluding remarks a
made in Sec. V.

II. SLOWLY DRIVEN ZHANG MODEL

Each point of a hypercubic lattice is characterized by
continuousenergy variableEt(x,t), wherex denotes the lat-
tice position,t the driving ~slow! time, andt the relaxation
~fast! time. Whereast runs from 0 to a sufficiently large
value needed to obtain good statistics,t runs from 0 toT(t),
which is the total fast time that an avalanche initiated a
247 © 1998 The American Physical Society
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slow time t takes to be completed. In this way the two tim
scales are well separated. Starting from an initially em
lattice, the dynamics of the evolution is defined as follo
@3#.

~1! Start with a randomly chosen lattice pointx0, and set
it slightly above some critical energyEc ~hereafter chosen to
be 1 without loss of generality! by repeated addition of a

random energy taken uniformly from the interval (0,1
4 )

@12,13#.
~2! The sitex0 relaxes according to the equation

Et11~x,t !5@12u~Et~x,t !2Ec!#Et~x,t !

1
1

2d (
y~x!

u~Et~y,t !2Ec!Et~y,t !, ~1!

whereu(•) is the Heaviside step function andd is the space
dimension. Here the notation(y(x) means that the sum i
restricted to the nearest neighborsy of site x. Clearly this is
tantamout to saying that each sitex whose energy exceeds
critical value Ec is set to zero, and its energy is equa
redistributed to the nearest neighbors.

~3! Iterate step~2! for the other sites that become critic
until all sites are belowEc .

~4! At this point increaset by one unit (t→t11), and
randomly pick a new initial seedx08 in step~1!.

The process is iterated until the system has reache
steady-stateconfiguration where the average energy

E~ t !̄5
1

V(
x

E~x,t ! ~2!

reaches a well defined value. HereV5Ld is the volume of
the lattice. We note that whenever there is no subscript
the energy, it will be implicitly assumed that the avalanche
over, i.e., thatt has reachedT(t). Starting at this time, when
the system has reached a stationary state, we collect al
relevant dynamical properties.

III. PROBABILITY DISTRIBUTIONS
AND CORRELATION FUNCTIONS

At each timet there is a growing avalanche; within th
fast time scale we can measure the number of active site
each update (t),

St~ t !5(
x

u~Et~x,t !2Ec!, ~3!

and from this we can define the size of an avalanche at t
t:

S~ t !5 (
t51

T~ t !

St~ t !. ~4!

From the size of the avalanche we can compute a chara
istic lengthj(t) defined as the radius of gyration with respe
to the seed sitex0. This characteristic length is related to th
time the avalanche needs to be completed through the s
dard relation@11#
y
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T~ t !;jz~ t !, ~5!

which defines the dynamical exponentz.
Other quantities that are interesting to measure are

total input and output currents. They are defined as

Jin~ t !5dE~x0 ,t !, ~6!

Jout~ t !5 (
t50

T~ t !

(
xP]L

Et~x,t !, ~7!

whereL is the bulk, and]L is the boundary of the bulk~the
sum of the two forming the total available lattice spac!.
HeredE(x0 ,t) is the total added energy necessary to the
to be active~i.e., above the critical energyEc51).

In order to take into account the existence of two differe
time scales, one should be very careful when defining
correlation functions. Upon extending Eq.~2!, we can define
the qth spatial moment of the energy as

Eq̄~ t !5
1

V(
x

Eq~x,t !, ~8!

and then the interface width~or roughness! @14# is

Ws~ t,L !5AE2~ t !̄2E~ t !̄2. ~9!

This definition applies to theslow time scale, as also indi
cated by the suffixs, and coincides with the usual definitio
of roughness in the framework of growth processes. On
other hand, one could think to measure the energy fluc
tions during the evolution of an avalanche. Since an av
lanche of durationt occurs at many different input timest,
we define the followingfast roughness:

Wf
2~t,L !5K 1

V(
x

Et
2~x,t !2S 1

V(
x

Et~x,t ! D 2L
t

. ~10!

In Eq. ~10!, the roughness is averaged over different timet
~and hence avalanches!.

According to standard scaling hypothesis~see, e.g., Ref.
@14#!, one expects these correlation functions to display
scaling forms

Wf~t,L !5t2b fF f~t/Lzf !, ~11a!

Ws~ t,L !5tbsFs~ t/Lzs!, ~11b!

whereF f anf Fs are finite size functions.
In Eq. ~11a!, the roughness is expected todecreaserather

than to increaseas in more conventional growth process
@14#, because the maximum energy is bounded and the
lanche is a relaxational process.

IV. CRITICAL EXPONENTS AND RESULTS

This model was already carefully investigated in two d
mensions. Apart from the original work@3#, recent extensive
simulations on remarkably large sizes were carried out
d52 @5#. When comparable, our results are in good agr
ment with both previous analyses. However, in these pap
the behavior of some important quantities, necessary to
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purposes, were neglected, nor was a complete study in
mensionality different from 2 ever attempted. Indeed wh
Zhang only reported the steady state value of the ave
energy along with the ‘‘quantized’’ energy distributionP(E)
for d53, in Ref.@6# a value for the avalanche size expone
~see below! is reported for dimensions up to 4. The latt
was, however, probably based on very small sizes with
any attempt of a finite scale analysis. As a result these e
mates, albeit close, turn out to be slightly off compared
ours.

In our simulations, we used sizes up toL5300 and 60
and times up to 217 and 218 in d52 and 3, respectively
These are smaller than the ones used in Ref.@5# for d52, but
considerably larger than all other three-dimensional stud

For the sake of clarity and compactness, let us now
view some known results first. As is well known by now, t
system reaches a steady state~where the average energy is n
longer changing! after a transient which clearly scales asLd,
since it takes that many time steps~on average! to ‘‘explore’’
the whole lattice. The resulting values of the stored ene

E(t )̄ are 0.6360.01 and 0.5860.01~estimated from the larg
est sizes! in d52 and 3, respectively. These results are
agreement with those found by Zhang in his original sim
lations. Another feature already observed by Zhang is
the critical state has an energy which is peaked around
defined energies, the number of which depends only on
dimensionality of the hypercubic lattice. It has also been
tablished that this feature is unchanged upon introducing
asymmetry into the probability distribution, and by introdu
ing different lattices@6#.

As explained by Hwa and Kardar@15# in the framework
of the one-dimensional BTW sandpile model, monitoring t
total output energy current proves to be very useful in und
standing the mechanism that leads to the steady state. Th
shown in Fig. 1. Whereas clearly the input current is a r
dom function between 0 and 1, the output current displ
sequences of bursts followed by long periods of quiesce
similar to the one found by Hwa and Kardar in the slo
driving regime. We also computed its power spectrumS(n)
~the Fourier transform of the output current-current corre
tion! which appears to be white noise in all cases. This
related with the fact that our system corresponds to anonin-
teracting avalanche regimein their language@15#.

We now turn to the calculus of critical exponents. Fi
we consider the exponentz as defined in Eq.~5!. This was
computed by plotting the average duration of the avalanc
as a function of their characteristic average lengths. A b
ning procedure analog to the one used in Ref.@7# was em-
ployed. Plots are shown in Fig. 2. Our best fit estimates
1.3460.02 and 1.6560.02 ind52 and 3, respectively, com
patible with the BTW values which are43 and 5

3 . Remark-
ably, these results are also in perfect agreement with the
results of Ref.@10#, which are 1.36 (d52) and 1.68 (d
53). The RG analysis was performed on a Langevin eq
tion where the driving and the relaxation time scales
comparable~and hence not well separated!. Furthermore, the
strong ~infinite! nonlinearity, appearing in the continuum
analog of Eq.~1!, was regularized, and the result was an
lyzed within a one-loop RG scheme. In view of all the
approximations, the aforementioned closeness in the two
i-
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sults is rather surprising. We shall come back to this is
later on.

Another interesting critical exponent is the avalanche
ponent sizets defined by the relation

p~S!5S2tsF~S/Lf!. ~12!

Here p(S) is the distribution density of the avalanche siz
S, ts is the avalanche exponent, andF(x) is a finite size
function defining the exponentf @16#. The functionF(x) is
assumed to go to a constant for small arguments~i.e., large
sizesL) and to ‘‘regularize’’ the large avalanche behavior.
order to improve the numerical estimates, it proves con
nient to look at the integrated distribution density defined

P~S!5E
0

S

ds p~s!. ~13!

FIG. 1. Plot of the total energyJ(t), both in ~dotted line! and
out ~full line!, in d52 ~a! and 3~b!.



-

in
,
nc
r
l-

th
de

no
o
s

e

fo
d

ing
ize

is

de-
x-

as

re
ited
he

e
st

250 PRE 58ACHILLE GIACOMETTI AND ALBERT DÍ AZ-GUILERA
We have estimated the values ofts in two different ways. By
plotting the local slope~Fig. 3! and upon a finite size proce
dure ~analog to the one used in Refs.@5# and @17#; see Fig.
4!. Both procedures yield consistent results. Ind52 our best
estimate is 1.28860.019, which is close to the one given
Ref. @5# by Lübeck, who reported 1.28260.010. It appears
however, that the two extrapolations are not identical, si
in his analysis the values areincreasingasL increases rathe
thandecreasingas one would expect from a finite size sca
ing.

Remarkably, both values are in good agreement with
BTW value, thus supporting the claim that the Zhang mo
belongs to the BTW universality class@5#. Ourd53 result is
1.45460.041, and it supersedes the one reported by Ja
@6#, namely, 1.55, which was presumably based only
small sizes~and thus too high according with our previou
discussion!. However this disagrees with the BTW value4

3

~see, e.g., Ref.@17#!, and hence with the claim that the BTW
and Zhang model belong to the same universality class.

The values off were computed from the collapse of th
curves obtained plottingStsP(S) versusS/Lf, that is, the
universal finite size function. We find the best collapse
1.8060.05 and 2.660.1. The error bars are estimate

FIG. 2. Log-log plot of the relationT;jz in d52 ~a! and 3~b!.
The full line corresponds to the value reported in Table II.
e

e
l
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graphically. A consistent value can be estimated by plott
the size of the maximum avalanche as a function of the s
L, which is expected to scale as

smax;Lf. ~14!

A log-log linear fit yields 1.8460.06 (d52) and 2.54
60.09 (d53). A summary of all these critical exponents
reported in Tables I and II.

Let us now turn to the behavior of the roughness as
fined in Eqs.~11!. As mentioned earlier, the dynamical e
ponentz can be found from the scaling ansatz~5!. However,
as it is usually done in the field of growth processes@14#, one
might think to derive it from the scaling of the roughness
well. In Fig. 5, we plot the roughness as defined in Eq.~10!.
We find Eq.~11a! to hold true withb f50.28260.013 and
0.39160.031 ind52 and 3, respectively. These values we
obtained upon using an analysis similar to the one explo
to computets . From the collapse plot one can then infer t

FIG. 3. Local slope plot forts as a function of the avalanch
size S in d52 ~a! and 3 ~b!. In both cases, the intermediatemo
linear part of the largest size was used for the computation.
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value of zf appearing in Eq.~11a!. We find zf51.2060.05
(d52) and 1.460.1 (d53), which are both lower than th
corresponding value derived from Eq.~5!. Similarly to Eq.
~14!, we have that

T;Lzf ~15!

with zf51.1960.04 (d52) and 1.3460.04 (d53). Com-
monly, the equalityz5zf is tacitly assumed to hold, and w
are not aware of any other examples where this point
sufficiently emphasized. A simple argument can be giv

FIG. 4. Finite size plot forts as a function of the inverse lattic
size 1/L in d52 ~a! and 3~b!.

TABLE I. Critical exponentsts and f in d52 and 3. The
values indicated by~a! and ~b! refer to the BTW @17# and the
previous works@5,6#, respectively. The exponentf given here is
computed from Eq.~14!.

d ts ts(a) ts(b) f f(a) f(b)

2 1.28860.019 1.293 1.28260.010 1.8460.06 2 -
3 1.45460.041 4/3 1.55 2.5460.09 3 -
s
n

here to explain this discrepancy. In usual interface grow
phenomena the dynamical exponent is measured as the
ing of the saturation time with the system length, and t
saturation occurs when the correlation length reaches the
tem length. In our case, both lengths do not scale linea
but asj;Lh. Thus these exponents need not be identi
unlessh51. By a direct measurement~looking on how the
maximum j scales withL) we have found thath50.922
60.012 andh50.89760.051, ford52 and 3, respectively
According to these scaling arguments we find that the pr
uct zh agrees, within error bars, with the values reported
zf . In certain surface growth models a similar phenomen
called anomalous scaling, has been reported@18#. There it

TABLE II. Dynamical critical exponent ind52 and 3. The first
column corresponds to Eq.~5!, whereas the second column is com
puted from Eq.~15!. Finally the last two columns indicated by~a!
and ~b! are the BTW@17# and RG values@8#, respectively.

d z zf z(a) z(b)

2 1.3460.02 1.1960.04 4
3 1.36

3 1.6560.02 1.3460.04 5
3 1.68

FIG. 5. Log-log plot ofWf(t,L) as a function oft for various
sizesL. In d52 these wereL570 (h), 100 (L), 150 (¹), 200
(n), and 300 (s), and ind53 they wereL520 (L), 30 (¹), 40
(n), 50 (s), and 60 (h). In both cases, the solid line correspon
to the value ofb f reported in Table III.
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has been observed that the roughening exponents are d
ent when measuring the local or the global widths.

Another exponent is derived from the relationx f5b f zf
which is telling that the roughness, after that the avalan
has been completed@i.e., at timeT(t)#, decreases asL2x f .
The valuesx f5b f zf , according to our previous results, a
0.33 and 0.55 ind52 and 3 respectively. We now go back
the comparison with the RG results.

As previously hinted, although the exponentz derived
from Eq.~5! is very close to the one derived by RG metho
on the continuum Langevin analog of the Zhang model@8#,
the b f and x f exponents are not. A summary of all the
values is reported in Table III for compactness. We argu
previously that this inconsistency is not surprising in view
the different physical regimes probed by the two cases an
the heavy approximations involved in the RG calculatio
The apparent equality in the dynamical exponentz then
probably hinges on deeper and more interesting reasons
we are planning to consider this in a future work.

Finally, we have also measured the roughness on theslow
time scale as defined by Eq.~9!. We find that after a transien
scaling asLd, the roughness tends to a limit which isinde-
pendenton L ~see Fig. 6!, i.e., Eq.~11b! holds withbs50,
xs50, andzs5d.

V. CONCLUSIONS

In this paper we have studied the infinitely slowly drive
Zhang model in two and three dimensions. In two dime
sions this work can be seen as a complement of an ea
large size study@5#. On the other hand, in three dimension
our results are expected to improve an earlier estimate@6#.
The aim of Ref.@6# was different from ours, and this coul
account for the difference. In both cases we computed s
exponents~notably thef and all the roughness exponent!
which were never previously considered. Besides bein
useful complement to the existing literature on the model,
also found a few unexpected results:~i! the three-
dimensional avalanche size exponent does not coincide
the BTW value, as the two-dimensional value seems to s
gest;~ii ! the exponentz computed from the dynamical sca
ing ansatz does not coincide with the one computed from
roughening exponent. We have shown that this stems f
the nonlinear scaling of the correlation lengthj with the
system sizeL; and~iii ! the coincidence between the value
z of the Zhang model, and the RG value derived on
Langevin continuum counterpart, does not extend to ot
exponents such as theb andx exponents.

We believe that all the above issues deserve further at
tion both from analytical and numerical viewpoints. We a
currently performing a numerical investigation on the co

TABLE III. Roughness exponentsb andx in d52 and 3. The
valuesb f andx f5b f zf are computed here, while the others are t
RG values@8#.

d b f b x f x

2 0.28260.013 20.26 0.3360.03 20.36
3 0.39160.031 20.1 0.5560.08 20.18
er-

e
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tinuum Langevin equation. This further analysis is expec
to shed new lights on the approximations involved in the R
treatment.
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@18# J. M. López, M. A. Rodrı´guez, and R. Cuerno, Phys. Rev.

56, 3993~1997!.


