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Abstract: An important result we learn in the statistical physics course is that statistical en-
sembles are equivalent in the thermodynamic limit. However, a key assumption behind this result is
that interactions in the system are short-range. When interactions are long-range, ensemble equiv-
alence cannot be taken for granted. In this TFG, a simplified self-gravitating system is studied as
an example of long-range interacting systems. By introducing the Thirring model, we will be able
to see how negative specific heat appears in the microcanonical ensemble while in the canonical
ensemble this region is replaced with an isothermal first-order phase transition.

I. INTRODUCTION

In the present work we are going to study a solvable
model for long-range interacting systems, known as the
Thirring Model. This toy model was introduced by Wal-
ter Thirring in 1969 [1], and reproduces some of the char-
acteristic properties of self-gravitating systems, such as
the presence of negative specific heat in the microcanon-
ical ensemble. By introducing this model, Thirring was
able to exemplify how ensemble inequivalence appears in
long-range interacting systems by studying the behavior
of a non-local potential in an isolated system and com-
paring it to a system in contact with a heat bath.

When we talk about long-range interactions, we are
considering systems whose potential decays as a power
law at large distances, r−α, and for which the total en-
ergy, E, grow superlinearly with volume, V , at constant
density. Let be d the dimension of the system. E will
grow linearly with volume, if and only if, α > d, i.e.,
the system is extensive (size dependent thermodynamic
variables are proportional to system size). In such case,
we say that the interactions are short-range. On the con-
trary, if α ≤ d, E will grow superlinearly with volume,
E ∝ V 2−α/d, which violates extensivity. In this case, we
say that the interactions are long-range or non-integrable,
just referring to the energy divergence [2].

Long/short-range interactions are intrinsically related
to additive nature of systems. We say that a system
is additive when dividing it into different subsystems,
each with a certain energy, the total energy is compara-
ble to the sum of the energies of each subsystem sepa-
rately, while the interaction energy between subsystems
is negligible. Additivity implies extensivity, thus non-
extensivity implies non-additivity. Therefore, we can say
that macroscopic systems with short-range interactions
are additive, while systems with long-range interactions
are non-additive [4].

Because of non-additivity, some striking properties
may appear in equilibrium configurations, such as neg-
ative specific heat in the microcanonical ensemble, the
violation of the usual Gibbs-Duhem equation or ensem-
ble inequivalence (due to changes in the concavity of the
thermodynamic potentials, for which non-additivity is re-

sponsible) [6].
The study on this work will be centered on a simplified

model of a star (self-gravitating system). However, we
can find some other examples of long-range interacting
systems like plasmas, two-dimensional and geophysical
fluids and spin systems [6].

II. ENSEMBLE INEQUIVALENCE IN
LONG-RANGE INTERACTING SYSTEMS

A statistical ensemble consists of a collection of virtual
replicas of the system under consideration from which
averages are performed to obtain relevant information.
The ensemble is characterized by the particular set of
control parameters defining the macrostate of the repli-
cas, thus defining the macrostate of the single system as
well. Different ensembles then represent different physi-
cal conditions on the system, which are specified by the
given set of control parameters. Whether the different
ensembles can be regarded as equivalent or not depends
on the system being examined, as we discuss below with
an example.

A. Ensemble equivalence

Ensemble equivalence relies upon two important phys-
ical properties [2]:

1. In the thermodynamic limit, excluding critical
points, the relative fluctuations of the thermody-
namic parameters that are not held fixed vanish.

2. When a macroscopic physical state is realizable in
on ensemble, it can be also realized in another en-
semble.

Let us consider the microcanonical ensemble in which
the system is isolated and assumed to have a fixed energy
E, volume V and number of particles N . If this system
is put in contact with a thermal bath that fixes its tem-
perature T (thus the energy fluctuates) with the same V
and N , the appropriate description of equilibrium states
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is obtained in the canonical ensemble. Focusing on the
second point above, if these two ensembles are equivalent
it means that the system presents the same states when
it is isolated as when it is thermalized with a bath. Below
we describe a situation in which this is not the case.

B. Ensemble inequivalence - Negative specific heat

Ensemble inequivalence means that the experiments
realized in a system described by a certain ensemble,
may give different results compared to other similar ex-
periments performed in another ensemble. In long-range
interacting systems, ensemble equivalence does not al-
ways hold because of non-additivity [2]. One example of
this inequivalence is materialized in systems that exhibit
negative specific heat.

Let us consider the case of a star whose nuclear fuel is
exhausted. When radiation energy is extracted from the
star, it will contract and heat up. Thus, the star acts like
a system with negative specific heat [1]. This behaviour
can be understood with a simplified argument. We recall
that the interaction in graviating systems (in d = 3) goes
as r−1, so it is long-range.

According to the virial theorem, the kinetic energy K
and the potential energy W of a self-gravitating system
in a steady state are related to each other by

2K + W = 3PV, (1)

where P is the pressure at the boundary of the system. If
we consider the system large enough to assume that the
boundary can be neglected, and that for an isothermal
system K = 3

2 NT (we use units in which the Boltzmann
constant is kB = 1), then the total energy will be [3]

E = K + W = −K = −3
2NT. (2)

Therefore,

CV = dE

dT
= −3

2N < 0. (3)

As we can see, the specific heat is negative. This means
that, by losing heat the system grows hotter and con-
tinues to radiate energy. There is, however, a proof in
statistical mechanics showing that specific heats are pos-
itive, so the above result could be seen as a paradox [3].
For a canonical ensemble in thermal equilibrium, the heat
capacity is given by

CV = d⟨E⟩
dT

= β2(⟨E2⟩ − ⟨E⟩2) > 0, (4)

where ⟨E⟩ is the average energy. Since the specific heat
is a measure of the fluctuations of energy, it must be
positive [10]. Thirring then showed that the paradox is
solved if one observes that negative specific heat can only
be realized in systems with fixed energy and under certain
conditions [1], in the microcanonical ensemble, where the
canonical expression (4) does not necessarily apply.

III. THIRRING MODEL

Thirring realized that, for long-range interacting sys-
tems, the statistical ensembles are not necessarily equiv-
alent. To analyze the problem, he introduced a model
which is an exact solution for a [1] “somewhat artificial
version of a star”. Phase transitions and ensemble in-
equivalence in Thirring’s model were studied in [6].

In this model we consider N particles of mass m en-
closed in a volume V . The position and momentum of
the i-th particle are denoted by xi and pi, respectively.
The Hamiltonian of the system is H = K + W , where
the kinetic energy is

K =
N∑

i=1

p2
i

2m
(5)

and the potential energy has the form

W =
∑
i>j

w(xi, xj) (6)

for which w(xi, xj) specifies the interaction between par-
ticles. In this model, inside an interaction volume V0
each particle has a constant, attractive interaction with
the other particles and outside V0 the particles are free,
mimicking an “atmosfere”. By introducing the step func-
tion

θV0(x) =
{

1 if x ∈ V0

0 if x /∈ V0
, (7)

such an interaction potential is given by

w(xi, xj) = −2νθV0(xi)θV0(xj), (8)

where ν > 0 is a coupling constant with units of energy.
Just for clarifying that we are considering long-range in-
teractions, notice that, being α the exponent in the power
law, then α = 0, which will be always lower than the di-
mension of the system. Using (8), the potential energy
(6) is easily evaluated to W = −νN0(N0−1), where N0 is
the number of particles inside the volume V0. Assuming
a large number of particles, we simply take the potential
energy as

W = −νN2
0 . (9)

The potential energy (9) gives the system precisely the
properties that interest us here. Since N0 is a fraction of
the total number of particles, with the potential energy
(9) the total energy E behaves as E ∼ N2. Thus, the
system is not additive [2, 4]. In particular, microcanoni-
cal and canonical ensembles are not equivalent for some
range of parameters controling the state of the system.

A. Microcanonical ensemble

The microcanonical ensemble corresponds to consider
isolated systems, in which the control parameters are E,
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V and N . The thermodynamics of isolated systems fol-
lows from the microcanonical entropy

S(E) = ln Ω(E), (10)

where Ω(E) is the number of microstates compatible with
the energy E at fixed volume and number of particles.
Here we compute Ω(E) as the number of microstates in
phase space enclosed by a surface of energy E, so

Ω(E) = 1
h3N N !

∫
d3N x d3N p θ(E − H), (11)

where h is a constant and θ(x) is the Heaviside step func-
tion. Since a large number of particles is assumed, count-
ing states on a thin energy shell in phase space or using
the density of states leads to an equivalent entropy [5].
Carring out the integration over momenta gives

Ω(E) = 1
AN N !

∫
d3N x θ(E − W )(E − W )3N/2, (12)

where AN = (3N/2)!/(2mπ/h2)3N/2. To compute the
remaining integral, we divide the total volume in two
cells of volume V0 and V − V0 and take advantage from
the fact that the potential energy is constant in each cell.
Hence, instead of integrating over coordinates, we sum
over the number of particles in the cells and take [1]

1
N !

∫
d3N x →

∑
N0

V N0
0 (V − V0)N−N0

N0!(N − N0)! , (13)

which is obtained by using the binomial theorem. This
procedure is exact if the integrand is constant for all par-
ticle configurations leading to the same number of par-
ticles N0. Using (13), the number of microstates (12)
becomes

Ω(E) = V N
0

AN

N∑
N0=Nmin

(E + νN2
0 )3N/2eη(N−N0)

N0!(N − N0)! , (14)

where η = ln(V/V0 − 1) is a reduced volume and a mini-
mum value Nmin for N0 is introduced to ensure that the
condition K = E + νN2

0 > 0 can be fulfilled for E < 0.
By combining equations (10) and (14), we obtain

eS(E,η) =
N∑

N0=Nmin

eŜ(E,η,N0), (15)

where the function Ŝ(E, η, N0) can be identified from
equation (14).

In order to evaluate the entropy S(E, η) from equa-
tion (15), we approximate the sum by the single term for
which Ŝ(E, η, N0) reaches a maximum as a function of
N0. This variational problem can be analyzed by intro-
ducing the reduced energy ε and the fraction of particles
α defined by

E = νN2(ε − 1), N0 = N(1 − α), (16)

so the entropy per particle s(ε, η) = S/N is obtained
according to

s(ε, η) = max
α

ŝ(ε, η, α), (17)

where ŝ = Ŝ/N is given by

ŝ(ε, η, α) = 3
2 ln(ε−2α+α2)−(1−α) ln(1−α)−α ln α+αη.

(18)
To obtain the expression (18) we have used Stirling’s ap-
proximation in (14) and for simplicity we have omitted
constant terms which are not relevant for the variational
problem. We highlight that the equation

∂ŝ

∂α
= − 3(1 − α)

ε − 2α + α2 + ln
(

1 − α

α

)
+ η = 0 (19)

can have two solutions α = ᾱ for some values of ε and η,
so the system exhibits first-order phase transitions in the
microcanonical ensemble [6]. The variational problem
(17) guarantees that ᾱ is always the solution maximizing
the entropy.

Introducing the reduced temperature τ = T/νN and
employing the relation 1/T = ∂S/∂E, one obtains the
microcanonical temperature as

1
τ

= ∂

∂ε
s(ε, η) = ∂

∂ε
ŝ(ε, η, ᾱ), (20)

where ᾱ maximizes the entropy according to (17). From
(18) and (20) we explicitly get

3
2τ = ε − 2ᾱ + ᾱ2. (21)

Notice that the above equation is simply K = E − W
expressed in terms of the reduced variables. Notice also
that since E ∼ N2 and S ∼ N , the temperature scales as
T ∼ N in such a way that the kinetic energy behaves as
K ∼ N2 as well. This is a typical scaling of long-range
interacting systems [2] and, in particular, of more accu-
rate models of a self-gravitating gas [7–9]. Expresion (21)
allows us to represent the microcanonical temperature of
the Thirring model as a function of the energy. From this
curve one can infer the sign of the heat capacity.

B. Canonical ensemble

In the canonical ensemble the system is assumed to be
in thermal equilibrium with a thermostat a temperature
T at fixed V and N . The thermodynamics of the system
in this case follows from the free energy

F (T ) = −T ln Z(T ), (22)

where Z(T ) is the canonical partition function given by

Z(T ) = 1
h3N N !

∫
d3N x d3N p e−βH (23)
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(a) η = 1.5 (b) η = 2.0

(c) η = 3.0 (d) η = 5.0

FIG. 1: Graphical representation of the caloric curves in both microcanonical and canonical ensembles for different values of
the reduced volume η. Four different intervals can be seen in the figure. In the first interval (a) we can see how ensembles
are equivalent, while for a certain value of η we reach the canonical critical point (b) for which the slope in the canonical
representation starts to become negative (c) and, therefore, negative specific heat appears. Finally, for a certain η value the
tangent starts to become vertical for the microcanonical representation, causing a jump in the reduced temperature axis (d).

with β = 1/T . The evaluation of this partition function
proceeds in a similar way to the microcanonical case.
Integration over momenta and replacing the integration
over positions according to (13) yields

Z(T ) = V N
0

λ3N
T

N∑
N0=0

eβνN2
0 +η(N−N0)

N0!(N − N0)! , (24)

where λT = h/(2πmT )1/2 is the thermal wavelength and
we have used (9) to express the potential energy. From
equations (22) and (24) we get

e−βF (T,η) =
N∑

N0=0
e−βF̂ (T,η,N0), (25)

where F̂ (T, η, N0) can be identified from (24) and we will
approximate the sum by the single term for which this
quantity reaches a minimum. In the canonical ensem-
ble we also consider the reduced temperature τ and the
fraction of particles α defined by

T = νNτ, N0 = N(1 − α). (26)

However, here they have a meaning different from the
microcanonical case; τ is now a control parameter and
we will take α = ᾱ minimizing the free energy for given
τ and η.

Introducing the reduced free energies φ(τ, η) = βF/N

and φ̂(τ, η, α) = βF̂/N , according to (25), the variational
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FIG. 2: Graphical representation of the reduced free energy,
φ, depending on the fraction of particles, α, for a constant
value of the reduced volume, η = 5.0, and different values of
the reduced temperature, τ .

problem in the canonical ensemble can be stated as

φ(τ, η) = min
α

φ̂(τ, η, α), (27)

where

φ̂(τ, η, α) = − 1
τ

(1 − α)2 − 3
2 ln

(
3τ

2

)
+ (1 − α) ln(1 − α) + α ln α − ηα.

(28)

Expression (28) is obtained from (24) omitting, for sim-
plicity, irrelevant constant terms. Since the equation

∂φ̂

∂α
= 2

τ
(1 − α) − ln

(
1 − α

α

)
− η = 0 (29)

can have two solutions ᾱ for some values of τ and η, the
system also undergoes first-order phase transitions in the
canonical ensemble. Among these solutions we choose ᾱ
that minimizes the free energy according to (27). Fur-
thermore, to represent the caloric curve in the canonical
ensemble, we have to compute the mean energy ε̄ as a fuc-
ntion of τ . From the relation Ē = ∂(βF )/∂β, in terms

of the reduced variables we obtain

ε̄ = 3τ

2 + 2ᾱ − ᾱ2. (30)

C. Microcanonical and canonical caloric curves

From the representation of the caloric curves for the
microcanonical and canonical ensembles (Fig. 1), we can
see that above a certain η value, the representation of
both ensembles is no longer equivalent. Considering that
the specific heat is the relation between energy and tem-
perature, a negative slope will mean a negative specific
heat. As can be seen in figure (c), in the canonical repre-
sentation there is a jump in the energy, evidencing a first
order phase transition.

By plotting the reduced free energy in front of the frac-
tion of particles (Fig. 2), we can see the behavior of the
two free energy minima. Considering that for η = 5.0,
the transition line in the canonical ensemble appears for
τ ≃ 0.2 (as we can see in (d)), by taking values of τ
below the transition line we will see the dominance of
one of the two minima (equilibrium value) over the other
(metastable minimum). As we increase the value of τ the
two minima reach the same value (transition line), until
for higher values, the dominance is reversed.

IV. CONCLUSIONS

We have studied a simplified model of a self-gravitating
system by using the Thirring’s model. We have studied
the thermodynamics in the microcanonical and canoni-
cal ensembles. By maximizing the entropy per particle
(18) in the microcanonical ensemble and minimizing the
reduced free energy (28) in the canonical one, we have
been able to plot the reduced temperature depending on
the reduced energy, which have allowed us to see states
with negative specific heat in the microcanonical ensem-
ble. In the canonical ensemble these states are replaced
by an isothermal first-order phase transition, leading to
ensemble inequivalence. Therefore, we have analyzed an
example of a long-range interacting system for which en-
semble equivalence does not hold.
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