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Weakly supervised learning is aimed to learn predictive models from partially supervised 
data, an easy-to-collect alternative to the costly standard full supervision. During the 
last decade, the research community has striven to show that learning reliable models 
in specific weakly supervised problems is possible. We present an empirical study that 
analyzes the value of weak information of supervision throughout its entire spectrum, from 
none to full supervision. Its contribution is assessed under the realistic assumption that a 
small subset of fully supervised data is available. Particularized in the problem of learning 
with candidate sets, we adapt Cozman and Cohen [1] key study to learning from weakly 
supervised data. Standard learning techniques are used to infer generative models from 
this type of supervision with both synthetic and real data. Empirical results suggest that 
weakly labeled data is helpful in realistic scenarios, where fully labeled data is scarce, and 
its contribution is directly related to both the amount of information of supervision and 
how meaningful this information is.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In supervised classification, one of the essential issues is the requirement that training data is fully labeled. Labeling 
training data requires expert knowledge, and this is usually costly. In the last few decades, different alternative learning 
frameworks which relax this requirement have been proposed. Semi-supervised learning [2], for example, aims to learn 
with only a subset of the training examples labeled. Positive-unlabeled learning [3] aims to learn models with only a subset 
of positive-labeled samples. In these two frameworks, training examples are labeled or unlabeled. However, there exist many 
novel frameworks where data instances provide a (small) portion of information of supervision, that is, the labeling of the 
training data is only partially missing. All these frameworks form the subarea of weak supervision [4,5].

Most works in the literature focus on a single (realization of) learning problem with weak supervision. In this work, we 
propose to observe the whole class of weakly supervised problems. From this perspective, it is easy to see that different 
realizations of the weakly supervised learning framework, even using the same supervision schema (i.e., how the informa-
tion of supervision is provided), might involve very different amounts of information of supervision [4,5]. For example, it 
is not the same if 4 or 10 workers provide annotations in the popular crowdsourced labeling problem [6]. Thus, weakly 
supervised learning is considered to cover the whole spectrum from fully-labeled to unsupervised learning; from complete 
to none class information, including intermediate scenarios which may carry misleading information.
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In this paper, we explore the whole spectrum of labeling scenarios throughout a comprehensive empirical study on syn-
thetic and real data. We aim to assess the contribution of the weakly labeled examples to the learning process of generative 
models, based on the key study of Cozman and Cohen [1] on semi-supervised learning. Following their setting, we con-
sider Bayesian networks as generative models, which allows us to create probabilistic models of different complexity to test 
the assumptions of correct and incorrect model. We use standard learning techniques to infer them from data: maximum 
likelihood estimation and an expectation-maximization (EM) method to deal with the missing label information. We focus 
on the problem of learning from candidate labels [7], of which both fully supervised and unsupervised are particular cases. 
This framework is selected because it is flexible enough to cover the whole spectrum of weakly supervised scenarios, and 
it remains simple to analyze. As a reasonable weakly supervised learning scenario, we assume that a subset of fully labeled 
examples is available and, thus, our analysis is midway between purely weakly supervised and semi-supervised learning. 
We show that weakly labeled data is helpful mainly when fully labeled data is scarce, although it heavily depends on the 
meaningfulness of the provided weak supervision: (i) meaningful class information contributes more or less depending on 
the amount of supervision, but it usually does not harm; (ii) class information which is not meaningful only contributes in 
very limited scenarios, and it could harm the performance of a model learned only with the fully labeled subset. The gen-
eral character of the results is constrained to the use of maximum likelihood estimation to learn probabilistic models with a 
standard EM algorithm. Considering that practitioners usually resort to weakly labeled data when there are not enough fully 
labeled examples, the scenario where weak supervision helps might be considered realistic, although the meaningfulness of 
the information of supervision might be unmanageable.

The rest of the paper is organized as follows. Firstly, we summarize the relevant related work. In Section 3, we present 
our framework and, consecutively, the type of models and learning techniques used. From Section 5 on, we present the 
empirical study, its results, and discussion. The manuscript finishes with conclusions and several ideas for future work.

2. Related work

Weakly supervised learning (WSL) is a supervised machine learning paradigm where samples provide only partial in-
formation about their true class. This information is not conclusive but might help to elucidate the true class label of the 
samples. Weak supervision may appear in many different forms, which have motivated diverse approaches to learning from 
the specific type of supervision. The information of supervision may involve a certain degree of uncertainty and/or noise, 
and, overall, it may range from almost complete information to no information at all. In addition, this weak information can 
be assigned to individual instances or to sets of instances. In the latter case, instances in the same set share a single piece 
of information of supervision (e.g., [8,9]). In the former, each instance receives its own piece of information: e.g., candidate 
labels [7], or semi-supervised learning (SSL) [2], which can be seen as a particularly extreme case of WSL where the class 
information of the samples is complete or empty. Different surveys which cover more or less comprehensively the subfield 
of WSL problems have been presented [4,5]. However, it is arguably a recent topic and general, formal theoretical analyses 
are still scarce. Available theoretical studies focus on specific problems.

There exists extensive theoretical literature on the relative value of unlabeled data for SSL. When assuming the correct 
model, works such as [10] support that unlabeled data is helpful to improve the performance of the learned model. [11]
and [12] estimated the minimum amount of labeled data required in binary SSL for a specific family of mixture models, 
and [13] extended it to multiclass classification. Cohen and Cozman [1], in a study about the risks of using unlabeled 
data with generative models, conclude that unlabeled data helps mainly in two situations: (i) when the learning model is 
correct, and (ii) when the model is incorrect and the amount of labeled data is limited relative to the number of parameters 
–complexity– of the model to learn. In the former scenario, the unlabeled data reduces the variance of the model and 
maintains its bias. In the latter, the decrease of the variance term compensates for the increase of the bias. Several decisions 
limit the extent of the study, such as the use of simply binary classes. They point out that, in other situations, unlabeled 
data might degrade the performance of the learned classifier. In a finite-sample theoretical work, Singh et al. [14] show 
that, in certain situations, SSL outperforms supervised learning in terms of error bounds. They emphasize the importance 
of studying the benefits of SSL using finite sample regimes, as these are the scenarios where SSL might appear superior. 
Whereas SSL studies usually assume that labeled and unlabeled data comes from the same distribution and labels are 
missing completely at random (labels are missing independently of the problem variables), Chawla and Karakoulas [15]
carried out an empirical study that goes beyond and analyses SSL under other missing data mechanisms: Missing at random 
(labels are missing according to some function on the descriptive variables of the problem) and missing not at random 
(when the actual value of the label can determine that it is not given, i.e., sample-selection bias). van Engelen and Hoss [16]
provide an up-to-date revision of the SSL state-of-the-art for the interested reader.

The problem of learning from candidate labels receives diverse names in the literature: partial or multiple labels [7,
17], candidate labeling [18] or superset learning [19,20]. This problem, which we selected for this study as it allows us 
to cover the whole spectrum from supervised to unsupervised data, has also been theoretically studied. Cour et al. [7]
provide a theoretical framework for effective learning using training sets with partial labels and unsupervised data. Their 
framework relies on some assumptions about the distribution underlying the partial labeling. They establish a relationship 
between classification and superset error, pivoting on their definition of ambiguity degree. Liu and Dietterich [19] use 
the same definition of ambiguity degree to provide a sample complexity analysis based on Natarajan dimension. Many 
works address learning with candidate labels as the disambiguation of the sets of labels. Cour et al. [7] present a method 
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for disambiguating partially labeled data by assuming some properties about their underlying distribution, and establish 
conditions for its asymptotic consistency. It minimizes a convex loss function adapted to partial labeling. Based on the same 
loss function, Cabannes et al. [21] present a general framework that allows for the development of statistically consistent 
learning algorithms for different classification problems. Recently, they reviewed the disambiguation principle [22] and 
proposed a disambiguation algorithm under the assumptions of [21], establishing its learning rate. Wang et al. [23] propose 
a learning algorithm for datasets that are only partially labeled with candidate sets (the rest is unlabeled). The algorithm 
is a propagation procedure that iteratively disambiguates the weakly labeled and unlabeled data. Learning from candidate 
sets can be seen as a particular case of the versatile soft labeling scheme provided by Dempster-Shafer mass functions [24–
27], and thus it has also received considerable attention from the field of fuzzy systems. For example, in the problem of 
learning from fuzzy labels, where instances are labeled using fuzzy sets, Campagner [28] uses statistical learning theory 
to theoretically study the problem and analyze sample complexity and risk bounds for it. Couso and Dubois [29] describe 
several likelihood functions that can be considered for this problem, depending on the purpose of the study, for a single 
latent variable.

In this paper, we focus on the contribution of weak information of supervision depending on its different traits. We 
assume the existence of a subset of samples fully labeled among a large set of weakly labeled samples, a realistic scenario as 
reflected in the available real-world datasets [7,30]. We aim to shed light on the circumstances in which the weakly labeled 
data is really useful depending on the relative size of the fully/weakly labeled subsets, and the quantity and quality of the 
supervision. To do so, we will modify the conditions under which the labeling is performed, moving beyond the assumptions 
of previous works. Up to our knowledge, no previous theoretical or empirical work has addressed these questions in the 
case of candidate labeling or generally in weak supervision.

3. Framework

This paper considers the problem of supervised classification, where the objective is to learn a classifier from data. 
Formally, let X = (X1, . . . , Xv) be a set of descriptive random variables, and C a special random variable C , the class variable. 
Let �X j be the set of possible values that X j can take, i.e., its domain. In this work, we assume all the variables to be discrete 
without loss of generality. Specifically, each of the possible values of the special class variable, C is called class label, c ∈ �C . 
Let us define an instance x as a realization of X . In classical supervised learning, a training dataset {(xi, ci)}N

i=1 is available 
for model learning, where each instance xi is provided together with its associated class label ci and is usually assumed 
to be independent and identically distributed (iid) according to the real distribution, p(X , C). A learning algorithm infers 
from data a classifier, that is, a mapping function between the descriptive variables and the class, h : X → C . Given a loss 
function (e.g., the standard 0-1 loss), the objective of the learning process is usually to find the classifier h that minimizes 
the expectation of the loss function or, in practice, the empirical expect loss on the training set.

In the general framework of weakly supervised learning [5], the information of supervision of the training data is not 
fully available. That is, training data is not provided as a set of instance-label pairs, but as a set of instances {xi}N

i=1 that 
is accompanied by imprecise and/or noisy information about the respective classes. This lack of supervised information is 
different depending on the specific problem. Specifically, in this work we assume the specific weak supervision schema of 
candidate labels [7,5], where information of supervision is provided on a per-instance basis in the form of a set of labels Si
accompanying each instance xi . The set of labels Si ⊆ �C contains the true class label for xi , ci ∈ Si [19]. Thus, the dataset 
is D = {(xi, Si)}N

i=1. In this case, the information of supervision provided for each instance does not specify the actual label, 
but it may allow for discarding a few labels. The objective remains exactly the same.

3.1. Weak supervision as a spectrum

When discussing the particularities of weakly supervised problems, we usually note that training data is partially labeled. 
However, little attention is paid to the specific amount or level of supervision. In fact, the same weak supervision schema 
can involve extremely different levels of supervision [4,5].

Let us define the amount of supervision provided by a candidate set S as A(S) = 1 − log |S|/ log |�C |, which can be 
understood as the inverse of the normalized entropy of S assuming constant probability among classes c ∈ S . When |Si | = 1
the corresponding example xi is actually completely labeled (maximum information, A(S) = 1). Similarly, when the set of 
candidate labels contains all possible class labels in the problem, |S| = |�C |, it can be considered as completely unlabeled
(minimum information, A(S) = 0). In this way, one may realize that the size of the candidate sets alone determines the 
amount of information of supervision in this problem, ranging from full supervision to complete unsupervision. Note that 
the average amount of supervision is easily measurable for any given dataset.

Not only amount of information of supervision, but the information provided also needs to be useful to learn to dis-
criminate. The composition of the label sets can determine the amount of discriminative information that is provided, from 
which classifiers are learned. Candidate sets can be seen as the corruption of the original information, the real class ci , a 
process known as coarsening in the statistics literature. Many related works1 assume coarsening at random (CAR) [31,32], 

1 E.g., superset assumption [20] is CAR, with the specific condition of p(S|c) = p(S|c′) = 1/2|�|−1, ∀c, c′ ∈ �C , S ∈ P(�C ), c, c′ ∈ S [29].
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Fig. 1. Structure of naive Bayes (NB) and of a K -dependence Bayesian classifier (K -DB).

that is, that the probability of observing a subset S factorizes as the product of the sum of the probabilities of the el-
ements of S times the probability of S according to certain distribution π over all non-empty subsets of labels P(�C ), 
p(S|x) = p(C ∈ S|x)π(S|C ∈ S) with p(C ∈ S|x) = ∑

c∈S p(c|x). The second factor π can be considered as a procedure that 
corrupts the information (S) about the real –unknown– class c independently from c. Adopting p(c|S, x) = p(c|x)/p(c ∈ S|x)

if c ∈ S (and 0 otherwise), Gill et al. [31] show that p(S|x, c) is constant in c ∈ S, ∀S ∈P(�C ). But this assumption might not 
be completely realistic. Adapting the ideas of Chawla and Karakoulas [15] for SSL, missing not at random involves different 
coarsening mechanisms that lead to diverse distributions p(c|x, S) �= p(c|x, S ′) for S, S ′ ∈ P, c ∈ S, S ′ . This involves that not 
all the sets are equally probable p(S|x, c) �= p(S ′|x, c) (non-CAR can be understood in similar terms). Thus, co-occurrence is 
a non-CAR event that has been previously described in this context [19]: there exists c′ ∈ �C such that when an example 
of class c (c �= c′) is observed, the provided candidate set S includes both c, c′ ∈ S with probability s. As the probability of 
co-occurrence increases (s → 1), discrimination between c and c′ classes becomes more difficult (in line with consequently 
lying teachers, described by Lugosi [33] for noisy labeling). Similarly, adversarial labelers [34] can be seen as non-CAR events 
where noisy information is provided purposely to hamper the learning process. A labeling might be considered adversarial 
when the candidate set S contains, apart from real class c, other labels c′ ∈ S, c �= c′ which are improbable according to the 
real –unknown– model. We use the term data meaningfulness to refer to this conditioning factor which, to be measured, 
access to the real model is required.

4. Learning tool-set

The main goal of this work is to study the value of weakly supervised data throughout the spectrum of scenarios in 
which it might be present, as described above. The use of standard models and learning techniques, which are presented in 
this section, allows us to focus on our main goal.

As in [1], our empirical study uses generative classification models from the family of Bayesian network classifiers (BNCs) 
[35]. These are based on Bayesian networks (BN), one of the main types of probabilistic graphical models [36]. This family 
of classifiers has a directed acyclic graph structure specially designed to deal with supervised classification. Specifically, 
BNs provide an appropriate framework for working with simulated data –specifically, they allow for randomly generating 
distributions with a controlled number of parameters and sampling samples is efficient–, and learning the MLE parameters 
can be efficiently performed. Accounting for the partially missing information, we use an expectation-maximization (EM) 
algorithm [37] to learn from weakly supervised data.

4.1. Bayesian network classifiers

Bayesian networks are probabilistic graphical models which use directed acyclic graphs (DAG) to encode a set of con-
ditional dependencies between random variables. Following the DAG, the join distribution factorizes as the product of 
conditional probability distributions for each variable given its parents. Thus, a BN is described as a pair (G, θ), where 
G is the DAG and θ are the parameters that determine the conditional probability distribution of each variable. Both the 
DAG and the model parameters could be learned from data. In this work, we first analyze the effect of the amount of super-
vision under the correct model assumption, i.e., the true distribution underlying the data can be represented by (G, θ). To 
do so, we fix the true structure underlying the data, G , and we focus on the parametric learning of the BNCs. We also study 
other scenarios where this assumption does not hold and the learned model type is less expressive than the generative one.

We use BN models as probabilistic classifiers [35]. Specifically, we consider the family of K -dependence Bayesian clas-
sifiers (K -DB) [38]. The DAG of a K -DB classifier is biased towards supervised classification: all the descriptive variables 
have the class variable C as a parent and, moreover, at most K other parents among the descriptive variables (Fig. 1). The 
classification rule is defined as:

ĉ = argmax
c

p(C = c)
v∏

j=1

p(X j = x j|� j = π j, C = c)

where �i is a set of K descriptive-variable parents of Xi , and π j is a realization of them. The popular naive Bayes classi-
fier [39] corresponds to a 0-dependence Bayesian (0-DB) classifier, and the tree-augmented naive Bayes [40] is a 1-DB.
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Algorithm 1 Pseudo-code for the implemented EM algorithm.
1: procedure EM(D = {(xi , Si)}N

i=1)
2: θ ← θ(0)

3: while not converged do
4: qi(c) ∝ p(c|xi; θ)I[c ∈ Si ], ∀i, c � Update q: E-step
5: θ ← argmaxθ Ec∼q log p(c|x; θ) � Update θ : M-step
6: end while
7: return θ

8: end procedure

In this work, we aim to account for the complexity of the model when studying the contribution of weakly supervised 
data, in a similar way to what Cozman and Cohen [1] did for SSL. Inspired by their experimental design, we also consider 
the family of K -DB classifiers to easily generate models of increasing complexity. Note that the number of parameters of 
K -DB models is exponential on K . Assuming that the cardinality of all the descriptive variables is the same (|�X |), the 
number of free parameters is |�C | − 1 + v · (|�X | − 1) · |�C | · |�X |K .

4.2. An expectation-maximization algorithm

The maximum likelihood estimation (MLE) of the parameters of a discrete BN can be computed in closed form using 
complete data [41]. However, as in the weakly supervised problems the information of supervision is incomplete, we resort 
to the expectation-maximization strategy [37]. EM is a theoretically-founded iterative procedure that allows dealing with the 
maximum likelihood estimation of parameters in the presence of missing data. In each iteration, two steps are interleaved. 
Firstly, in the expectation (E) step, the missing values are replaced by their expected value given the current model, q. 
Secondly, in the maximization (M) step, the maximum likelihood parameters are estimated using the complete data. In 
general, this procedure converges to a local maximum.

In this case, the likelihood can be expressed as,

L(θ; D) = p(D; θ) =
N∏

i=1

p(xi, Si; θ) =
N∏

i=1

∑

c∈�C

p(xi, c, Si; θ)

Considering conditional independence of X and S given C and superset [20] assumptions, we obtain

L(θ; D) =
N∏

i=1

∑

c∈�C

p(xi, c; θ)p(Si |c) =
N∏

i=1

∑

c∈�C

p(xi, c; θ)
1

2|�C |−1
I[c ∈ Si]

and, as our objective is to find the parameters that maximize this expression, it can be reduced to

L(θ; D) ∝
N∏

i=1

∑

c∈�C

p(xi, c; θ)I[c ∈ Si] =
N∏

i=1

∑

c∈Si

p(xi, c; θ)

This likelihood expression is in line with Couso and Dubois [29]’s visible likelihood, but including descriptive variables too. 
Similarly, it is equivalent to the likelihood for imprecise data formulated by Denoeux [25]. The log-likelihood is,

logL(θ; D) ∝
N∑

i=1

log
∑

c∈Si

p(xi, c; θ) (1)

Considering that several candidate sets might have a single element (i ∈ {1, . . . , N f } s.t. |Si | = 1), which by definition 
(ci ∈ Si, ∀i) can be considered fully labeled samples, we can rewrite the previous expression as,

logL(θ; D) ∝
N f∑

i=1

log p(xi, ci; θ) +
N∑

i=N f +1

log
∑

c∈Si

p(xi, c; θ)

where N = N f + Nw . The first term is the log-likelihood of the labeled subset. The second term can be understood as 
a generalized expectation criterion [42] with the log-likelihood of the observed candidate sets as score function, and a 
constraint function returns 1 only if c ∈ S and 0 otherwise.

Algorithm 1 shows the pseudocode of our EM-based method, a generative version of the proposal by Jin and Ghahra-
mani [17] and equivalent to the EM algorithm presented by Denoeux [25, Sect. 4.1]. In the E-step, the expected value of the 
missing values (class label of weakly supervised examples) is calculated as qi(c) ∝ p(c|xi; θ) only for candidate labels, c ∈ Si . 
In the M-step, using the data completed probabilistically with the q estimates, we compute the MLE parameters. These two 
steps iterate until convergence. This algorithm can be interpreted as a self-labeling approach for weakly supervised data, in 
which the estimate of the class distribution provided by the model, qi , is used to refine the parameters of the model, θ , in 
an iterative way [43].
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5. Design of the empirical study

We aim to study the contribution of weakly supervised data as an addition to a (small) subset of fully labeled data. We 
explore a vast spectrum of labeling scenarios, ranging from (near) full supervision to (almost) unsupervised data, including 
data with non-meaningful information. We conduct our experiments based on a series of intuitions that lead to the proposed 
experimental setup.

5.1. Intuitions

The information of supervision is necessary for supervised machine learning. A robust learning technique should be able 
to learn from enough (weakly) labeled data, even if a few labels are misleading. With this idea in mind, our intuitions on 
the usefulness of weakly labeled data include that:
(i) Weakly supervised data might not be useful if there is enough labeled data, although it should not harm either.
(ii) The enhancement due to the use of weakly labeled data is correlated with the amount of information provided. More 
information might involve more weakly labeled instances, and/or smaller candidate sets.
(iii) Weak supervision helps as long as it is meaningful. In other words, the ranks over c ∈ �C obtained with p(c ∈ S|x) or 
with p(c | x) tend to be the same.

Through this section, we present different experiments carried out to test the contribution of weakly supervised data 
and the validity of our intuitions.

5.2. Experimental setting

Two different sets of experiments have been carried out. To be able to explore the whole spectrum of weak supervision, 
the first set of experiments was carried out with synthetic data. We synthetically create a generative model, sample a fully 
labeled dataset from it, and finally transform this dataset into weakly labeled. The second set of experiments uses real data 
labeled with candidate sets.

Synthetic data generation. As generative models, we use K -DB classifiers. The structure is randomly generated. Given an 
ordering of descriptive variables, the K parents of each variable are selected randomly among the previous variables in 
the ordering. Then, the class variable is added as a parent of every descriptive variable. The parameters of the model are 
randomly generated by sampling a Dirichlet distribution with all hyper-parameters α = 1. For the convenience of Bayesian 
networks, discrete variables are considered. Specifically, we use 16 binary descriptive variables plus a class variable with 6
possible values. We use generative models of different complexity (K = 1 or K = 4). We sample the generative K -DB model 
to obtain a dataset of the desired size and perform our train/test split. Only the training partition is transformed into a 
weakly labeled dataset. Thus, the test partition remains fully labeled.

We simulate different experimental scenarios that try to cover as much as possible the spectrum of weak supervision. 
The next parameters are consistently used in all the experimental scenarios for synthetic generation of weakly labeled data: 
the size of a basic subset which is left fully labeled (N f ), the relative size of the weakly labeled subset (r = Nw/N f ), and the 
size of the candidate sets (l = |S|). First of all, N instances are sampled from the generative model where N = N f + N f · r. 
The real labels of N f · r instances are replaced by their corresponding candidate set. The candidate set S for an instance 
x is formed using a distribution p̃(c|x) which is defined based on the distribution pM (c|x) given by the generative model, 
where the real class c has p̃(c|x) = 0. S includes c by default, plus l − 1 false positive labels which are simply the labels 
with largest probability in distribution p̃(c|x). We handle p̃(c|x) to simulate different experimental conditions:
Experimental condition I: honest label sets. Label sets are assumed to be produced by a reasonable doubt of an honest 
labeler, and thus the distribution

p̃(c′|x) ∝ pM(c′|x) over c′ ∈ �C , c′ �= c

is proportional to the distribution over the class labels given the instance x according to the generative model, pM , with the 
probability of the real label c equal to 0, p̃(c|x) = 0. This is in line with the CAR assumption.
Experimental condition II: misleading label sets. Label sets are assumed to be produced by a malicious labeler who tries 
to induce a confusion, and thus the distribution

p̃(c′|x) ∝ 1 − pM(c′|x) over c′ ∈ �C , c′ �= c

is inversely proportional to the distribution over the classes pM(c|x), with the probability of the real label c equal to 0, 
p̃(c|x) = 0. In this case, the generation of candidate sets is non-CAR.
Experimental condition III: co-occurrence. Label sets are assumed to be produced by a reasonable labeler who confuses 
pairs of labels. Let us formally define the probability of co-occurrence, s ∈ [0, 1], as:

∀c ∈ �C ,∃č �= c such that ∀(x, c, S), p(č ∈ S) = s
263
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Table 1
Description of the real datasets [30] used in this paper, before and after preprocess-
ing. Mean frequency of co-occurrence† is measured as the maximum proportion of 
instances of real class c that have label c′ �= c in the candidate set too. Mean values 
per real label c and standard deviations are given. Meaningfulness‡ is estimated as 
one minus the average normalized mean rank of the false positive labels c′ in the 
sets according to the probability given by a complex model (K = 4) learned with the 
ground-truth labels.

Characteristic Birdac Lost MSRCv2

No. instances 4.998 1.122 1.758
No. labels 13 14 23
No. fully labeled insts. (|Si | = 1) 1.632 67 140
No. weakly labeled insts. (|Si | > 1) 3.366 1.055 1.618
Candidate set size 2.74 ± 0.72 2.31 ± 0.46 3.34 ± 1.17
Mean frequency of co-occurrence† 0.72 ± 0.17 0.53 ± 0.12 0.76 ± 0.21

Original datasets

No. instances 3.029 838 1.046
No. labels 6 6 6
No. fully labeled insts. (|Si | = 1) 526 159 229
No. weakly labeled insts. (|Si | > 1) 2.503 679 817
Candidate set size 2.59 ± 0.66 2.24 ± 0.43 3.05 ± 0.84
Mean frequency of co-occurrence† 0.70 ± 0.13 0.56 ± 0.12 0.63 ± 0.04
Estimated meaningfulness‡ 0.51 0.47 0.49

Adapted datasets

i.e., s represents the probability that a certain label č appears in the label sets of instances with real class c. In practice, we 
fix č to the label that, on average, has the largest probability given instances that have c as the real class s.t. č �= c:

č = argč �=c max
∑

(x,c)

pM(č|x).

Let us define S as the subset of labels that is consistently included in the candidate set, S ⊆ S . With probability s, S = {c, ̌c}, 
and with probability 1 − s, S = {c}. Thus, we can define the distribution as

p̃(c′|x) ∝ pM(c′|x) over c′ ∈ �C , c′ /∈ S
proportional to pM(c|x), with the probability of the labels in S equal to 0. Exactly, |S| − |S| labels are obtained from it. In 
this case, the generation of candidate sets is non-CAR. Note that the probability of co-occurrence imposes a harder learning 
condition than the ambiguity degree considered by [7,19]. Whereas ambiguity degree is defined as an upper bound on 
the maximum probability, over all instances (x, c), of an extra label č �= c appearing together with c, the probability of 
co-occurrence sets the probability of an extra label č �= c appearing together with c, for all true labels c and all instances 
(x, c).

We have generated experimental scenarios resulting from the combination of the following parametric values: 10 dif-
ferent fully labeled subset sizes (N f ∈ {33, 66, . . . , 333}), 4 different values for the relative size of the weakly labeled 
subset (r ∈ {0.5, 1, 2, 5}), 4 candidate set sizes (l ∈ {2, . . . , 5}), all three experimental conditions (honest, misleading, and 
co-occurrence with 4 probabilities of co-occurrence, s ∈ {0.25, 0.5, 0.75, 1.0}). We use generative models of limited (K = 1) 
and large (K = 4) complexity, whereas all learned models have K = 1. When both generative and learned models have 
limited complexity (K = 1), we allow the learning process to learn the parameters over the original K -DB structure. This 
allows us to inspect the role of weakly labeled data, the main goal of the paper, in the favorable scenario of a correct 
model [1] where the contribution of weak supervision is expected to be observed in a cleaner way. When the generative 
model (K = 4) is more complex than the learned one (K = 1), the correct model assumption does not hold. This arguably is 
a reasonable simulation of real-world scenarios, where the generative model is likely to be more complex than the learned 
one. To account for the variance coming from the synthetic data generation, every single experiment with a specific com-
bination of generative hyper-parameters is replicated up to 900 times (30 generative models × 30 sampled datasets). The 
displayed results show averaged metrics over the repetitions.

Real data preprocessing. We use three real datasets with candidate label sets [30]: Birdac, Lost and MSRCv2, described in 
Table 1. These were adapted to our experimental setup. Firstly, we binarize all the descriptive variables and remove constant 
and completely correlated features. We reduce the set of labels to 6, as used in the synthetic data generation. The majority 
classes are maintained (with the exception of the most common label of Birdac, which is always and only present in label 
sets of size 1). Only instances the real class of which is maintained are kept. Removed labels are also dropped off the 
candidate sets. Table 1 describes the adapted data too.

In these experiments, candidate set size, meaningfulness, and co-occurrence level are fixed (see the specific values in 
Table 1). We simulate different experimental scenarios by generating subsamples from the combination, whenever it is 
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possible, of 10 different fully labeled subset sizes (N f ∈ {33, 66, . . . , 333}) and 4 different values for the relative size of the 
weakly labeled subset (r ∈ {0.5, 1, 2, 5}). Note for example that N f = 333 is not possible with Lost and MSRCv2 datasets, as 
their number of fully labeled instances is smaller. Similarly, in these cases N f = 200 together with r = 5 is not possible as 
the number of weakly labeled instances is smaller than 200 · 5. The generative model is completely unknown in these real 
datasets, and a generative complex model is arguably a fair assumption. Thus, these experiments do not follow the favorable 
scenario of the correct model [1]. To account for the variance coming from subsampling, every single experiment with a 
specific combination of generative hyper-parameters is replicated 30 times (different subsamples). The displayed results 
show averaged metrics over the repetitions.

5.3. Validation

All the results have been estimated by means of a 5 × 3-fold cross-validation [44]. Real labels are available for validation 
for both real and synthetic data, which eases model evaluation. In the former case, the actual labels are also provided in 
the real datasets. In the latter, transformation into weakly labeled is only performed on the training subset, whereas the 
validation subset is left fully labeled.

We consider two different metrics. On the one hand, the Macro-F1 metric calculates the harmonic mean of the average 
precision and recall over all the class labels,

MacroF 1 = 2 · pr · re

pr + re

with

pr = 1

|�C |
∑

c∈�C

T P c

T P c + F P c
, and re = 1

|�C |
∑

c∈�C

T P c

T P c + F Nc

where T P c , F P c , and F Nc are the counts for true positives, false positives, and false negatives, respectively, regarding class 
c. The larger the value a classifier obtains, the better it performs. On the other hand, the Brier score measures the difference 
among the probability distributions over the classes and the real class label (one-hot encoding),

Brier Score = 1

N

N∑

i=1

|�C |∑

c=1

(p̂ic − I[c = ci])2

In this case, the smaller the value a classifier obtains, the better it adjusts the probabilities (the better it performs).

6. Views of the empirical study

From the extensive experimental setting explained above, we have extracted several snapshots that aim to analyze the 
contribution of weak supervision through the interaction among the different key factors of the weakly supervised learning 
framework: the size of the fully labeled subset, the relative size of the weakly labeled subset, the size and the meaning-
fulness of the candidate sets, including the co-occurrence of labels with a certain probability. Each following subsection 
displays a snapshot of the study where up to three key factors are confronted while the rest of the experimental settings 
are fixed.

6.1. Contribution of weak supervision with increasingly larger weakly-labeled subset and candidate sets

The first factor helps us understand how many samples we need to take advantage of weak supervision under fair 
conditions. For this purpose, the real labels of a subset of N f = 33 examples are known. The second factor, the size of the 
candidate sets, is directly related to the amount of supervision, as explained in Section 3.1. Firstly, in Fig. 2 we study the 
interaction of these two dimensions on two meaningfulness scenarios (honest vs. misleading labels) with synthetic data 
under the correct model assumption. As we aim to analyze the behavior of weakly supervised learning as a complement to 
fully labeled data, we show the results as the difference of the performance of the classifier learned with weak supervision 
minus that of an equivalent classifier learned only with the fully labeled subset, relative to that of the real generative 
model.2 In general, performance improves as the size of the candidate sets decreases, and as the proportion of weakly 
labeled samples increases. When the size of the candidate set is the largest (|S| = 5), the performance stops decreasing and 
recovers only when the proportion of weakly labeled samples is really large. That is, large amounts of weakly supervised 
samples are required to recover when the information within a single candidate set is small (large |S|). The largest gain is 

2 Any value larger than 0 points out a scenario where the use of weakly supervised data helps to outperform the classifier learned with just fully labeled 
data. These values are relative to the performance of the real generative model on the same dataset. A value of 1 would mean that the learned model 
performs as well as the real model.
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Fig. 2. Graphical description of the value of weak supervision as the size of the candidate sets and the proportion of weakly labeled examples increase on 
synthetic data. In both figures, two surfaces display results with misleading (labels in S are really improbable) and honest (labels in S are probable) labels, 
respectively. All the surfaces show the difference of performance of a classifier learned with weak supervision minus that of a similar classifier learned 
only with the labeled subset; in terms of Macro-F1 in a), of Brier score in b), relative to the performance of the real model. Other parameters are fixed to 
a small fully labeled subset (N f = 33), simple generative and learned models (K = 1), and no induced co-occurrence (s = 0).

Fig. 3. Display of different scenarios of candidate set sizes and proportions of weak supervision on real and synthetic data. Dashed lines depict results on 
synthetic data in the experimental conditions I (Honest) and II (Misleading) with candidate set sizes |S| = {2, 3}. Solid lines depict results on real data: 
Birdac, Lost and MSRCv2 (see in Table 1 their mean candidate set size and estimated label meaningfulness). All the lines show the difference of performance 
in terms of Macro-F1 of a classifier learned with weak supervision minus that of a similar classifier learned only with the labeled subset. Other parameters 
are fixed to a small fully labeled subset (N f = 33), complex generative (K = 4) and simple learned (K = 1) models, and no induced co-occurrence (s = 0). 
(Figures are colored in the web version to make interpretation easier.)

observed when the candidate sets are small and the proportion of weakly labeled samples is large, that is, when there is 
more information of supervision. Results are consistently worse within the misleading labeling scenario. Whereas misleading 
labels are not that harmful when candidate sets are small, the advantage of having candidate sets filled in with honest labels 
stands out as more unfavorable experimental setups are explored. Similar behaviors are observed in terms of both F1 and 
Brier score.

Fig. 3 shows the equivalent snapshot of the empirical study with real data. As candidate set size is fixed in real data, 
we only display one of the dimensions (proportion of weakly labeled examples) by simulating increasingly large datasets 
with subsamples of the real data. We include results with synthetic data (but using the incorrect model assumption, i.e., 
the generative model is more complex than the learned one) as a reference to interpret the results with real data. We show 
the results as the difference of the performance of the classifier learned with weak supervision minus that of an equivalent 
classifier learned only with the fully labeled subset. This time, the performance is not relative to that of the real generative 
model, which is unknown. Only results in terms of Macro-F1 are shown since, due to the lack of the real model, normalized 
performance cannot be obtained and Brier score, unscaled, would display results hardly interpretable. Results with Lost
and MSRCv2 datasets show similar behaviors, whereas that of Birdac dataset is slightly better. As the proportion of weakly 
labeled samples increases, the experiments with real data stabilize among the results with synthetic data of |S| = 2 and 
|S| = 3 in the honest scenario. Note that the mean candidate size in all three datasets is in the interval [2.2, 3.05] and their 
estimated meaningfulness show intermediate values (see Table 1).

6.2. Contribution of weak supervision with increasingly larger fully-labeled and weakly-labeled subsets

The interaction between the relative sizes of fully-labeled and weakly-labeled subsets helps us understand when weakly 
supervised data can effectively provide information of supervision. Using the same display as before, Fig. 4 shows the inter-
action of the relative sizes of these subsets on two meaningfulness scenarios (honest vs. misleading labels) with synthetic 
data under the correct model assumption. In all the cases, when the fully labeled subset is small, proportionally increasing 
the size of the weakly supervised subset enhances the most the performance of the models. The gain obtained with weak 
supervision is more limited as the size of the fully labeled subset increases. When a large fully labeled subset is available, 
many weakly labeled samples can harm the performance in terms of probability calibration, as observed when measuring 
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Fig. 4. Graphical description of the value of weak supervision as the amount of fully labeled data and the proportion of weakly labeled examples increase 
on synthetic data. In both figures, two surfaces display results with misleading (labels in S are really improbable) and honest (labels in S are probable) 
labels, respectively. All the surfaces show the difference of performance of a classifier learned with weak supervision minus that of a similar classifier 
learned only with the labeled subset; in terms of Macro-F1 in a), of Brier score in b), relative to the performance of the real model. Other parameters are 
fixed to small candidate sets (|S| = 2), simple generative and learned models (K = 1), and no induced co-occurrence (s = 0).

Fig. 5. Graphical description of the value of weak supervision as the amount of fully labeled data and the proportion of weakly labeled examples increase 
on real and synthetic data. One surface summarizes results on three real datasets: Birdac, Lost and MSRCv2 (see Table 1). The surface with results on 
synthetic data involves honest labeling and incorrect model assumption (complex generative, K = 4, and simple learned, K = 1, models). Both surfaces 
show the difference of performance in terms of Macro-F1 of a classifier learned with weak supervision minus that of a similar classifier learned only with 
the labeled subset. Other parameters are fixed to small label sets (|S| = 2) and no induced co-occurrence (s = 0).

Brier score. When the false positive labels are not meaningful (misleading scenario), the performance gain is more limited 
and the harm of large amounts of weakly-labeled samples is more clearly observed. In all these experiments, small candi-
date sets (|S| = 2) are considered. Although not shown in these plots, our results show that as |S| increases (i.e., the amount 
of information decreases) the performance gain declines, and differences between honest and misleading scenarios reduce.

Fig. 5 shows the equivalent snapshot of the empirical study with real data. We can display both dimensions (size of 
the fully labeled subset, and proportion of weakly labeled examples) by subsampling the real data. Results with all three 
real datasets are aggregated (some experimental setups cannot be simulated with all the datasets). Results with synthetic 
data (honest scenario with |S| = 2, but assuming the incorrect model) are also included as a reference to interpret the 
results with real data. The same performance behaviors depicted by synthetic data are observed with real data, although 
the performance drop is relatively much more prominent. This effect might be partially explained by the fact that the mean 
candidate size in all three real datasets is larger than 2 and their estimated meaningfulness shows intermediate values (see 
Table 1).

6.3. Contribution of weak supervision with increasingly larger candidate sets and probability of co-occurrence

The interaction between these two factors helps us understand how the consistent provision of a false label affects the 
performance in scenarios with different amounts of supervision, determined by the size of the candidate sets. In Fig. 6
we study the interaction of these two dimensions on synthetic data under the correct model assumption. One surface 
illustrates how the use of data with a certain co-occurrence degrades the performance, whereas a second surface shows 
how the performance remains if no co-occurrence is induced. The results are similar for both metrics, the performance drop 
increases with the probability of co-occurrence, as expected, and it is more relevant when the candidate sets are small. As 
the candidate sets are larger (the amount of information of supervision is reduced), the performance drop is smaller and 
even negligible.

Fig. 7 shows the equivalent snapshot of the empirical study with real data. Candidate set size and co-occurrence level are 
fixed in real data, but we can still display one of the dimensions as different repetitions (subsamples) show slightly different 
co-occurrence levels. Results with synthetic data (honest scenario with |S| = {2, 3} with and without induced co-occurrence, 
with the incorrect model assumption) are also included as a reference to interpret the results with real data. The averaged 
results with all three real datasets are comparable to those of synthetic data with induced co-occurrence and |S| = 2 (and/or 
267



J. Hernández-González and A. Pérez International Journal of Approximate Reasoning 150 (2022) 258–272
Fig. 6. Graphical description of the value of weak supervision as the probability of co-occurrence in the candidate sets and the size of the candidate sets 
increase on synthetic data. In all figures, a surface shows results of experiments without inducing co-occurrence, whereas another surface shows results 
when inducing co-occurrence with increasing probability. All the surfaces show the difference of performance of a classifier learned with weak supervision 
minus that of a similar classifier learned only with the labeled subset; in terms of Macro-F1 in a), of Brier score in b), relative to the performance of 
the real model. Other parameters are fixed to a small fully labeled subset (N f = 33), twice as weakly labeled samples (r = 2), and simple generative and 
learned models (K = 1).

Fig. 7. Display of different scenarios of candidate set size as the probability of co-occurrence increases on real and synthetic data. Dashed lines depict results 
on synthetic data without and with increasing induced co-occurrence, for candidate set sizes |S| = {2, 3}. Each point depicts the result of a repetition (30) 
on a real dataset (Birdac, Lost or MSRCv2; see in Table 1 their co-occurrence level): performance vs. co-occurrence level of the specific training subsample 
(solid lines show mean and std. deviation of both axes). In all the cases, the difference of performance in terms of Macro-F1 of a classifier learned with 
weak supervision minus that of a similar classifier learned only with the labeled subset is shown. Other parameters are fixed to the honest scenario, a 
small fully labeled subset (N f = 33), twice as weakly labeled samples (r = 2), and complex generative (K = 4) and simple learned (K = 1) models.

Fig. 8. Graphical description of the value of weak supervision as the probability of co-occurrence in the candidate sets and the proportion of weakly labeled 
examples increase on synthetic data. In all figures, a surface shows results of experiments without inducing co-occurrence, whereas another surface shows 
results when inducing consistent labels with increasing probability of co-occurrence. All the surfaces show the difference of performance of a classifier 
learned with weak supervision minus that of a similar classifier learned only with the labeled subset; in terms of Macro-F1 in a), of Brier score in b), 
relative to the performance of the real model. Other parameters are fixed to a small fully labeled subset (N f = 33), candidate set size |S| = 2, and simple 
generative and learned models (K = 1).

without induced co-occurrence with |S| = 3). Remember that the real datasets have mean candidate sizes in the interval 
[2.2, 3.05] (see Table 1).

6.4. Contribution of weak supervision with increasingly larger weakly-labeled subset and probability of co-occurrence

The interaction between these two factors helps us understand how the consistent provision of a false label affects the 
performance in scenarios with different numbers of weakly-labeled samples. In Fig. 8 we study the interaction of these two 
dimensions on synthetic data under the correct model assumption. As before, two surfaces display results with and without 
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Fig. 9. Display of different scenarios of co-occurrence level as the proportion of weakly labeled examples increases on real and synthetic data. Dashed 
lines depict results on synthetic data without and with induced co-occurrence (s = {0, 0.5, 0.75}). Solid lines depict results on real data: Birdac, Lost and 
MSRCv2 (see in Table 1 their co-occurrence level). All the lines show the difference of performance in terms of Macro-F1 of a classifier learned with weak 
supervision minus that of a similar classifier learned only with the labeled subset. Other parameters are fixed to the honest scenario, with a small fully 
labeled subset (N f = 33), and complex generative (K = 4) and simple learned (K = 1) models.

induced co-occurrence. Classification performance (F1) drops with a larger probability of co-occurrence, although it seems 
to rise when a large weakly-labeled subset is provided. Although this might seem in contradiction with the theoretical 
insights by [19], note that these experiments include a fully-labeled subset, which might be providing enough evidence for 
class disambiguation. In terms of probabilistic calibration, the performance drop is monotonically decreasing as both the 
probability of co-occurrence and the proportion of weakly-labeled samples increase.

Fig. 9 shows the equivalent snapshot of the empirical study with real data. Note that the results with real data of this 
figure are already presented in Fig. 3. This extra figure shows performance on real data in the context of different synthetic 
scenarios of co-occurrence |s| = {0, 0.5, 0.75} (honest labels, under the incorrect model assumption). Results with all three 
real datasets end up resembling those of synthetic data with a probability of co-occurrence of s = 0.5 (and/or without 
induced co-occurrence). Seen together, Figs. 3 and 9 show the complexity of analyzing on real data how different factors 
affect performance, as several ones (co-occurrence level and candidate set size, in this comparison) might be used to explain 
parts of the results.

7. Discussion

In the previous section, we have displayed different snapshots of the empirical study. The main conclusion is that weakly 
labeled data contributes for machine learning in specific cases: when a relatively small fully labeled sample is available, 
and weakly labeled examples provide a considerable amount of supervision which should also be preferably meaningful. 
Nevertheless, there also exist scenarios where weak supervision might harm the learning process even under the correct 
model assumption (i.e., when the real model is learnable). In the rest of the section, we discuss the contribution factor by 
factor.

Is using more weakly supervised examples always better? The (relative) amount of weakly supervised examples seems to 
have a positive effect, but it can be harmful in case of unfavorable configuration of other factors.

In the favorable scenario of honest candidate labels and assuming the correct model, more data is usually positive. For 
the task of classification, according to Fig. 4a, a larger weakly supervised subset usually helps and, in the most unfavorable 
scenarios, harm is limited. A similar behavior is observed for the task of calibration (Fig. 4b): it is usually helpful, although 
in this case severe performance drops happen in the most unfavorable scenarios.

The amount of examples with weak supervision cannot be analyzed as an isolated factor. More weakly supervised data 
is clearly helpful when the amount of fully labeled data is short, but it might harm the learning process if enough fully 
labeled data is available. The gain is clearly observed when candidate sets are small. Fig. 2 suggests that as the amount of 
information of supervision is reduced (|S| increases), the proportion of weakly supervised samples required to observe a 
performance gain needs to be increased. Note that this somehow contradicts our first intuition (Sect. 5.1). The meaningful-
ness of the label sets is also determining. In the case of misleading label sets, more weakly supervised data can hurt the 
behavior of the classifier. Finally, the gain obtained with larger weakly labeled data is reduced as the size of the label sets 
increases, or even reverted into a performance loss (Fig. 2). Under the correct model assumption, this last observation might 
seem in contraction with Cohen and Cozman [1] (and our first intuition), who argue that unlabeled data does not harm 
in this setting. The apparent discrepancy could be explained by the fact that ours is a more complex experimental setting 
where, for example, the cardinality of the class variable is large (in their case, it is fixed to 2).

The experiments with real data provide evidence for this question when the correct model assumption does not hold. 
These appear to be well aligned with synthetic experiments, and its performance gain as the proportion of the weakly 
labeled subset increases (Figs. 3 and 9) is well described by other data characteristics (Table 1). As might be expected, the 
same relationships between the amount of weakly labeled data and other factors seem to hold (Fig. 5), but the performance 
gain is restricted to a smaller set of favorable conditions (e.g., when the fully labeled subset is really small). Candidate 
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set size and the meaningfulness of their labels are fixed in real data, but additional experiments where the correct model 
assumption does not hold available as supplementary material confirm these insights.

The most interesting observation is that the largest gain consistently happens in a practical scenario: practitioners usually 
consider employing weakly labeled data when fully labeled data is not enough. As the difficulty of obtaining fully labeled 
examples is usually much larger than that of obtaining weakly labeled examples, one might expect the relative proportion 
of weakly labeled samples (r) to be large. This realistic scenario is in principle favorable for considering weakly labeled data, 
whenever other factors are not adverse.

How does the size of the candidate set affect? This factor is directly related to the amount of information of supervision 
provided. In scenarios where label sets are large, the provided information approaches that of unsupervised learning (none), 
whereas it might resemble the supervision information of supervised learning (full) as label sets get tiny. This intuition 
(second one in Sect. 5.1) is clearly observed in the experimental results. For example, in Fig. 2 the performance in terms of 
both F1 and Brier score consistently drops as the size of the label sets is increased. However, it relates to other factors, such 
as the meaningfulness of its labels. The performance drop observed when larger candidate sets are used is more severe if 
the labels are misleading.

As candidate set size is fixed in real data, our empirical study with this type of data cannot capture directly the referred 
effect. It can be seen, however, that the observed performance in Fig. 3 seems to be reasonably well explained by the 
candidate set size, as it is surrounded by simplified synthetic scenarios with similar characteristics.

Depending on the labeling procedure, the size of the candidate set is a factor that is partially actionable. If the labeling 
process tolerates it, one can ask the labeler to provide as few labels as possible (while making sure that the real one is in 
the set). The practitioner could even decide to filter out annotations with too large candidate sets according to the evidence 
provided by this study.

How does the composition of the candidate label sets affect? In line with our third intuition (Sect. 5.1), meaningful (honest) 
labels consistently provide more information, as the performance of the learned classifiers is better than that with mislead-
ing labels both in terms of F1 and Brier score (Figs. 2 and 4). This empirical study is based on generative models and, in this 
way, one assumes that the data observed has followed a sampling procedure from a certain –unknown– model. A composi-
tion of the label sets where labels are included based on their probability of being the real label follows the rationale of a 
reasonable sampling procedure, as it provides meaningful information about X-y relationship. In fact, our method has been 
derived from a likelihood function (Eq. (1)) which implicitly assumes this type of labeling. Thus, everything is implicitly 
designed to learn with honest label sets, which explains that this experimental setting outperforms tests that follow the 
opposite rationale (labels are included based on their probability of not being the real label; misleading label sets). In this 
sense, our learning methods cannot be expected to be robust against misleading information.

The underlying hypothesis of the supervision schema used in this study is that, if the labeler is doubting among a few 
classes, he/she would be asked to include them all. Doubt would denote similarity in this mindset. However, if the labeler 
(or labeling method) is not reliable and might include other classes, then the learning process will malfunction. Although 
meaningfulness is defined based on the generative model, which is not available for real data, we have estimated it using 
a complex 4-DB model for the three real datasets. In all the cases, the estimated meaningfulness is around 0.5: i.e., the 
additional labels are not always the most probable ones. This observation challenges the models for candidate generation 
that our methods usually assume. The bad news, in this case, is that this factor is usually hard (or even impossible) to 
control. Thus, there would be room for novel methods which are based on alternative label-set generation models.

How does co-occurrence affect? Following the discussion about the composition of the candidate sets, one might expect 
that the learning method could struggle to learn to disambiguate labels in case of co-occurrence (i.e., a pair of labels is 
provided together with high frequency), as a particular case of our intuition 3 (Sect. 5.1). Our empirical study, when using 
synthetic data, provides clear evidence of the harmful effect of co-occurrence on the learning performance (Figs. 6 and 8): 
the larger the probability of induced co-occurrence, the larger the performance drop. We study the interaction of this factor 
with the size of the candidate sets and the amount of weakly labeled samples. Induced co-occurrence seems to have a 
smaller effect on the results as the size of the label sets increases (Fig. 6), but note that in this case, a large candidate 
size leads to large minimum co-occurrence probabilities. That is, one of the problems that might be associated with large 
candidate sets is the inherent co-occurrence. Likewise, classification performance (F1) seems to be affected by co-occurrence 
independently from the amount of weakly labeled samples (Fig. 8). In contrast, calibration performance (Brier score) drops 
as both the probability of co-occurrence and the size of the weakly labeled subset increase. A possible explanation for this 
divergence might be that the provided small set of fully labeled examples is enough to resolve the discrimination between 
the co-occurrent labels.

This factor is also fixed in real data, and we cannot manipulate it in our experimental setting. Taking a closer look at the 
experimental repetitions (with different subsamples), we have observed (Fig. 7) that the mean classification performance is 
in line with that of experiments with synthetic data and candidate set size |S| = 2, or even better.

Among other theoretical insights in line with our findings, these factors regarding the composition of the label sets can 
be interpreted in similar terms to concepts such as ambiguity degree [7,19]. These previous works are based on the so-called 
ambiguity degree to identify scenarios where learning is actually possible and establish theoretical learning conditions [7,
19]. They show that learning to discriminate becomes harder as co-occurrence increases (s → 1, in our setup). Our results 
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would come to support the idea that a relatively small subset of fully labeled samples can allow us to learn a better classifier 
(note the different behavior of the performance in terms of F1 and Brier score in Fig. 8 as the probability of co-occurrence 
increases), i.e., they provide enough information for the model to learn to discriminate.

7.1. General ideas

This empirical study is based on the experimental setup of [1]. As they do, we assume the correct model to grasp the 
full potential of weak supervision in the set of experiments with synthetic data. In the experiments with real data, this 
assumption does not hold and, moreover, many of the experimental factors considered in this study cannot be disentangled. 
Thus, it is difficult to isolate and analyze the individual effect of each factor. We have replicated the study with generative 
models of large (K = 4) complexity to simulate an experimental setup where the correct model does not hold. Similar figures 
to the ones displayed in this manuscript are available in the supplementary material.3 In line with the results reported in 
[1], in case of not using the correct model, the learning task becomes harder: the contribution of the weakly labeled data 
is consistently more limited and, consequently, the set of scenarios where weak supervision clearly helps is much more 
reduced than the ones presented in this paper. Results with real data, completely in line with behaviors observed with 
synthetic data, provide additional validation to this empirical study. To boost reproducibility, source code is also available as 
supplementary material.

Although we have employed a specific supervision schema (candidate labels), as our goal with this selection was to be 
able to cover a vast spectrum of the weak supervision space, we expect that these results might generalize to other weakly 
supervised learning problems as far as one can establish how much information of supervision the data involves, and/or 
how informative the labeling might be. These concepts are related to the factors used in this empirical study such as the 
size of the candidate sets or the meaningfulness of the labels in them.

8. Conclusions

This paper presents an empirical study of the contribution of weakly supervised data in the context of generative models. 
Specifically, we aim to show the contribution of weakly supervised data for enhancing the performance of generative models 
for classification under the realistic scenario that assumes that a small subset of fully labeled data is available. Specifically, 
we focus on the problem of learning from candidate labels [7,19], where each training instance is provided with a label 
set that always includes the real label. Inspired by the key work by Cozman and Cohen [1], we employ standard learning 
techniques for generative models and this type of data. To be able to explore the whole spectrum of weakly labeled sce-
narios, we use synthetic scenarios simulating different empirical conditions and study how the performance of the models 
is affected. We also include experiments with real data labeled with candidate sets to explore these ideas in even more 
realistic scenarios.

Empirical results show that larger amounts of supervision, i.e., smaller candidate sets, usually determine the contribution 
of the weakly supervised data. However, not all the information of supervision is helpful: only meaningful information is. 
When the weakly supervised data includes, for example, adversarial or non-discriminable information, it might harm the 
performance of a learned model. It can also be observed that, when the objective is purely discrimination, even a small 
amount of certain class information is enough to overcome the learning difficulties anticipated by previous theoretical 
studies.

There are questions still open after this empirical study. A similar study could be carried out broadening the scope, 
such as using discriminative models or analyzing the impact of relevant characteristics of the underlying domain problem 
(e.g., if it is a class imbalance problem, if the weak supervision is closely related to difficult instances, etc.). Many weakly 
supervised problems assume that the information of supervision is never completely wrong. For example, learning from 
candidate labels assumes that the real label is always included in the label set. It would be of interest to extend our study 
to cover scenarios where this assumption does not hold.
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