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Abstract: Three metabolite patterns have previously shown prospective inverse associations with
the risk of aggressive prostate cancer within the European Prospective Investigation into Cancer
and Nutrition (EPIC). Here, we investigated dietary and lifestyle correlates of these three prostate
cancer-related metabolite patterns, which included: 64 phosphatidylcholines and three hydroxysph-
ingomyelins (Pattern 1), acylcarnitines C18:1 and C18:2, glutamate, ornithine, and taurine (Pattern
2), and 8 lysophosphatidylcholines (Pattern 3). In a two-stage cross-sectional discovery (n = 2524)
and validation (n = 518) design containing 3042 men free of cancer in EPIC, we estimated the as-
sociations of 24 dietary and lifestyle variables with each pattern and the contributing individual
metabolites. Associations statistically significant after both correction for multiple testing (False
Discovery Rate = 0.05) in the discovery set and at p < 0.05 in the validation set were considered
robust. Intakes of alcohol, total fish products, and its subsets total fish and lean fish were positively
associated with Pattern 1. Body mass index (BMI) was positively associated with Pattern 2, which
appeared to be driven by a strong positive BMI-glutamate association. Finally, both BMI and fatty
fish were inversely associated with Pattern 3. In conclusion, these results indicate associations of fish
and its subtypes, alcohol, and BMI with metabolite patterns that are inversely associated with risk of
aggressive prostate cancer.

Keywords: metabolites; diet; prostate cancer; cross-sectional

1. Introduction

Metabolomics is a rapidly evolving field, which involves the measurement of multiple
metabolites with an aim of establishing biomarkers of exposure and disease risk [1,2].
Several observational studies have measured prediagnostic blood metabolites in order
to identify novel risk factors and pathways in prostate cancer aetiology [1–4], including
analyses of metabolite profiles, as well as specific analytes. In a previous case-control study
nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) co-
hort, three patterns (treelet components) were identified and assessed in relation to risk for
prostate cancer [1]; a metabolite pattern of 64 diacyl- and acyl-alkyl phosphatidylcholines
and three hydroxysphingomyelins, as well as a metabolite pattern of two acylcarntines,
glutamate, ornithine, and taurine, were both found to be inversely associated with risk
of advanced and aggressive prostate cancer. Furthermore, a metabolite pattern of eight
lysophosphatidylcholines was also observed to be inversely associated with risk of ad-
vanced prostate cancer and prostate cancer death [1]. Data from other cohorts have also
supported inverse associations of glycerophospholipids [3] and acylcarnitine C18:2 [4] with
risk of aggressive prostate cancer.

Blood metabolite concentrations are affected by both internal and external factors,
including modifiable factors, such as diet and body mass index (BMI) [5,6]. Thus, a better
understanding of how these factors are associated with prostate cancer-related metabolite
patterns might offer insights into possible avenues for prostate cancer prevention.

This cross-sectional study nested in the EPIC cohort aimed to investigate associations
of dietary variables and BMI with metabolite patterns previously found to be inversely
associated with more aggressive prostate cancer subtypes.

2. Materials and Methods
2.1. Study Population

EPIC is a multi-center prospective cohort study, which recruited approximately
500,000 Europeans, including 153,457 men, between 1992 and 2000. The current analy-
ses include men mainly aged between the ages of 35 and 70 years at recruitment from
19 centers in seven countries (Denmark, Germany, Italy, Netherlands, Spain, Sweden and
United Kingdom). 139,600 of the men provided a blood sample. All participants in the
EPIC study provided written informed consent, and the study was approved by the ethics
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committees of the International Agency for Research on Cancer (IARC) and all participating
centers [7].

Men were eligible for the current study if they (1) were free of cancer (except non-
melanoma skin cancer) at baseline; (2) had a known date of blood collection; (3) had
been included as control participants in one of four case-control studies on metabolite
concentrations and cancer risk nested within the EPIC cohort (on prostate [1], colorectal [8],
kidney [9], and liver cancer [10]), hereafter referred to as sub-studies, with available
blood concentrations of all of the metabolites included in the metabolite patterns that
were previously found to be associated with more aggressive prostate cancer subtypes;
and (4) had blood samples that were included in an analytical batch that had at least
10 samples, to ensure proper normalization of metabolite concentrations. Thus, data for
3198 men were available for this study.

2.2. Laboratory Measurements

For participants from Germany, Italy, the Netherlands, Spain and the UK, biological
samples are stored at IARC in plastic straws at −196 ◦C (details published elsewhere) [7].
In Sweden and Denmark, blood samples are stored in tubes in local repositories; in Sweden,
the samples are kept in freezers at −80 ◦C, and in Denmark in nitrogen vapor at −150 ◦C [7].

Regardless of sub-study, all samples were previously assayed at IARC in Lyon, France
using the AbsoluteIDQ® p180 Kit (Biocrates Life Sciences AG, Innsbruck, Austria), and
following the procedure recommended by the vendor. To quantify metabolites, liquid
chromatography mass spectrometry (LC-MS) was applied. All samples were assayed using
one LC instrument (Agilent 1290, Santa Clara, CA, USA) coupled with one of two different
triple quadrupole MS instruments (Triple Quad 4500, AB Sciex, Framingham, MA, USA for
prostate and colorectal cancer [1,8] and Q-Trap 5500, AB Sciex, MA for liver and kidney
cancer [10,11]; Supplementary Table S1). Of note, within each sub-study a single pair of
LC-MS instruments was used for all samples [12]. 118 common metabolites were measured
across all sub-studies [12].

Metabolite values outside the measurable range, including metabolite values below the
batch-specific limit of detection (LOD), below the kit-specific lower limit of quantification
(LLOQ), and above the kit-specific upper limit of quantification (ULOQ), were imputed to
LOD/2, LLOQ/2, and ULOQ, respectively.

2.3. Diet, BMI, and Covariate Data

Detailed information on dietary, lifestyle, and anthropometric data was gathered at
recruitment, previously described in Riboli et al. [7]. In order to determine usual dietary
intakes, center- or country-specific validated dietary questionnaires covering the previous
12 months were used [13]. The dietary variables (continuous, consumption in g/day)
investigated in this study were intakes of total dairy (sum of milk, cheese, and yogurt),
milk, cheese, yogurt, eggs, red meat, poultry, processed meat, total fish products (refers to
fish and shellfish combined), total fish (subset of total fish products), fatty fish (subcategory
of total fish), lean fish (subcategory of total fish), fats and oils (sum of butter, margarine,
and vegetable oils), butter, margarine, vegetable oils, total vegetables (sum of leafy, root,
and fruiting vegetables), leafy vegetables, root vegetables, fruiting vegetables, total fruit,
cereals and cereal products, and alcohol. In order to reflect average daily consumption,
increments were chosen for each dietary variable to represent typical intakes in an average
European male population (Table 1).
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Table 1. Increments for each dietary variable.

Dietary Variable Increment (Grams per Day)

Dairy 200 g [14]

Milk 200 g [14]

Cheese 30 g [15]

Yogurt 30 g [15]

Eggs 7 g [16]

Total fish products 30 g [17]

Total fish 30 g [17]

Lean fish 10 g [17]

Fatty fish 10 g [17]

Red meat 40 g [16]

Poultry 20 g [16]

Processed meat 40 g [16]

Fats and oils 10 g [16]

Butter 5 g [16]

Margarine 5 g [16]

Vegetable oils 5 g [18]

Fruits 100 g [19]

Vegetables 100 g [19]

Leafy vegetables 25 g [19]

Root vegetables 25 g [19]

Fruiting Vegetables 100 g [19]

Cereals and cereal products 200 g [14]

Alcohol 10 g [14]

BMI (continuous, kg/m2) was also examined as a possible correlate of the metabolite
patterns, calculated from weight and height (measured, except self-reported in some
participants in the EPIC-Oxford cohort) [8].

2.4. Statistical Analysis
2.4.1. Participant Characteristics

Participants’ characteristics at baseline were summarized using frequencies for cate-
gorical variables and mean (standard deviation) for continuous variables.

2.4.2. Normalization of Metabolite Concentrations

A statistical pipeline has been developed for the EPIC metabolomics data [12] and
was applied in this analysis to the raw metabolite concentrations. Metabolites with more
than 25% missing values in each study were removed. For the remaining missing data, if
no more than 50% were missing in the batch, values were imputed to the batch-specific
median (of the considered metabolite); if more than 50% were missing in the batch, they
were otherwise imputed to the median of the medians of the measured values in the other
batches. Log-transformed concentrations of the metabolites were then normalized using
linear mixed-effects models to remove unwanted variations due to study, batch, and center;
study and batch were included as random effects and center was included as a fixed effect
in the models. Corrected metabolite concentrations analyzed in this work correspond to
residuals from the individual models. This pipeline was shown to be efficient in removing
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unwanted variability and improving the comparability of measurements acquired across
the different cancer-specific studies [12].

2.4.3. Metabolite Patterns

Patterns in metabolite profiles were previously identified using treelet transform in
an EPIC nested case-control study of prostate cancer [1]. In summary, treelet transform
is a linear dimension-reduction method aiming at summarizing the metabolite variables
into fewer latent variables that best capture the observed variation in the overall set of
metabolites [20,21]. Schmidt et al. identified three treelet components (henceforth referred
to in the text as metabolite patterns, which together explained 31.4% of the total variance in
metabolite concentrations), all of which were found to have an inverse association with
advanced and/or aggressive prostate cancer risk. The first metabolite pattern (Pattern
1) had positive loadings on diacyl-phosphatidylcholines (PC aa; n = 31) and acyl-alkyl-
phosphatidylcholines (PC ae; n = 33), as well as three hydroxysphingomyelins (SM(OH)):
C14:1, C16:1, and C22:2. The second metabolite pattern (Pattern 2) had positive loadings
on acylcarnitines C18:1 and C18:2, and the amino acids glutamate, ornithine, and taurine.
Finally, the third metabolite pattern (Pattern 3) had positive loadings on eight lysophos-
phatidylcholines (lyso PC a): C16:0, C16:1, C17:0, C18:0, C18:1, C18:2, C20:3, and C20:4
(Table 2) [1]. Each metabolite pattern was scaled to units of one standard deviation (SD), as
done in the previous study [1].

Table 2. Metabolite Patterns and their loadings.

Metabolite Pattern Contributing Metabolites
All with Positive Loadings

Percent Explained Variance
(%)

1

64 diacyl and acyl-alkyl
phosphatidylcholines;

(SM (OH) C14:1, SM (OH)
C16:1, and SM (OH) C22:2)

21.5

2
Acylcarnitines C18:1 and

C18:2, glutamate, ornithine,
and taurine

5.2

3

Lyso PC a C16:0, lyso PC a
C16:1, lyso PC a C17:0, lyso
PC a C18:0, lyso PC a C18:1,
lyso PC a C18:2, lyso PC a

C20:3, lyso PC a C20:4

4.7

2.4.4. Correlates of Metabolites

After excluding participants with missing values for time at blood collection (78),
fasting status (65), energy intake (2), BMI (23), and level of education (31), the current cross-
sectional analysis included data from 3042 participants. These data were subsequently
split into a discovery set (n = 2524; 83% of the population) and a validation set (n = 518;
17.0% of the population). Specifically, the discovery set included controls from the prostate
cancer sub-study that were used in the identification of metabolite patterns, while the
validation set comprised controls from the other three sub-studies (kidney [9], liver [10],
and colorectal [8] cancer). A discovery-validation set design was chosen to both reduce
the in-sample bias from the samples used to determine patterns, and to afford an external
validation for any associations that appeared statistically significant in initial analyses.

First, analyses were run in the discovery set. For each of the three metabolite patterns
and each dietary or lifestyle variable, a linear regression model was run with the metabolite
pattern as the dependent variable. Models were adjusted for age at blood collection (contin-
uous), time of day of blood collection (continuous), fasting status at blood collection (<3 h
since last meal, 3–6 h, >6 h, and missing), baseline education level (primary/no schooling,
secondary, professional/technical, university/higher, not specified, and missing), physical
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activity (Cambridge index [22]: inactive, moderately inactive, moderately active, active,
and missing), smoking status (never, former, current, and missing), energy (continuous,
kcal/day) and alcohol intakes (continuous, g/day), and BMI (continuous, kg/m2). Models
that examined alcohol intake and BMI as main exposures were not adjusted for alcohol
intake and BMI, respectively.

In the discovery set, to account for multiple testing, we used a Benjamini-Hochberg
false discovery rate (FDR) by metabolite pattern at a 5% threshold to define statistical
significance [23]. Each statistically significant association in the discovery set was re-
assessed in the validation set, using the same variables and adjusted models. Results from
the analyses in the validation set were not corrected for multiple testing. Associations
between exposures and metabolites that passed the FDR threshold in the discovery set, and
the significance threshold in the validation set (p < 0.05), were considered robust.

2.4.5. Individual Metabolite Analysis

A supplementary analysis was conducted of dietary exposures and BMI with the indi-
vidual metabolites that contributed to metabolite patterns with which they were robustly
associated (Supplementary Table S3). Models were adjusted as described above for the
main analysis. Individual metabolite values were log-transformed. Linear regressions were
run in the overall dataset (n between 2136 and 3042, depending on exposure). To account
for multiple testing, dietary and lifestyle correlates of metabolites that passed the FDR of
0.05 were determined to be statistically significant.

3. Results
3.1. Participant Characteristics

Main characteristics of the participants, overall and in the discovery and validation
sets, are shown in Table 3. 46.4% of men in the discovery set and 31.7% of men in the
validation set were not considered fasting at blood collection (<3 h since last meal), while
32.0% and 45.7% of men in the discovery and validation sets, respectively, were fasting
(>6 h since last meal). Otherwise, participant characteristics were relatively similar in the
discovery and validation sets.

Table 3. Main characteristics of men included in the analysis, overall and separately in discovery and
validation sets.

Participant Characteristics Overall
(n = 3198)

Discovery
(n = 2640)

Validation
(n = 558)

Age at blood collection (years) 57.2 (7.2) 57.5 (7.1) 56.0 (7.8)

Fasting status at blood collection (time since last meal) (n (%))

<3 h 1402 (43.8) 1225 (46.4) 177 (31.7)

3–6 h 631 (19.7) 526 (19.9) 105 (18.8)

>6 h 1100 (34.4) 845 (32.0) 255 (45.7)

Missing 65 (2.0) 44 (1.7) 21 (3.8)

Socio-economic and lifestyle factors (n (%))

Educational level

Primary/no schooling 1216 (38.0) 992 (37.6) 224 (40.1)

Secondary 347 (10.9) 289 (11.0) 58 (10.4)

Technical/professional 744 (23.3) 612 (23.2) 132 (23.7)

University or higher 761 (23.8) 633 (24.0) 128 (22.9)

Not specified 99 (3.1) 88 (3.3) 11 (2.0)

Missing 31 (0.9) 26 (0.9) 5 (0.9)
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Table 3. Cont.

Participant Characteristics Overall
(n = 3198)

Discovery
(n = 2640)

Validation
(n = 558)

Physical activity (Cambridge Index)

Inactive 722 (22.6) 582 (22.1) 140 (25.1)

Moderately inactive 1048 (32.8) 869 (32.9) 179 (32.1)

Moderately active 731 (22.9) 609 (23.1) 122 (21.9)

Active 637 (19.9) 523 (19.8) 114 (20.4)

Missing 60 (1.9) 57 (2.2) 3 (0.5)

Smoking status

Never 1025 (32.1) 843 (31.9) 182 (32.6)

Former 1374 (43.0) 1129 (42.8) 245 (43.9)

Current 765 (23.9) 640 (24.2) 125 (22.4)

Missing 34 (1.1) 28 (1.1) 6 (1.1)

Alcohol consumption at recruitment

Non-drinker (<0.1 g/day) 286 (8.9) 235 (8.9) 51 (9.1)

>0.1–3 g/day 432 (13.5) 360 (13.6) 72 (12.9)

>3–12 g/day 730 (22.8) 605 (22.9) 125 (22.4)

>12–24 g/day 644 (20.1) 539 (20.4) 105 (18.8)

>24 g/day 1106 (34.6) 901 (34.1) 205 (36.7)

Anthropometric variables (mean (SD))

Height (cm) 172.7 (7.0) 172.7 (7.1) 173.0 (6.7)

BMI (kg/m2) 26.9 (3.4) 26.9 (3.4) 26.9 (3.3)

Dietary variables (g/day) (mean (SD))

Total energy (kcal/day) 2390 (649) 2375 (650) 2440(641)

Dairy 303 (229) 302 (227) 306 (237)

Milk 198 (205) 199 (204) 195 (212)

Cheese 34.5 (35.2) 33.6 (34.1) 38.7 (39.6)

Yogurt 38.9 (70.4) 37.5 (67.2) 45.8 (83.5)

Egg 18.6 (17.9) 18.4 (18.1) 19.5 (16.7)

Total fish products 40.9 (41.8) 40.9 (41.8) 41.0 (41.6)

Total fish 35.1 (38.3) 35.2 (38.0) 34.8 (39.4)

Lean fish 24.9 (31.8) 25.1 (31.6) 24.2 (33.0)

Fatty fish 12.8 (18.2) 12.8 (18.4) 13.0 (17.5)

Red meat 49.6 (36.6) 49.0 (36.2) 52.5 (38.2)

Processed meat 45.9 (42.7) 45.9 (43.4) 45.9 (38.8)

Poultry 21.9 (21.2) 21.9 (21.0) 21.8 (22.4)

Fats and oils 32.6 (17.4) 32.3 (17.3) 33.9 (17.6)

Butter 5.24 (10.5) 5.45(10.6) 4.26 (9.68)

Margarine 9.74 (14.7) 9.69 (14.5) 9.93 (15.8)

Vegetable oil 16.5 (17.7) 16.1 (17.5) 18.4 (18.5)

Vegetables 190 (129) 191 (130) 186 (128)

Leafy vegetables 30.4 (49.0) 30.0 (49.1) 32.2 (48.6)
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Table 3. Cont.

Participant Characteristics Overall
(n = 3198)

Discovery
(n = 2640)

Validation
(n = 558)

Fruiting vegetables 67.6 (56.3) 67.0 (56.1) 70.2 (57.1)

Root vegetables 19.6 (24.2) 20.1 (24.6) 17.5 (22.0)

Fruit 236 (206) 233 (204) 251 (214)

Cereal 257 (139) 253 (134) 273 (161)

Scores for metabolite patterns

Pattern 1 (geometric mean (SD)) 10.2 (1.30) 10.2 (1.30) 10.2 (1.20)

Pattern 2 (geometric mean (SD)) 1.98 (0.44) 1.98 (0.44) 1.98 (0.45)

Pattern 3 (geometric mean (SD)) 6.13 (0.61) 6.13 (0.61) 6.13 (0.61)

BMI was missing for 23 (0.7%) participants (21 in discovery set). Total energy intake was missing for 2 (0.01%)
participants (2 in discovery set). All dietary exposures (except fatty fish and lean fish) were missing for 2 (0.01%)
participants (2 in discovery set). Fatty fish was missing for 426 (13%) participants (354 in discovery set). Lean fish
was missing for 925 (29%) participants (780 in discovery set). Abbreviations: BMI, body mass index.

3.2. Correlates of Metabolite Patterns

Figure 1 depicts the betas and 95% confidence intervals for associations between the
metabolite patterns and selected potential correlates in the discovery and validation sets.
Supplementary Table S2 shows the full results for betas, p-values, and Padj values (p-values
after adjusting for multiple testing in the discovery set) for the exposure–metabolite pattern
associations in the discovery and validation sets. Associations with individual metabolites
are shown in Supplementary Table S3.
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Of the nine exposures that passed the significance threshold after adjusting for multiple
testing in the discovery set, intakes of total fish products, total fish, lean fish, and alcohol
all remained statistically significantly (p < 0.05) positively associated with pattern 1 in the
validation set (Figure 1a). In the analysis of individual metabolites contributing to pattern
1, the associations with the lowest p-values included alcohol with PC aa C32:1, C34:1, and
C36:4, and total fish products, total fish, and lean fish with PC aa C42:2 (see Supplementary
Table S3 for full results).

For metabolite pattern 2, seven exposures passed the significance threshold after
multiple testing in the discovery set, though only BMI remained positively and statistically
significantly associated with the metabolite pattern in the validation set (Figure 1b). This
relationship appeared to be strongly driven by a strong, positive BMI-glutamate association
(Supplementary Table S3).

Of the six exposures that were significant after multiple testing in the discovery set,
fatty fish intake and BMI remained statistically significantly inversely associated with
pattern 3 in the validation set (Figure 1c). In the analysis of individual metabolites, BMI
was strongly and inversely associated with all eight lyso PCs loading on the metabolite
pattern, while fatty fish was significantly inversely associated with lyso PCs C16:1, C18:0,
C18:1, C20:3, and C20:4 (Supplementary Table S3).

4. Discussion

This large cross-sectional study identified several dietary factors and BMI as correlates
of metabolite patterns that have previously been shown to associate inversely with more
aggressive prostate cancer subtypes. The intakes of alcohol, total fish products, and its
subsets total fish and lean fish, were all positively associated with a metabolite pattern
with higher concentrations of 31 PC aas, 33 PC aes, and three hydroxysphingomyelins.
BMI was positively associated with the second metabolite pattern of two acylcarnitines,
glutamate, ornithine, and taurine, and an individual metabolite analysis showed that this
was driven by a specific association with glutamate. Finally, BMI and fatty fish intake
were inversely associated with scores of a third metabolite pattern of eight lyso PCs as no
additional associations of dietary variables or BMI with metabolite patterns were validated.

Comparing these results to previous studies is complex; this analysis primarily in-
vestigated metabolite patterns rather than individual metabolites. Broadly in line with
our results, however, positive associations of alcohol intake with some of the metabolites
loading on metabolite pattern 1 (phosphatidylcholines and hydroxysphingomyelins) have
previously been reported in other analyses [24–27].

Though there are limited prior studies of associations between fish intake and metabo-
lites, a positive association between fish intake and certain phosphatidylcholines has also
been previously reported in an analysis in the TwinsUK cohort [24], and in an intervention
study at the University of Otago [28]. This may be partially attributed to fish being a dietary
source of choline, which is a requirement for hepatic phosphatidylcholine biosynthesis [29].

The positive association between BMI and the metabolites loading on metabolite
pattern 2 (driven largely by glutamate) was consistent with findings in other studies,
including the Framingham Heart Study, and the Malmö Diet and Cancer Study [30].
Additionally, a Mendelian randomization analysis suggested that the positive effect of BMI
on circulating glutamate may be causal [9]. Previous studies have also demonstrated that
glutamate is positively linked to visceral obesity [8,9,30,31].

This study found inverse associations of fatty fish intake and BMI with pattern 3,
which comprised eight lyso PCs. To date, there are still limited data available regarding the
effects of diet on lyso PC concentrations. However, an 8-week sequential therapy clinical
trial for adults with diabetes mellitus found a reduction in circulating levels of lyso PC
C16:1 after consistent fish oil supplementation [32], which may support the current study’s
findings that fatty fish is inversely associated with a metabolite pattern of eight lyso PCs,
including lyso PC C16:1.
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For BMI and metabolite pattern 3, similar to our study, the aforementioned Mendelian
randomization analysis on BMI and metabolites also found an inverse effect of BMI on
blood levels of lyso PCs C18:1 and C18:2 [9], both of which were included in the pattern.

The current analyses have identified dietary (fish and alcohol) and anthropometric
(BMI) correlates of three metabolite patterns that were previously found to be inversely
associated with more aggressive prostate cancer subtypes [1]. The implications of these
associations are not yet clear; fish [33–41] and alcohol intakes [42–51] are not established risk
factors for prostate cancer, while any associations of BMI with prostate cancer risk, of which
positive associations with advanced disease and death have previously been reported [52],
might be due to differences in the timing of detection of prostate cancer in men with obesity
compared to men with a normal BMI [27,53–57]. Furthermore, research is ongoing to
determine whether the metabolite pattern–prostate cancer associations previously reported
are likely to be causal.

5. Strengths and Limitations

A major strength of this study is its large sample size owing to the pooling of
metabolomics data from four sub-studies within EPIC. Furthermore, using the metabolite
patterns as outcome variables accounted for correlations between metabolites [1]. In addi-
tion, having access to a wide variety of collected exposure data allowed for the investigation
of a range of potential dietary variables and BMI, and adjustment for potential confounding
factors. Finally, the discovery/validation approach likely reduced the in-sample bias due
to participant overlap between those used to derive metabolite patterns and those used to
validate the diet- and BMI-metabolite pattern associations.

One limitation of this study is its cross-sectional design, which prevents drawing any
definitive conclusions about the temporality and causality of the reported associations.
Potential heterogeneity in metabolite concentrations, such as between the four sub-studies,
was addressed by applying a dedicated pipeline to the data prior to statistical analyses [12],
and the analytical protocol used has demonstrated high reproducibility between instru-
ments [57]. To assess dietary intakes, food frequency questionnaires were used in most
EPIC centers, which can result in some measurement error due to the misreporting of food
consumption, recall bias, or errors related to the food composition tables used. Despite this,
numerous pilot and cross-sectional studies have supported the reproducibility and validity
of the food frequency questionnaire method [27,58]. Finally, this study was conducted
on a European population, and while there is limited information on racial and ethnic
diversity of the participants, it is expected that the participants are primarily of European
ancestry. This limited diversity may hamper the generalizability of the current findings
to non-European populations. Future research should evaluate associations in different
ethnic and racial groups to provide a more generalizable understanding of determinants of
the circulating metabolome.

6. Conclusions

This large, cross-sectional study in European men indicates that BMI and intakes of to-
tal fish products, fish subtypes, and alcohol are associated with the metabolite patterns that
have been previously linked to a lower risk of aggressive prostate cancer tumor subtypes.
The nature and possible causality of these associations warrants further investigation.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nu14163306/s1, Table S1: Instruments used to quantify metabolites
in the study population; Table S2. Associations of dietary exposures and BMI with metabolite patterns
in the discovery and validation sets; Table S3: Associations of validated dietary exposures and BMI
with individual metabolites loading on each metabolite pattern.
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