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Dynamical properties of the Zhang model of self-organized criticality
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Critical exponents of the infinitely slowly driven Zhang model of self-organized criticality are computed for
d=2 and 3, with particular emphasis devoted to the various roughening exponents. Besides confirming recent
estimates of some exponents, new quantities are monitored, and their critical exponents computed. Among
other results, it is shown that the three-dimensional exponents do not coincide with the Bak-Tang-Wiesenfeld
[Phys. Rev. Lett59, 381 (1987; Phys. Rev. A38, 364 (1988] (Abelian) model, and that the dynamical
exponent as computed from the correlation length and from the roughness of the energy profile do not
necessarily coincide, as is usually implicitly assumed. An explanation for this is provided. The possibility of
comparing these results with those obtained from renormalization group arguments is also briefly addressed.
[S1063-651%98)06107-9

PACS numbd(s): 64.60.Lx

I. INTRODUCTION when the additive noise has a typical time scale much larger
than the relaxation time scadl8], turned out to be very close

Despite more than a decade of intensive studies, the phée the one relating the correlation length and the relaxation
nomenon named self-organized critical$OQ by Bak, time in the standard dynamical scaling hypoth¢sH in the
Tang, and WiesenfeldBTW) [1] is far from being fully =~ Zhang model.
understood. The name SOC originates from the fundamental It is then desirable to have a more complete numerical
property that an open system, externally driven ifirdi- investigation touching upon those issues appearing in the RG
nitely) slow fashion, settles into a critical state with no char-calculations and those which were previously neglected. This
acteristic time and length scales, without any parameter turis indeed the aim of the present work, where a fairly com-

ing; see, e.g., Ref2] for a review. plete analysis of the model in different dimensionalities is
Although many recipes have been proposed as toy modefgrried out, and compared, when possible, with previous nu-
to mimic this behavior, the original sandpile modg] still ~ merical and RG work. By doing this we found a few unex-

carries most of the information presented on this phenompPected results.

enon. A variation of this model was introduced a couple of First, the three-dimensional results do not support the

years later by Zhan{gB]. The basic differences with respect conjecture that the Zhang and BTW models belong to the

to the BTW model were as follows: first, the variable de-Same universality class. Second, whereas it is true that the

scribing the state of the lattice site could take continuougXxponentz of the Zhang model is very close to the one

rather than discrete values; and second, the BTW model igbtained by RG techniques as previously discussed, the

Abelian[4] while the Zhang model is not. In spite of these roughening exponent is nf8]. Finally, the critical exponent

differences, extensive recent numerical S|mu|at|@ﬁ:b on z is different when calculated from the dynamical Scaling

the two-dimensional Zhang model opened the possibility thag@nsatz and when computed from the roughness exponent.

they both belong to the same universality class, in disagreelhis latter discrepancy can be fixed in our case by noting that

ment with the original scaling prediction by Zhafg]. Apart ~ the correlation lengtiimaximum avalanche distanceoes

from the aforementioned investigati¢h], the Zhang model notscale linearly with system size.

was already studied in different dimensionalities in Ré. The plan of the paper is as follows. In Sec. Il the model is

where estimates for some critical exponents, notably the avalefined, whereas in Sec. 1l all relevant quantities concurring

lanche size exponenﬁs, were gi\/en_ However, these esti- to Identlfy the critical behavior of the model are laid down.

mates, whose main aim was to test the robustness of unive®ection IV contains the results of this effort and comparisons

sality of the model under anisotropy of the energyWith earlier ones. Finally, some concluding remarks are

repartition, appeared to be based on small sizes and statistid§ade in Sec. V.

On the other hand, a Langevin counterpart of the Zhang

model was repeatedly studie_d by renor_malization gr(cR@) Il. SLOWLY DRIVEN ZHANG MODEL

methods[7-10|, and predictions for critical exponents in a

one-loop working scheme were drawn. The dynamical expo- Each point of a hypercubic lattice is characterized by a

nentz, as calculated from the correlation function in the casecontinuousenergy variablée (x,t), wherex denotes the lat-
tice position,t the driving (slow) time, andr the relaxation
(fash time. Wheread runs from 0 to a sufficiently large

*Electronic address: achille@unive.it value needed to obtain good statistiesuns from 0 toT(t),
"Electronic address: albert@ffn.ub.es which is the total fast time that an avalanche initiated at a
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slow timet takes to be completed. In this way the two time T(t)~&(1), (5)

scales are well separated. Starting from an initially empty

lattice, the dynamics of the evolution is defined as followswhich defines the dynamical exponent

[3]. Other quantities that are interesting to measure are the
(1) Start with a randomly chosen lattice poix, and set  total input and output currents. They are defined as

it slightly above some critical enerdy, (hereafter chosen to

be 1 without loss of generalityby repeated addition of a Jin(t) = 6E(Xo,1), ©
random energy taken uniformly from the interval %P, T(t)
[12'1‘?3 . . . ‘]Ou[(t)zz 2 ET(Xlt)Y (7)
(2) The sitex, relaxes according to the equation 7=0 xedA
E...(60)=[1— 6(E.(x,t)— E)IE(x,1) whereA is the bulk, andA is the boundary of the bulikhe

sum of the two forming the total available lattice space
1 Here 6E(Xg,t) is the total added energy necessary to the site
+ ﬁy% O(EA(y, ) —EEAy,t), (1) {0 pe activeli.e., above the critical energ§,=1).
In order to take into account the existence of two different
Whereg(.) is the Heaviside Step function amdis the space time scales, one should be very careful when defining the
dimension. Here the notatioB,(,, means that the sum is Correlation functions. Upon extending H@), we can define
restricted to the nearest neighbyrsf site x. Clearly this is  the gth spatial moment of the energy as
tantamout to saying that each skevhose energy exceeds a 1
critical value E. is set to zero, and its energy is equally E—q(t):_E E9(x,t), (8)
redistributed to the nearest neighbors. V&
(3) Iterate stef2) for the other sites that become critical
until all sites are belovE, .

(4) At this point increase by one unit (—t+1), and ?:
randomly pick a new initial seexl, in step(1). Wq(t,L)= VE*(t) —E(t)% 9

The process is iterated until the system has reached
steady-stateonfiguration where the average energy

and then the interface widttor roughness[14] is

'?his definition applies to thelow time scale, as also indi-
cated by the suffix, and coincides with the usual definition
1 of roughness in the framework of growth processes. On the
E(t)= VE E(x,t) (2 other hand, one could think to measure the energy fluctua-
x tions during the evolution of an avalanche. Since an ava-

h Il defi | dis th | ¢ lanche of durationr occurs at many different input times
reaches a well defined value. Heve=L" is the volume o we define the followingast roughness:

the lattice. We note that whenever there is no subscript for

the energy, it will be implicitly assumed that the avalanche is 5 1 5 1 2

over, i.e., thatr has reached(t). Starting at this time, when Wf(T.L)=<vE ET(X,t)—<vE ET(X,t)) > . (10
the system has reached a stationary state, we collect all the X X t

relevant dynamical properties. In Eq. (10), the roughness is averaged over different tires

(and hence avalanches
ll. PROBABILITY DISTRIBUTIONS According to standard scaling hypothe¢sge, e.g., Ref.
AND CORRELATION FUNCTIONS [14]), one expects these correlation functions to display the

At each timet there is a growing avalanche; within the scaling forms

fast time scale we can measure the number of active sites at W, (7,L)=7"Bid (/L) (113
each update+),

W(t,L)=tPsdb(t/L%), (11b)

ST(t)=§X: 0(E,(x.) —Eo), (3) where®; anf &4 are finite size functions.
In Eq. (113, the roughness is expecteddecreaseaather
and from this we can define the size of an avalanche at tim§an toincreaseas in more conventional growth processes
t: [14], because the maximum energy is bounded and the ava-
lanche is a relaxational process.
T(t)

S(t)= >, S,(t). (4) IV. CRITICAL EXPONENTS AND RESULTS
=1

This model was already carefully investigated in two di-
From the size of the avalanche we can compute a charactemensions. Apart from the original wofl8], recent extensive
istic length&(t) defined as the radius of gyration with respectsimulations on remarkably large sizes were carried out in
to the seed sit&,. This characteristic length is related to the d=2 [5]. When comparable, our results are in good agree-
time the avalanche needs to be completed through the stament with both previous analyses. However, in these papers,
dard relation11] the behavior of some important quantities, necessary to our
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purposes, were neglected, nor was a complete study in d T T T T T T

mensionality different from 2 ever attempted. Indeed while 12~
Zhang only reported the steady state value of the averag -
energy along with the “quantized” energy distributi®{ E) 10 F
for d=3, in Ref.[6] a value for the avalanche size exponent i
(see below is reported for dimensions up to 4. The latter sl

was, however, probably based on very small sizes withou

any attempt of a finite scale analysis. As a result these est

mates, albeit close, turn out to be slightly off compared to = i

ours. - -
In our simulations, we used sizes up lte=300 and 60 4

and times up to ¥ and 2 in d=2 and 3, respectively. X

These are smaller than the ones used in féfor d=2, but o |

considerably larger than all other three-dimensional studies c . e
For the sake of clarity and compactness, let us now re R A : L

view some known results first. As is well known by now, the

system reaches a steady statbere the average energy is no 0 40000 80000 120000

longer changinpafter a transient which clearly scaleslds

since it takes that many time ste@@s averaggto “explore” t

the whole lattice. The resulting values of the stored energy 100 T T r T r T T T r

E(t) are 0.63-0.01 and 0.5& 0.01 (estimated from the larg- L (b)
est sizesin d=2 and 3, respectively. These results are in
agreement with those found by Zhang in his original simu- 80 I
lations. Another feature already observed by Zhang is tha 5
the critical state has an energy which is peaked around we
defined energies, the number of which depends only on th
dimensionality of the hypercubic lattice. It has also been es -
tablished that this feature is unchanged upon introducing as=
asymmetry into the probability distribution, and by introduc- 5 40r
ing different latticeqd6]. 5
As explained by Hwa and Kard@i5] in the framework
of the one-dimensional BTW sandpile model, monitoring the
total output energy current proves to be very useful in under. -
standing the mechanism that leads to the steady state. This [\
shown in Fig. 1. Whereas clearly the input current is a ran-
dom function between 0 and 1, the output current display: . 1 . 1 . 1 . 1 L
sequences of bursts followed by long periods of quiescenc 0 60000 120000 180000 240000
similar to the one found by Hwa and Kardar in the slow t
driving regime. We also computed its power specti8fw)
(the Fourier transform of the output current-current correla- FIG. 1. Plot of the total energy(t), both in (dotted ling and
tion) which appears to be white noise in all cases. This iut (full line), in d=2 (&) and 3(b).
related with the fact that our system corresponds tomin-

60 |-

20 -

teracting avalanche regimim their languagé¢15]. sults is rather surprising. We shall come back to this issue
We now turn to the calculus of critical exponents. Firstlater on.
we consider the exponertas defined in Eq(5). This was Another interesting critical exponent is the avalanche ex-

computed by plotting the average duration of the avalanchegonent sizers defined by the relation

as a function of their characteristic average lengths. A bin-

ning procedure analog to the one used in R&f.was em- p(S)=S "sF(S/IL?). (12)
ployed. Plots are shown in Fig. 2. Our best fit estimates are

1.34+0.02 and 1.650.02 ind=2 fsmd 3, reSpegtively, COM- Herep(S) is the distribution density of the avalanche sizes
patible with the BTW values which aré and . Remark- . 7. is the avalanche exponent, afidx) is a finite size

ably, these results are also in perfect agreement with the R\ ion defining the exponent [16]. The functionF (x) is

riesults of Ref.[10], V.VhiCh are 1.36 ¢=2) and 1'68 d assumed to go to a constant for small arguméings, large
=3). The RG analysis was performed on a Langevin equagj,eg) ) and to “regularize” the large avalanche behavior. In

tion Whegla thed (rj]rlvmg and tTle relaxatlgn tr|]me scaleﬁ 'rder to improve the numerical estimates, it proves conve-
compara _e(an ence nqt we sepa_ra)e. urt ermore, the  nhient to look at the integrated distribution density defined as
strong (infinite) nonlinearity, appearing in the continuum

analog of Eq.(1), was regularized, and the result was ana- s
lyzed within a one-loop RG scheme. In view of all these P(S):J ds p(s). (13
approximations, the aforementioned closeness in the two re- 0
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FIG. 2. Log-log plot of the relatiof ~ &% in d=2 (a) and 3(b). 0.8 1 1 1 " 1 )
The full line corresponds to the value reported in Table II. 80 120 160 200
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We have estimated the valuesxfin two different ways. By FIG. 3. Local slope plot forrs as a function of the avalanche

plotting the local slopgFig. 3) and upon a finite size proce- gjze 5 in d=2 (a) and 3(b). In both cases, the intermediatemost
dure (analog to the one used in Ref§] and[17]; see Fig. |inear part of the largest size was used for the computation.

4). Both procedures yield consistent resultsdir2 our best

estimate is 1.2880.019, which is close to the one given in graphically. A consistent value can be estimated by plotting

Ref. [5] by Lubeck, who reported 1.2820.010. It appears, the size of the maximum avalanche as a function of the size
however, that the two extrapolations are not identical, since ' which is expected to scale as

in his analysis the values aigcreasingasL increases rather
thandecreasingas one would expect from a finite size scal- Smax~L?. (14
ing.

Remarkably, both values are in good agreement with thé log-log linear fit yields 1.840.06 d=2) and 2.54
BTW value, thus supporting the claim that the Zhang modek-0.09 ([d=3). A summary of all these critical exponents is
belongs to the BTW universality clags]. Ourd=3 resultis reported in Tables | and II.
1.454+0.041, and it supersedes the one reported by Janosi Let us now turn to the behavior of the roughness as de-
[6], namely, 1.55, which was presumably based only orfined in Egs.(11). As mentioned earlier, the dynamical ex-
small sizes(and thus too high according with our previous ponentz can be found from the scaling ans&h. However,
discussioin However this disagrees with the BTW valde as it is usually done in the field of growth procesgk4, one
(see, e.g., Ref17]), and hence with the claim that the BTW might think to derive it from the scaling of the roughness as
and Zhang model belong to the same universality class. well. In Fig. 5, we plot the roughness as defined in &d).

The values of¢p were computed from the collapse of the We find Eq.(113 to hold true withB;=0.282+0.013 and
curves obtained plotting™P(S) versusS/L?, that is, the 0.391+0.031 ind=2 and 3, respectively. These values were
universal finite size function. We find the best collapse forobtained upon using an analysis similar to the one exploited
1.80+0.05 and 2.60.1. The error bars are estimated to computers. From the collapse plot one can then infer the
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1.40 T I T I T I T TABLE II. Dynamical critical exponent il=2 and 3. The first
1 (@ - column corresponds to E¢), whereas the second column is com-
1.38 - 4 puted from Eq.(15). Finally the last two columns indicated ki§)
i i and(b) are the BTW[17] and RG value$8], respectively.
1.36 - __ d z Z z(a) z(b)
_1.344 } - 2 1.34-0.02 1.19-0.04 2 1.36
= 1 1 3 1.65+0.02 1.34-0.04 3 1.68
+".32 - § § -
1.30 - §§ - here to explain this discrepancy. In usual interface growth
. E . phenomena the dynamical exponent is measured as the scal-
1.28 4 ing of the saturation time with the system length, and this
. . saturation occurs when the correlation length reaches the sys-
1.26 . : : | . : : tem length. In our case, both lengths do not scale linearly,
0.00 0.01 0.02 0.03 0.04 but asé~L7. Thus these exponents need not be identical
unlessp=1. By a direct measuremefiboking on how the
1L maximum £ scales withL) we have found thaty=0.922
1.70 — 77— 77 +0.012 andyp=0.897+0.051, ford=2 and 3, respectively.
1 m i According to these scaling arguments we find that the prod-
1654 | uct zn agrees, within error bars, with the values reported for
' z; . In certain surface growth models a similar phenomenon,
7] 7] called anomalous scaling, has been repofte®]l. There it
1.60 -
1,55+ % .
W
1.50 5} -
] & ] )
£
1.45 - . g
. | ;0.01 3
1.40 — 1 r 1 r T T T T T
0.00 0.02 0.04 0.06 0.08 0.10 0.12
1/L
FIG. 4. Finite size plot forr as a function of the inverse lattice 0.001 5

size 1L in d=2 (a) and 3(b).

value ofz; appearing in Eq(119. We find z;= 1.20+0.05
(d=2) and 1.4-0.1 (d=3), which are both lower than the
corresponding value derived from E¢). Similarly to Eq.
(14), we have that

T~L% (15)

WisL)

with z;=1.19+0.04 d=2) and 1.340.04 d=3). Com-
monly, the equalityz=z; is tacitly assumed to hold, and we
are not aware of any other examples where this point was
sufficiently emphasized. A simple argument can be given

TABLE |. Critical exponentsrs and ¢ in d=2 and 3. The 0.001 4 o v oae '*:__
values indicated bya) and (b) refer to the BTW[17] and the ] =T
previous works5,6], respectively. The exponert given here is HEE '
computed from Eq(14). .

d 7 (2) 7(b) b #(a) H(b) _ FIG. 5. Log-log plot ofW;(7,L) as a function ofr for various
sizesL. In d=2 these werd_=70 (O), 100 (<), 150 (V), 200

2 1.288:0.019 1.293 1.2820.010 1.84:0.06 2 - (A), and 300 ), and ind=3 they werelL. =20 (<), 30 (V), 40

3 1.454-0.041 4/3 1.55 254009 3 - (A), 50 (O), and 60 (). In both cases, the solid line corresponds

to the value ofB; reported in Table IlI.
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TABLE lll. Roughness exponeni8 andy in d=2 and 3. The 0.10 T T T T
valuesB; andy;= B¢ z; are computed here, while the others are the .

RG valued8].

d Bs B Xt X
2 0.282+0.013 —-0.26 0.33:0.03 —-0.36 1
3 0.391+0.031 -0.1 0.55+0.08 —-0.18

has been observed that the roughening exponents are diffe
ent when measuring the local or the global widths.

Another exponent is derived from the relatigh= B; z; 0.02
which is telling that the roughness, after that the avalanche ‘
has been completeld.e., at timeT(t)], decreases as™ Xt. ;
The valuesy;= B¢ z;, according to our previous results, are g gg . . . . . : .
0.33 and 0.55 im=2 and 3 respectively. We now go back to 0 20000 40000 60000 80000
the comparison with the RG results. t

As previously hinted, although the exponentderived
from Eq.(5) is very close to the one derived by RG methods ¢.19 . ' . : . :
on the continuum Langevin analog of the Zhang md@&gl
the B¢ and y; exponents are not. A summary of all these -
values is reported in Table Il for compactness. We arguec gogd| ! ,,' |
previously that this inconsistency is not surprising in view of : ’
the different physical regimes probed by the two cases and o .
the heavy approximations involved in the RG caIcuIation.Ao_OG_ / i
The apparent equality in the dynamical exponenthen - [
probably hinges on deeper and more interesting reasons, ar=;, .
we are planning to consider this in a future work. 30 044

Finally, we have also measured the roughness osltwe ’
time scale as defined by E@). We find that after a transient .
scaling asL?, the roughness tends to a limit whichiisle-
pendenton L (see Fig. , i.e., Eq.(11b) holds with 3,=0,
xs=0, andzs=d. .

0.00

i A
1 N Vi a
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[ R
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I
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0.02;
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i

2
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In this paper we have studied the infinitely slowly driven t ) _ )
Zhang model in two and three dimensions. In two dimen- ';'? S;Zlot ofV\g(;,l_t)) o f“rl'Ct'on oitdfchr o sized o
sions this work can be seen as a complement of an earli@Pth for '_th (& anc (f).' e.t\lxqa Lljes usfh Orlt Eeasf:ZESI are the
large size study5]. On the other hand, in three dimensions, 33M€ as In the previous figure; the farger the value, dhe slower
- - - the growth.
our results are expected to improve an earlier estirf@ite
The a'mef R;]ef.EjE_S%Ifwas dlfferet?t Lrom ours, and this ccc;uld tinuum Langevin equation. This further analysis is expected
account for the difference. In both cases we computed SOMg gheq new lights on the approximations involved in the RG
exponentg(notably the¢ and all the roughness exponents otment.
which were never previously considered. Besides being a
useful complement to the existing I|terature_ on the model, we ACKNOWLEDGMENTS
also found a few unexpected resultéi) the three-
dimensional avalanche size exponent does not coincide with The work in Italy was supported by the Italian MURST
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V. CONCLUSIONS
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