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Statistics of the depth probed by cw measurements of photons in a turbid medium
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Photon migration in a turbid medium has been modeled in many different ways. The motivation for such
modeling is based on technology that can be used to probe potentially diagnostic optical properties of biologi-
cal tissue. Surprisingly, one of the more effective models is also one of the simplest. It is based on statistical
properties of a nearest-neighbor lattice random walk. Here we develop a theory allowing one to calculate the
number of visits by a photon to a given depth, if it is eventually detected at an absorbing surface. This mimics
cw measurements made on biological tissue and is directed towards characterizing the depth reached by
photons injected at the surface. Our development of the theory uses formalism based on the theory of a
continuous-time random walk~CTRW!. Formally exact results are given in the Fourier-Laplace domain,
which, in turn, are used to generate approximations for parameters of physical interest.
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I. INTRODUCTION

Many forms of optical technology are now being explor
for potential use in medical diagnosis, because they do
involve the use of potentially hazardous ionizing radiatio
@1,2#. As an example, Bonner and Nossal proved the fe
bility of measuring the number density and rms speed
moving red cellsin vivo by optical methods@3#. A somewhat
similar technology has also been investigated with engin
ing applications in mind@4#. Since light is multiply scattered
and can be absorbed in a tissue, it is necessary to ha
theoretical basis with which to translate experimental d
into optical parameters potentially capable of distinguish
between healthy and diseased states. The most frequ
used of these arems8 , the transport-corrected scattering c
efficient andma , the absorption coefficient. Many types
theories have been applied to reducing data from opt
measurements on turbid media. These include deta
multiple-scattering formalism@5#, a variety of forms of trans-
port and diffusion theory@6#, and most recently the theory o
lattice random walks@7,8#.

All biomedical applications that make use of optic
methods require the capability of characterizing and cont
ling photon trajectories, insofar as is possible. This is ob
ously desirable in optical imaging applications in which o
looks for regions that may have anomalous scattering or
sorption properties@9–11#, but it is also true in applications
involving homogeneous media. In many instances it is
portant to characterize the depth to which photons can p
etrate into a medium so as to associate an optical respon
underlying physiology and to remove possible artifacts d
to uninteresting inhomogeneities. One descriptive param
that relates to the statistical properties of a photon trajec
is the maximum depth to which it penetrates the medium
interest. This was first discussed in@7#. A related, but some-
what more involved, calculation is that of the average de
sampled by a photon in a cw measurement@12#. Aspects of
this theory were experimentally confirmed in@13#. The cal-
culations in both@7# and @12# were based on random wal
PRE 581063-651X/98/58~5!/6431~9!/$15.00
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theory but they could as well have been found using dif
sion theory.

The theory developed here deals with experiments
which photons are injected into tissue at a point, some
which are later reemitted at the tissue interface at ano
point. Three basic types of experiments are envisioned h
~1! The cw experiment, in which a continuous beam of ph
tons enters the tissue, and the intensity of reemitted pho
is measured as a function of distance from the entrance p
~2! Time-gated experiments, in which injecting and detect
optodes are kept at a fixed distance apart and the intensi
reemitted photons is measured as a function of time.~3! Fre-
quency modulated experiments, in which a response is m
sured as a function of frequency to periodically injected ph
tons. In each of these the intensity of reemitted light
measured, from which one can derive estimates of the op
parametersms8 and ma . Each of the three types of exper
ments is potentially capable of providing information relat
to optical parameters hidden in bulk tissue, and each has
practical advantages and disadvantages. This paper d
only with the simplest possible case of tissues with homo
neous optical properties. More interesting problems
posed by tissues having different forms of heterogene
particularly in light of possible imaging applications.

The average depth calculated in@12# for the cw experi-
ment is equivalent to the expected value of a random v
able known as the occupancy of a random walk@14#. This, in
turn, is related to the mathematical notion of local time@15#,
which has been used in the context of optical imaging b
number of other investigators@16,17#. The average value of a
random variable can only crudely characterize its propert
This suggests the utility of developing a more detailed c
culation able to more accurately quantitate information
lated to photon trajectories.

In this paper we derive a formally exact theory for th
distribution of the number of visits to a given depth in
semi-infinite medium, rather than just its first moment, p
tentially allowing us to calculate higher moments for su
systems. A similar calculation for transillumination expe
6431 © 1998 The American Physical Society
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6432 PRE 58WEISS, PORRA` , AND MASOLIVER
ments ~i.e., transmission through slabs! is described else
where@18#. Here we consider only the case of cw measu
ments made on a semi-infinite medium, which is also
model treated in@7#. The extension that allows us to de
with time-gated experiments will be left for future discu
sion, but is essentially based on the mathematical ana
developed in the present paper.

In contrast to the analysis in@12#, which assumed tha
steps were made at equally spaced intervals in time, here
make use of the continuous-time random walk mo
~CTRW! @19,14#, which has been shown to simplify a num
ber of calculations required to elucidate the theory of pho
migration @20#. In the CTRW model the number of step
taken at any time is random, as will be seen from the deta
analysis to follow. The present analysis will be restricted
the case of the cw experiment as in@12# but can also be
extended to analyze the other experiments mentioned ea
Optical techniques as a whole are widely used to mea
meteorological parameters, and similar problems arise
such applications@21#.

II. DESCRIPTION OF THE MODEL

A schematic picture of the model to be analyzed is sho
in Fig. 1. Photons are injected into tissue by a laser be
idealized as being a line. Since typical penetration depth
tissue are of the order of millimeters, the medium be
probed is modeled as being a semi-infinite bulk and the s
or interface, is assumed to be planar. In the course of t
migration photons are randomly scattered by inhomoge
ities within the medium, exemplified by cytoplasmic o
ganelles and cell surfaces. Some of the photons may be
sorbed internally, the remaining ones reaching the interf
where they appear as emitted light. The measurable l
intensity considered as a function of distance along the
face can be shown to contain information about optical pr
erties of the underlying tissue which is potentially useful
diagnostic purposes@7#.

The analysis that follows is based on the following a
sumptions.

~1! The internal structure of the medium is replaced b
simple cubic lattice. A site on this lattice will be denoted
the vectorr5(x,y,z), where the components of the vect
are integers. While these coordinates are convenient for

FIG. 1. Schematic diagram of the lattice random model o
semi-infinite medium with laser injection at a point. The parame
z measures the distance in integer units into the medium, andr is
the transverse distance along the surface.
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mathematical analysis, they can later be converted to dim
sional units by r̄5r&/ms8 where ms8 is the transport-
corrected scattering coefficient. Positive values ofz corre-
spond to points interior to the medium, the surface of
medium beingz50. The coordinates transverse to thez axis
will be labelledx andy. The ranges of the three coordinat
are 0<z<` and2`<x, y<`.

~2! The isotropic random walk that is a model for a ph
ton trajectory allows for motion to nearest-neighboring si
only, i.e., on a given step the random walker moves fr
~x,y,z! to one of the sites (x61,y61,z61), the particular
site being chosen with probability 1/6. This picture cann
account for preferential forward scattering, which is impo
tant at very short times, but the isotropic model has be
shown to be adequate for many experimental applicati
@8#. Corrections to account for anisotropic scattering can
accounted for either rigorously using a full transport theo
or possibly by using a more phenomenological theory ba
on the telegrapher’s equation rather than the diffusion eq
tion. This was originally suggested by Ishimaru@22#, and
investigated more recently and in greater detail by Dur
and Rudnick@23#.

~3! The time between successive steps is a random v
able. The probability density that describes this time, des
nated byc(t), is a negative exponential:

c~ t !5ke2kt, ~2.1!

where the rate constantk is related to the~assumed! constant
speed of light in the medium,c, andms8 by k5cms8 . In the
ensuing analysis we will make use of the dimensionless t
t5kt, which is equivalent to settingk51.

~4! Absorption in the medium is governed by Beer’s la
That is to say, the probability that a random walker surviv
inside the lattice for a dimensionless timet without being
absorbed is equal to exp(2nt) where n is expressible in
terms of the experimentally measurable absorption coe
cient ma as the ration5ma /ms8 .

~5! The planar interfacez50 is comprised only of absorb
ing points. A photon reaching the surface from within t
tissue is immediately removed from the system, and at
arrival instant, is detectable as reemitted light. Because
this property the entry point, designated byr0 , is at ~0,0,1!.
This is the equivalent to the assumption customarily mad
diffusion analyses, that considers the initial positions of ph
tons to be approximately a single scattering length below
surface in the medium@24#.

We will be interested in finding the distribution functio
for the total number of times the random walker has visi
level z5Z conditional on its reaching the surface at a po
(x,y,0)5(r,0) at timet wherer5(x,y). Our aim is to cal-
culate the probability that the depthZ has been visited ex
actly k times conditional on the random walker reaching t
surface at~r,0! at the ~dimensionless! time t. This condi-
tional probability will be denoted byvk(Zur,t). The joint
probability for visitingz5Z exactlyk timesandreaching the
surface at~r,0! at timet will be denoted byvk(Z,r,t). The
conditional probabilityvk(Zur,t) can be converted to infor
mation about how much time has been spent by the pho
trajectory at a given depth below the surface.
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III. ANALYSIS

A. Representation of the propagators

As background to the forthcoming calculations we need
introduce several propagators, where by a propagator
mean the probability that the random walker is atr at timet
starting from a specified point. The propagator for a near
neighbor random walk on a translationally invariant, i.e., u
bounded, simple cubic lattice will be denoted byg0(r ,t).
This is the probability that a random walker initially at0 is at
r at timet. Taking account the possibility of internal absor
tion this propagator can be shown to have the form@20#

g0~r ,t!5e2~11n!tI xS t

3D I yS t

3D I zS t

3D . ~3.1!

By using the asymptotic expansion ofI x(t/3) for t→` it
can be shown thatg0(r ,t) can be approximated by th
Gaussian function

g0~r ,t!'S 3

2pt D 3/2

expF2
3r 2

2t
2nt G , ~3.2!

where r 25x21y21z2. This equation will be valid for dis-
tances such thatr is of the order oft1/2 or less. By keeping
higher-order terms in expansions of the Bessel functions
can establish that the Gaussian form in this last equa
breaks down at times for whichr 5O(t). The breakdown of
the Gaussian approximation is to be expected because
photons whose distance increases linearly with time are
listic photons. Since the Gaussian structure of Eq.~3.2! is a
consequence of the central-limit theorem we expect this
of a breakdown to occur in the tails of the curve. Because
the lattice structure, Eq.~3.1! is only symmetric with respec
to interchanges inx and y or to changes in sign of thes
variables. The limiting behavior in Eq.~3.2! shows that ra-
dial symmetry only appears at times long enough so that
number of ballistic photons is negligible. Numerical calcu
tions that suggest the validity of the assumption of rad
symmetry are to be found in@20#.

When the absorbing boundary atz50 and the initial po-
sition of the random walkerr05(0,0,1) are taken into ac
count Eq.~3.1! is replaced by

g1~r ,tur0!5e2~11n!tI xS t

3D I yS t

3D F I z21S t

3D2I z11S t

3D G
56

z

t
e2~11n!tI xS t

3D I yS t

3D I zS t

3D . ~3.3!

Since the aim of our analysis is to derive information rela
to visits to the levelz5Z, we will also need an expressio
for the propagator when there are absorbing boundaries
at z50 andz5Z. This has been shown to be equal to

g2~r ,tur0!5
2

Z
e2~11n!tI xS t

3D I yS t

3D (
l 51

Z21

e~t/3!cos~p l /Z!

3sinS p lz0

Z D sinS p lz

Z D ~3.4!
o
e

t-
-

e
n

the
l-

rt
f

e
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l
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th

@20#. The propagators in Eqs.~3.1!, ~3.3!, and~3.4! are exact
for the CTRW model, in contrast with the Gaussian appro
mation used in much of the earlier work described in@8#.
The subscripts that are used to distinguish between
propagators in Eqs.~3.1!, ~3.3!, and~3.4! refer to the number
of boundaries. Because the productI x(t/3)I y(t/3) will ap-
pear so frequently in later calculations we henceforth repl
the product by a function to be denoted byI (r;t) defined by

I S r;
t

3D5I xS t

3D I yS t

3D . ~3.5!

This function can be shown to be approximately Gaussia
long times by using the same argument that leads to
~3.2!.

B. Probability of never reaching the depthZ

The simplest problem asks for the probability that t
maximum depth is less thanZ conditional on reaching~r,0!
at timet. We will, in fact, calculate the probability that th
photon never reaches the depthZ, conditional on reaching
~r,0! at time t. This will be denoted byv0(Zur,t). This
probability can be found from the joint probability
probability density that the random walker does not visiz
5Z and is later absorbed at~r,0! during the time interval
(t,t1dt). It is assumed in all the following calculation
that the random walker’s initial position is~0,1!, which al-
lows us to drop the initial position as an argument. The
quired relation between the conditional and joint probabili
probability density is

v0~Zur,t!5
v0~Z,r,t!

v0~`,r,t!
~3.6!

since v0(`,r,t)dt is just the probability that the random
walker is absorbed at~r,0! betweent andt1dt in a semi-
infinite medium. To exclude the possibility that depthZ is
never reached by photons that are later detected, we pu
absorbing boundary at that depth and useg1(r ,t) @Eq. ~3.3!#
as the propagator to calculate the denominator andg2(r ,t;Z)
@Eq. ~3.4!# to calculate the numerator of Eq.~3.6!.

The probability densityv0(`,r,t) is just

v0~`,r,t!5e2~11n!tE
0

t

I S r;
j

3D I 1S j

3D dj

j
, ~3.7!

which follows by reasoning that in order for the rando
walker to reach~r,0! during (t,t1dt) it must have reached
~r,1! at time j<t, paused for a timet2j, then made a
single step to~r,0! with a probability equal to 1/6. During
that time it must not have been absorbed internally. The
merator in Eq.~3.6! takes a slightly more complicated form
because the propagatorg2(r ,t) replaces the function
I 1(j/3)/j in the integral in Eq.~3.7!. One finds that

v0~Z,r,t!5
1

6 E
0

t

c~t2j!g2~r ,j;Z!dj ~3.8!

which, together with Eq.~3.7!, provides an explicit expres
sion for the conditional probabilityv0(Zur,t) in the time
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domain. The integral can be evaluated and leads to an
pression forv0(Zur,t) that has the form

v0~Zur,t!5
1

3Z*0
t I ~r;j/3!I 1~j/3!dj/j

3 (
j 51

Z21

sin2S p j

Z D E
0

t

I S r;
j

3DexpF j

3
cosS p j

Z D Gdj.

~3.9!

Notice that this is independent of the absorption parameten,
which follows from our conditioning the random walk to b
absorbed at a point on the surface rather than internally.
analysis of cw experiments requires finding notv0(Z,r,t)
but rather the photon intensity integrated over all tim
*0

`v0(Z,r,t)dt.
While the evaluation of Eq.~3.9! requires that the term in

the denominator be integrated numerically, it is possible
derive a relatively simple expression for the total intensity
light emerging from the surface at timet that never reached
the depthZ. This is

v0~Z,t!5(
r

v0~Zur,t!. ~3.10!

This can be simplified by making use of the identity

(
x52`

`

I x~t/3!5exp~t/3!, ~3.11!

which, together with Eqs.~3.9! and ~3.10!, yields

v0~Z,t!5
e2~11n!t

Z (
j 51

Z21

sin2S p j

Z D e$21cos~p j /Z!%~t/3!

21cos~p j /Z!
.

~3.12!

The associated conditional probability that the rand
walker has not reached the depthZ conditional on reaching
the surface at timet is

v0~Zut!5
v0~Z,t!

e2~11n!t*0
te2j/3I 1~j/3!dj/j

. ~3.13!

An interesting consequence of the representation in Eq.~3.9!
is that after a short timev0(Zur,t) becomes almost indepen
dent of r so that for all practical purposesv0(Zur,t)
'v0(Zut). To see why this should be so we observe that
fixed r and larget one can approximate the productI (r;t/3)
by

I S r;
t

3D'
3e2t/3

2pt
, ~3.14!

which is seen to be independent ofr. Since a Bessel function
of the form I x(j/3) increases nearly exponentially inj at
large enough values of this parameter we can, for exam
write the denominator of Eq.~3.9! as

E
0

t

I S r;
j

3D I 1S j

3D dj

j
'S 3

2p D 3/2E
l

t ej

j3/2 dj'S 3

2p D 3/2 et

t3/2,

~3.15!
x-

n

,

o
f

r

le,

wherel can be any fixed parameter less thant. Since both
the numerator and denominator of Eq.~3.9! contain similar
integrals we conclude thatv0(Zur,t) is almost independen
of r. Detailed numerical calculations indicate that forZ.3
the error due to the assumption of isotropy is generally l
than 5%. Figure 2 shows curves ofv0(Zut) plotted as a
function of t for Z55 andZ57, which reinforces the obvi-
ous point that as the observation timet increases, the prob
ability that a random walker has not reached a given le
before reaching the surface must decrease.

The probability of reaching Z k times

k51. In the remainder of this section we derive an expr
sion for a joint Fourier-Laplace transform ofvk(Z,r,t),
where vk(Z,r,t)dt is the probability that the depthZ has
been reached by the random walker exactlyk times before it
is absorbed at~r,0! during the time interval (t,t1dt). We
will show that the joint Fourier-Laplace transform o
vk(Z,r,t) can be related to that of the expected number
visits to levelZ. It is instructive, although not strictly neces
sary, to first analyze the case ofk51 because one form o
the expression for the joint Fourier-Laplace transform
vk(Z,r,t) for k.1 is proportional to the joint transform o
v1(Z,r,t).

An expression forv1(Z,r,t) is obtained by accounting
for a sequence of five events, which we write symbolically

~0,1!→~r8,Z21!→~r8,Z!→~r8,Z21!→~r,1!→~r,0!,

~3.16!

wherer8 can be any point in the~x,y! plane. It should be
understood that once the photon reachesz5Z it never pen-
etrates to any greater depth nor does it move around in
plane z5Z. The second, third, and last transition in E
~3.16! each occur with a probability of 1/6, the total tim
consumed in making these transitions being described b
probability densityc3(t), which is calculated in terms of the
probability density for the time of a single step,c~t!. The
relationship is most succinctly written in terms of th
Laplace transform ofc(t), which will be denoted byĉ(s)
51/(11s). The required relation isĉ3(s)5ĉ3(s) so that

FIG. 2. Curves of the probability that levelZ is never visited
conditional on reaching some point of the trapping surface a
dimensionless timet. The curves are plotted as a function of th
trapping timet.
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the transitions (r8,Z21)→(r8,Z)→(r8,Z21) and (r,1)
→(r,0) are accounted for in the Laplace transform dom
by multiplying by a termĉ3(s)/216.

We must next account for the transitions between site
z51 andz5Z21. The propagators that do so are

~0,1!→~r8,Z21!:g2~r8,Z21,tu0,1!

~3.17!
~r8,Z21!→~r,1!:g2~r,1,tur8,Z21!.

These considerations yield the following expression
v1(Z,r,t):

v1~Z,r,t!5
1

216 (
r8

E
0

`

dt1E
0

`

dt2E
0

`

dt3c3~t1!

3g2~r8,Z21,t2u0,1!g2~r,1,t3ur8,Z21!

3d~t11t21t32t!. ~3.18!

Observe that the lattice is translationally invariant in a
plane perpendicular toz and that the random walk is isotro
pic in any plane parallel to the surface. This allows us
invoke the transformation

g2~r,1,t2ur8,Z21!5g2~r2r8,Z21,t2u0,1!,
~3.19!

which can be used to transform Eq.~3.18! into a spatial
convolution integral. The delta function constraint is equiv
lent to a convolution in thet domain.

In order to further simplify Eq.~3.18! we introduce the
joint Fourier-Laplace transform ofv1(Z,r,t) defined by

v̂1~Z,v,s!5(
r

ei v•rE
0

`

e2stv1~Z,r,t!dt. ~3.20!

By the transform ĝ2(v,Z21,s) we meanFrLt@g2(r,Z
21,tu0,1)# whereFr$•% denotes the two-dimensional Fou
rier transform with the transform parameter vectorv and
Lt$•% is a Laplace transform with a transform parametes.
Notice that our use of a Beer’s law approximation is read
incorporated into the Laplace transform formalism by repl
ing s on the right-hand side bys1n. This means that calcu
lations can be carried for the case of no internal absorp
without loss of generality and the factore2nt inserted at the
conclusion of any calculation.

Having introduced a transform formalism we find for th
transform of Eq.~3.18!

v̂1~Z,v,s!5
1

216
ĉ3~s1n!@ ĝ2~v,Z21, s1n!#2.

~3.21!

This transform can be evaluated exactly since it is possibl
find an exact expression forĝ2(v,Z21, s). The calculation
of the two-dimensional Fourier transform makes use of
identity

(
x52`

`

eivxI x~j!5ej cosv ~3.22!
n

at

r

o

-

-

n

to

e

and the subsequent Laplace transform is readily found. F
lowing this set of substitutions we find that

ĝ2~v,Z21, s1n!5
2

Z (
j 51

Z21

~21! j 11

3
sin2~p j /Z!

s111n2 1
3 @c1cos~p j /Z!#

~3.23!

in which c5cosv11cosv2. If this relation is substituted
into Eq.~3.21! the resulting set of transforms can be invert
exactly, leading to an expression forv1(Z,r,t) as

v1~Z,r,t!5
e2~11n!t

36Z2 E
0

t

~t2j!2I S r;
j

3DN~j!dj,

~3.24!

whereN(j) is

N~j!5 (
j , j 851

Z21

~21! j 1 j 8
e~j/3!cos~p j /Z!2e~j/3!cos~p j 8/Z!

cos~p j /Z!2cos~p j 8/Z!

3sin2S p j

Z D sin2S p j 8

Z D . ~3.25!

The conditional probabilityv1(Zur,t) is found by dividing
Eq. ~3.24! by Eq. ~3.7!. Because the factorr appears only
because of the factorsI (r;j/3) in the numerator and denom
nator of the resulting expression we might expect that
dependence onr is a relatively weak one. This turns out t
be correct provided thatt>20. To test this conjecture we
compared the casesr5(3,4) with ~5,0! finding that att
510 the relative discrepancy amounted to 6.2%, att520 it
amounted to 1.5%, and att530 it amounted to 0.4%. A
similar comparison for~6,8! and ~10,0! showed thatt510
the relative discrepancy was 17.2%, att520 it amounted to
2.3% and att530 it amounted to 0.3%. This suggests th
for t>30 it is reasonable to approximatev1(Zur,t) by
v1(Zur,t)'v1(Zut) with an insignificant error except a
very large values of the distancer.

k.1. To treat the case in whichz5Z is visited exactly
k(.1) times it will be necessary to work in terms of tran
forms. The details of doing so are presented in the sub
quent analysis. In the case considered here the cycle in
~3.16! is replaced by

~0,1!→~r1 ,Z!→~r2 ,Z!→¯→~rk ,Z!→~rk ,Z21!

→~r,1!→~r,0! ~3.26!

where therj are arbitrary points in the~x,y! plane. Notice
that any transition of the form (rl ,Z)→(rl 11 ,Z) allows the
random walk to either travel at levels above or belowZ ex-
cept for the first and last visits to that plane. We must the
fore account for components of the cycle of the for
(ri ,Z)→(ri 11 ,Z). Since sites in any~x,y! plane are trans-
lationally invariant we can, without loss of generalit
choose ri50 and, for convenience of notation setri 11
5r8. To keep track of the exact number of visits to levelZ
it is necessary to introduce a set of first passage t
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probabilities $Ft
( j )(r8,Zu0,Z), j 51,2,...,k21% where

Ft
( j )(r8,Zu0,Z)dt is the probability that, starting from

(0, Z), a random walker reachesz5Z for the j th time at a
point r8 in the x,y plane at some time during the interv
(t,t1dt). The j th passage probabilities can be found
recursion from

Ft
~ j 11!~r8,Zu0,Z!5(

r9
E

0

t

Ft8
~ j !

~r9,Zu0,Z!

3Ft2t8
~1!

~r8,Zur9,Z!dt8

5(
r9

E
0

t

Ft8
~ j !

~r9,Zu0,Z!

3Ft2t8
~1!

~r82r9,Zu0,Z!dt8,

~3.27!

where we have invoked the property of translational inva
ance in the plane to pass from the first line of this equation
the second. Since the recursion relation is a convolution
both space and time, it assumes a simpler form in term
joint Fourier-Laplace transforms defined analogously to
~3.20!. Let F̂s

( j )(v,Zu0,Z) denote the transform o
Ft

( j )(r8,Zu0,Z). The recursion step in Eq.~3.27! is then
equivalent to

F̂s
~ j 11!~v,Zu0, Z!5F̂s

~ j !~v,Zu0, Z!F̂s
~1!~v,Zu0, Z!

~3.28!

or

F̂s
~ j !~v,Zu0, Z!5@ F̂s

~1!~v,Zu0, Z!# j , ~3.29!

which is required for calculating the transform ofvk(Z,r,t).
The cycle scheme in Eq.~3.26! can be decomposed into

sum of three contributions

C1 : ~0,1!→~r1 ,Z21!→~r1 ,Z!

C2 : ~r2 ,Z!→¯→~rk ,Z!,

C3 : ~rk ,Z21!→~r,1!→~r,0!,

allowing us to abbreviate the sequence asC1→C2→C3 . In
this symbolic schemeC1 takes the photon from its initia
position to the planez5Z for the first time. The propagato
corresponding toC2 is

Ft
~k21!~rk ,Zur2 ,Z!5Ft

~k21!~rk2r2 ,Zu0,Z! ~3.30!

so that, according to Eq.~3.29!, the equivalent in the trans
form domain is just@ F̂s1n

(1) (v,Zu0, Z)#k21. The Fourier-
Laplace transform of the propagator forC1 is just ĝ2(v,Z
21,s1nu0,1)ĉ(s1n)/6 and the one corresponding toC3 is
ĝ2(v,Z21,s1nu0,1)c2(s1n)/36. The product of these two
factors is equal tov̂1(Z,v,s) as can be seen from Eq.~3.21!
so thatv̂1(Z,v,s) can be expressed as

v̂k~Z,v,s1n!5@ F̂s1n
~1! ~v,Zu0,Z!#k21v̂1~Z,v,s1n!.

~3.31!
i-
o
in
of
.

It is awkward to work with the functionv̂1 but this expres-
sion can be reformulated in terms of a more convenient
lation in terms of the joint transform of the expected numb
of visits to the levelZ. This quantity will be designated
Ê(Z,v,s) and can be written as

Ê~Z,v,s1n!5 (
k50

`

kv̂k~Z,v,s1n!

5
v̂1~Z,v,s1n!

@12F̂s1n
~1! ~v,Zu0,Z!#2

~3.32!

so that Eq.~3.31! can be rewritten as

v̂k~Z,v,s1n!5@ F̂s1n
~1! ~v,Zu0,Z!#k21@12F̂s1n

~1! ~v,Zu0,Z!#2

3Ê~Z,v,s1n!. ~3.33!

Thus, establishing the dependence ofv̂k(Z,v,s) on k for
generalk requires being able to find expressions for, a
suitable approximations to, the transformsF̂s1n

(1) (v,Zu0,Z)
and Ê(Z,v,s1n). A further consequence of Eq.~3.33! is
that we can express the joint transform of the second m
ment,S(Z,v,s1n), in terms ofÊ(Z,v,s1n). By summing
the geometric series that comes from Eq.~3.32! we find

S~Z,v,s1n!5 (
k50

`

k2v̂k~Z,v,s1n!

5
11F̂s1n

~1! ~v,Zu0,Z!

12F̂s1n
~1! ~v,Zu0,Z!

Ê~Z,v,s1n!.

~3.34!

A derivation in detail of the representation forÊ(Z,v,s
1n) is given in @25#. Expressions for the transforms o
higher-order moments can also be expressed just in term
the functions that appear in Eq.~3.34! because of the geo
metric form of v̂k(Z,v,s1n) in Eq. ~3.31!.

C. An evaluation of F̂ s
„1…

„v,Zz0,Z…

The Fourier-Laplace transformF̂s
(1)(v,Zu0,Z) can be cal-

culated in terms of the transform of the propaga
g1(r,Z,tu0,Z) by invoking the relation

g1~r,Z,tu0,Z!5dr,0e
2t1(

r8
E

0

t

Fj
~1!~r8,Zu0,Z!

3g1~r,Z,t2jur8,Z!dj

5dr,0e
2t1(

r8
E

0

t

Fj
~1!~r8,Zu0,Z!

3g1~r2r8,Z,t2ju0,Z!dj, ~3.35!

where we have made use of the translational invariance
holds in any~x,y! plane. On taking the joint transform of th
identity in Eq.~3.35! and solving forF̂s

(1)(v,Zu0,Z) we find

F̂s
~1!~v,Zu0,Z!512

1

~s11!ĝ1~v,Z,su0,Z!
, ~3.36!
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which is the final building block required for the evaluatio
of Eq. ~3.31!. An appeal to the explicit formula fo
g1(r,Z,tu0,Z) in Eq. ~3.3! as well as the identity in Eq
~3.22! yields an expression forĝ1(v,Z,su0,Z), which is

ĝ1~v,Z,s1nu0,Z!5
1

Aas1n
2 2 1

9

3F12S 1

3as1n1A9as1n
2 21

D 2ZG
~3.37!

in which the parameteras1n is

as1n511s1n2
c

3
, ~3.38!

where, as before,c5cosv11cosv2. With these exact re-
sults in hand, we can return to the problem of evaluat
v̂k(Z,v,s1n) for the cw experiment. If we define the func
tions

a512~3an2A9an
221!2Z, b5A9an

221 ~3.39!

then Eq.~3.33! is equivalent to

v̂k~Z,v,n!5
6b2~12a!@3~11n!a2b#k21

~11n!@3~11n!a#k11 , ~3.40!

which provides a basis for deriving both exact results a
approximations to these results.

In the final step numerical results can be found by num
cally integrating the two-dimensional integral

vk~Z,r,n!5
1

~2p!2 EpE
2p

v̂k~Z,v,n!e2 i v•rd2r.

~3.41!

These were evaluated by using an FFT routine with a grid
64364 points. In the following subsection we present so
of the results obtained by a numerically integrating the l
equation, and finally comparing them to approximations
rived from our exact results.

D. Approximations

All of the analysis to this point has been aimed at deriv
exact results. All of these have been given in the joi
transform domain. It is possible, in principle, to derive r
sults in the space-time domain by numerically inverting E
~3.41! with respect to bothv and s. However, enough is
known about the order of magnitude of parameters in
context of biological media to introduce approximations
lowing one to derive some qualitative implications from t
analytical results.

To begin with we derive a usable approximation for t
k-dependent term@ F̂s

(1)(v,Zu0,Z)#k21 that appears in the ex
act expression for the joint transform in Eq.~3.31!. This will
be done by restricting the values ofZ andr to be large and
by considering the cw experiment, which allows us to ses
50 in that equation thereby reducing the problem to tha
g

d

i-

f
e
t
-

-
-
.

e
-

f

inverting just a two-dimensional Fourier transform.
The first restriction is thatZ be large enough so that th

results are practically unaffected by the presence of a bou
ary. A lattice spacing for biological media is approximate
equal to 1 mm. In practical applications involving biologic
media we can therefore safely assume thatZ>5, restricting
the penetrations to 5 mm or more since otherwise bound
effects can be quite significant. This restriction justifies o
ignoring the second term in brackets in Eq.~3.37! since it is
dominated by the factor 1 that appears in the brackets.

As a second approximations we restrict ourselves to
consideration of distances to the detector, which satisfies
condition r25r•r@1. This restriction is needed to satisf
the physically motivated requirement that details of latt
structure should not appear in the final result. This restrict
in the space domain is equivalent to

v25v1
21v2

2!1 ~3.42!

in the Fourier domain, allowing us to rewrite Eq.~3.38! as

an'
1

3
1n1

v2

6
~3.43!

to lowest order inv. The restriction to largeZ allows us to
approximate to the parametersa andb in Eq. ~3.39! as fol-
lows:

12a5~3an2A9an
221!2Z'e22ZAv216n,

b

3~11n!
'

Av216n

3~11n!
'12expF2

Av216n

3~11n!
G ,

~3.44!

where, for many biological tissues of interest the dimensi
less absorption parametern is quite small; a value of around
0.01 is a typical order of magnitude@26#.

Taking all of these approximations into account we c
approximate tov̂k(Z,v,n) in terms of a sum of three terms

v̂k~Z,v,n!'
6

11n
Û2Z1~k21!/@3~11n!#@122Û1/@3~11n!#

1Û2/@3~11n!## ~3.45!

in which

Û5Û~Z,v,n!5e22ZAv216n. ~3.46!

In order to invert Eq.~3.45! it is necessary to invert the
Fourier transform of terms of the formÛm.

Because our assumptions produce what is essential
continuum limit, the Fourier series may be replaced by
Fourier transform. Further, since the transforms depend o
on the magnitudev and not the full vectorv the function
vk(Z,r,n) will be a function of the magnituder. This allows
us to write the inverse transform ofÛm(v) as

Um~r!'
1

2p E
0

`

vJ0~vr!Ûm~v!dv, ~3.47!

which gives
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Um~r!'
m

2p F 1

~m21r2!3/21
A6n

m21r2G
3exp@2A6n~m21r2!#. ~3.48!

Equation~3.45! indicates thatvk(Z,r,n) can be written in
terms of these functions as

vk~Z,r,n!'
6

~11n!
@U2Z1~k21!/@3~11n!#~r!

22U2Z1k/$3~11n!%~r!1U2Z1~k11!/@3~11n!#~r!#

~3.49!

from which our numerical results will be calculated. Noti
that this approximation depends only on the magnitudr
rather than on the full vectorr, which indicates that we are
in the large-r regime. This has been shown to be a reas
ably good approximation in@20#.

In Fig. 3 we compare values of log10@vk(5ur)# to those
obtained from Eq.~3.49! by plotting them as a function ofk
for different values ofr with m50.02. The figure suggest
that the accuracy of the approximation improves with
creasing values ofr as has already been anticipated. A
though there is a systematic deviation between the appr
mation and numerically calculated results atr53 the error
in using Eq.~3.49! is still less than 15% at the lowest valu
of k and less than that at the intermediate values in the ra
shown. In Fig. 4 we compare numerical values of the
pected value of the number of visits to depthZ as found
numerically, against the formula

^kur&5
6U2Z~r!

~11n!G~r!
~3.50!

given in @25#. The agreement between results produced
this approximation and the numerical results is seen from
data shown in the figure to be quite good at lower values
r at all of the values ofZ. The accuracy of the approximatio
is seen to decrease asr is increased. Again, the accurac

FIG. 3. Plot of numerically generated values of log10@vk(5ur)#
~circles! as a function ofk, compared to the approximation in Eq
~3.48! ~lines!. The functionvk(5ur) is the probability thatz55 has
been visitedk times by a photon later absorbed at a distancer from
the point at which photons enter the tissue. In generating the cu
the dimensionless Beer’s law parameter was taken to ben50.02.
-

-

i-

ge
-

y
e
f

improves as the target depth is increased. Figure 5 sh
plots of the standard deviation of the number of visits
level Z as a function of the distancer. Further exploration of
the data seems to suggest that the coefficient of variat
s(kur)/^kur& decreases asr increases. This is to be expecte
on the consideration that as the radial distance increases
photon trajectory tends to spend more time at points clos
the surface thereby minimizing the possibility of internal a
sorption.

E. Some concluding remarks

In the present paper we have produced results on the
tistical properties of the depth probed by a photon in a
measurement. The results are given in the Fourier-Lap
domain, and potentially allows us to examine these statist
properties as a function of both space and time. We h
only discussed results for the cw experiments, which can
obtained by simply setting the Laplace transform parame
equal to zero. However, the results can equally well be u

es

FIG. 4. Numerically generated values of the average numbe
visits to depthZ in a cw experiment plotted as a function of th
distance from the input point at which the photon emerges at
trapping surface. The circles were obtained numerically while
dashed lines indicate approximations obtained in@12# and@25#. The
dimensionless Beer’s law parameter is equal to 0.02.

FIG. 5. Standard deviation of the number of visits to depthZ
generated numerically.
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to investigate analogous properties for time-gated exp
ments by a further inversion, most likely numerical, of t
Laplace transform. We hope to present this extension
some later date. It is also easy to analyze frequency-dom
spectroscopy@27,28# using the present formalism by repla
ing the parameters by ilt, wherel is the dimensionless
frequency.

While the model that forms the basis of this work
somewhat specialized we would expect it to furnish relia
results except possibly at the very earliest times. The us
diffusion-based models or random walk models is suspec
o
l-

n
.

m

p

iol
i-

at
in

e
of
at

extremely short times due to the neglect of anisotropic s
tering effects.
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