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Abstract: We study the cosmic evolution from the perspective of the Running Vacuum Models,
in which the vacuum energy density is dynamic throughout the cosmic history. In this context, we
find that there is an initial period of inflation, in which the vacuum decays into radiation and there
is a huge entropy production. In contrast to the standard inflaton-based mechanism of inflation,
there is a smooth transition between this period and the standard ΛCDM radiation epoch. We also
test the model against the Generalised Second Law, finding it is fulfilled in the current universe but
not in the early stages. This is a welcome feature, however, as it may provide a possible solution to
both the entropy and horizon problems, in a context where the eventual thermodynamic equilibrium
of the universe is not jeopardised.

I. INTRODUCTION

The ΛCDMmodel has been the most successful cosmo-
logical theory, due to its ability to explain the accelerated
expansion of the Universe, the Cosmic Microwave Back-
ground (CMB), the Big Bang Nucleosynthesis (BBN)
and the observed abundances of elements, among others.
Nevertheless, the model is not exempt of some severe lim-
itations, as the well-known Hubble tension, for example,
evinces: the incompatible measurements of the Hubble
parameter H are hard to explain in this context, while
a non-constant Cosmological Constant (CC), Λ, may be
able to alleviate this tension [1]. But perhaps the most
well-known issue of the ΛCDM model is the so-called
CC problem, which arises when one tries to compare
the value for the vacuum energy density, ρΛ = Λ/8πG,
obtained via observations (ρ0Λ ∼ 10−47GeV4) and theo-
retical predictions: even if we only consider the lowest
contribution from the electroweak vacuum energy, the
discrepancy is already [2–4]:∣∣ρEW

Λ /ρ0Λ
∣∣ = O(1055) , (1)

which is perhaps the most disastrous prediction in the
history of science. On top of that, there are the horizon
and entropy problems [5, 6], which will be explained in
detail later on.

In view of these issues, it has been proposed in the
literature a type of Running Vacuum Models (RVMs),
in which the vacuum energy density is dynamic through-
out the entire cosmic history and runs with the Hubble
rate, ρΛ(H); this dynamical dependence comes from the
calculation of quantum effects in QFT in curved space-
time (see [2–6] and references therein). We will try to
show that these RVMs may involve the necessary theo-
retical ingredients to provide a solution (or at least an
alleviation) to the rest of the aforementioned problems,
while at the same time complying with the laws of ther-
modynamics. The RVMs have also been tested against
observational data from Supernovae type Ia, the CMB
shift parameter and Baryonic Acoustic Oscillations [7–9];
as well as Large Scale Structure formation [6–10], with

favourable results.
The aim of this work is to solve the cosmological equa-

tions of the RVMs so as to find expressions for the Hubble
parameter as well as the matter and radiation densities,
both in the early and current universe; we will see that
these solutions provide a smooth transition between the
inflation and the radiation epoch. We will also study the
model from a thermodynamic point of view, for which we
shall adopt the framework of the Generalised Second Law
(GSL). Lastly, we will analyse the ability of the model to
solve the horizon and entropy problems.

II. RUNNING VACUUM MODELS

We will focus our study on the type of models, de-
veloped in the theoretical framework of QFT in curved
space-time, in which the vacuum energy density is a
dynamical parameter throughout the cosmic evolution,
ρ̇Λ ̸= 0. Notice that a time-evolving gravitational con-
stant G = G(t) has also been discussed in the literature
(see [2, 11]), however we will restrict ourselves to the
case G = const. Using the FLRW metric one can obtain
the following renormalisation group equation (we will be
using natural units) [2]:

dρΛ
d lnH2

=
1

(4π)2

∑
i

[
aiM

2
i H

2 + biH
4 +O

(
H6
)]

. (2)

The motivation and derivation of this equation can be
found in [3]. Here the index i refers to the contributions
of boson and fermion matter fields with masses Mi. It
can be seen [2] that the solution is of the form:

ρΛ(H) =
3

8πG

(
c0 + νH2 + α

H4

H2
I

)
, (3)

where the dimensionless coefficients ν, α are related to
the parameters ai, bi, Mi in (2), while HI is the Hubble
rate at the scale of inflation. A more general solution
allows H2n+2 terms, instead of the O(H4) term, to ap-
pear in (3). It leads, however, to the same conclusions
we shall find, see Apendix B in [5].
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The O(H4) term dominates the vacuum energy evolu-
tion in the early inflationary universe, when the Hubble
rate is comparable to HI , while in the present universe
it is negligible due to the small value at the current time
H0. This allows us to set the value for the constant pa-
rameter c0 (which in this context would be nothing but
the ”actual” cosmological constant!) in terms of the cur-
rent vacuum energy density ρ0Λ:

c0 =
8πG

3
ρ0Λ − νH2

0 = H2
0 (Ω

0
Λ − ν) . (4)

In the last equality we have used the standard definitions
Ω0

Λ = ρ0Λ/ρ
0
c and ρ0c = 3H2

0/8πG. After inflation, when
H ≪ HI , the dynamics of ρΛ begin to be dominated
by the O(H2) term. Here, a small ν term ensures a mild
evolution of the vacuum energy, or in other words a small
correction to the ΛCDM model. Indeed, confronting the
model with observations one finds |ν| <∼ 10−3 [7, 8, 11],
while a thermodynamic analysis leads us to conclude that
ν > 0 [5]. Therefore, the CC problem would be nothing
but a consequence of living in a very low energy uni-
verse where the vacuum energy density is almost equal
to 3c0/8πG, which, following the ΛCDM model, leads us
to believe it has remained constant throughout the entire
cosmic history!

We shall now derive some useful relations to study
the evolution of the matter, radiation and vacuum en-
ergy densities in terms of the scale factor a. Applying
Bianchi’s identity ∇µGµν = 0 to Einstein’s equations
with a CC term, Gµν = 8πG(Tµν + gµνρΛ), one finds [6]:

ρ̇+ 3H(ρ+ p) = −ρ̇Λ , (5)

where we have used the FLRWmetric to calculate the co-
variant derivative, and the EoS of vacuum ωΛ = pΛ/ρΛ =
−1. Note that ρ = ρm + ρr and p refer respectively to
the density and pressure of both radiation and relativistic
matter. We should also recall Friedmann’s equations:

3H2 = 8πG(ρ+ ρΛ) , (6)

2Ḣ + 3H2 = −8πG(p+ pΛ) , (7)

where we assume that the spatial curvature is zero or
negligible.

A. Current universe

As we have mentioned, the post-inflationary universe is
driven by the O(H2) term. Rewriting (3) by substituting
(4) we obtain:

ρΛ(H) = ρ0Λ +
3ν

8πG
(H2 −H2

0 ) . (8)

Writing (5) for either a matter or radiation-dominated
density, with ωm = 0 or ωr = 1/3:

ρ′ +
3

a
(1 + ω)ρ = −ρ′Λ , (9)

where prime denotes differentiation with respect to the
scale factor, and we have used the chain rule d/dt =
aHd/da. Solving for both the matter and radiation den-
sity leads to [5]:

ρm(a) = ρ0ma−3(1−ν) , (10)

ρr(a) = ρ0ra
−4(1−ν) . (11)

For ν = 0 we recover the standard solutions, as expected.
Inserting (10) in (9) one finds for the matter epoch:

ρΛ(a) = ρ0Λ +
νρ0m
1− ν

(a−3(1−ν) − 1) . (12)

Substituting these formulas in (6):

H2(a) = H2
0

[
1 +

Ω0
m

1− ν
(a−3(1−ν) − 1)

]
, (13)

where Ω0
m = ρ0m/ρ0c and Ω0

m +Ω0
Λ = 1 as usual. In these

last results we verify, once again, that the ν-term seems
to act as a small dynamical correction to the cosmological
constant.

B. Early universe

For the early inflationary universe we can neglect the
constant term c0, which is relevant only for the current
universe and essentially determines the value of the mea-
sured CC, see equation (4). Combining (6), (7) and sub-
stituting (3) we find:

aHH ′ + 2H2 = 2

(
νH2 + α

H4

H2
I

)
. (14)

Solving this equation leads [6]:

H(a) =

√
1− ν

α

HI√
1 +Da4(1−ν)

, (15)

where D must be a positive constant so that the Hubble
rate decreases with the expansion. Notice that H(0) =√
(1− ν)/αHI is finite (as long as α ̸= 0) and therefore

there is no singular initial point in the RVMs. That is,
if there were such an initial singularity, it was erased by
the process of inflation, together with the spatial curva-
ture and any other previous information of the Universe.
It is also important to note that in the initial period
Da4(1−ν) ≪ 1, H(a) ≃ H(0) and thus integrating the
scale factor we find a(t) = a(0)eH(0)t, i.e. the scale fac-
tor increases exponentially during the early inflationary
period.
Substituting (15) in Friedmann’s equations we find for

the vacuum and radiation density [5]:

ρr(â) = ρ̂I
(1− ν)â4(1−ν)

[1 + â4(1−ν)]2
, (16)

ρΛ(â) = ρ̂I
1 + νâ4(1−ν)

[1 + â4(1−ν)]2
, (17)
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where we have re-scaled ĤI = H(0), ρ̂I = 3Ĥ2
I /8πG

and â ≡ a/a∗. Here a∗ ≡ D−1/[4(1−ν)] essentially corre-
sponds to the vacuum-radiation equality point (not to be
mistaken with the radiation-matter equality point which
occurs in a much later stage of the cosmic evolution). We
can immediately see that ρr(0) = 0 and ρΛ(0) = ρ̂I , thus
in the beginning there is only vacuum energy. Vacuum
then decays into radiation, however ρΛ remains essen-
tially constant in the very first instants, causing a short
inflationary period. The radiation density continues to
increase until the equality point a∗ is reached, after which
it starts to decay as well. It is also important to realise
that |ρΛ/ρr| ∝ |ν| ≪ 1 after the equality point, and
therefore we would have a smooth transit to the radia-
tion epoch of the ΛCDM picture, where BBN can occur
[6]. All these results are represented in Figure 1.

FIG. 1: Evolution of ρΛ(â) and ρr(â) in the early universe
(normalised to ρI), represented in double-logarithmic scale.
We set ν = 10−3.

III. GENERALISED SECOND LAW

For our thermodynamic discussion we shall adopt the
perspective of the GSL, where one takes the apparent
horizon as the characteristic length and studies the evo-
lution of the entropy inside it, SV , with contributions
from both matter and radiation; as well as the entropy
of the horizon area, SA [12]. The following conditions
must be fulfilled:

S′
V + S′

A ≥ 0 , S′′
V + S′′

A < 0 . (18)

The first condition ensures the increase of entropy while
the second guarantees the system will reach thermody-
namic equilibrium. In the case of a FLRW universe with
no spatial curvature, the apparent horizon has the form
lh(t) = H−1(t), and surface entropy [5]:

SA =
A

4G
=

πl2h
G

=
π

GH2
. (19)

A. Current universe

By simply substituting (13) in (19) we find:

SA(a) =
π

GH2
0

[
1 +

Ω0
m

1−ν (a
−3(1−ν) − 1)

] . (20)

To determine SV we must revisit equation (10). Since
ρm = mn, if we assume the particle mass remains con-
stant during the cosmic history m = m0, then the
number density cannot follow the standard dilution law
(n ∼ a−3) but rather an ”anomalous” one:

n(a) = n0a
−3(1−ν) . (21)

This equation, given ν > 0, implies particle production
through vacuum decay is still active even in our current
universe. In our present universe the entropy will be
dominated by the matter contribution, thus:

SV = nσVh =
4π

3
l3hnσ =

4πσ

3

n(a)

H3(a)
, (22)

with σ being the specific particle entropy. For the sake
of simplicity we can set σ = kB (keeping in mind that
Boltzmann’s constant is the unit of entropy), and in nat-
ural units kB = 1. Using (21) and (13) we find:

SV(a) =
4πn0a

−3(1−ν)

3H3
0

[
1 +

Ω0
m

1−ν (a
−3(1−ν) − 1)

]3/2 . (23)

Notice that SV(a → ∞) = 0, i.e. the volume entropy
is actually decreasing with the expansion, and therefore
cannot fulfil the GSL by itself. Its numerical significance,
however, is negligible in front of SA, since:

n0

H3
0

∼ ρ0m
mH3

0

∼ 1

GmH0
∼
(
H0

m

)
1

GH2
0

≪ 1

GH2
0

, (24)

where we used H2
0 ∼ Gρ0m, from (6), and in the last

inequality we considered H0 ∼ 10−42GeV which is much
smaller than any known particle mass. Hence it seems SA
should be able to continue increasing the total entropy
and bring the universe to thermodynamic equilibrium.
Differentiating equations (20) and (23) one indeed finds
(see [5] for details): S′

total(a → ∞) > 0 and S′′
total(a →

∞) < 0. Thus the GSL is fulfilled despite the decreasing
SV . In Figure 2 we can observe these results. See also
[13] for a comparison between the GSL predictions and
observations, with positive conclusions.

B. Early universe

To study the entropy evolution in the early universe
we must rewrite (15) using the re-scaled parameters we
introduced in the previous section:

H(â) =
ĤI√

1 + â4(1−ν)
. (25)
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FIG. 2: Evolution of SA(a) for ν = 10−3 and ν = 10−4,
normalised to the current value, from the present universe
into the future. Recall that SV is numerically insignificant.

Substituting in (20):

SA(â) =
π(1 + â4(1−ν))

GĤ2
I

. (26)

The entropy inside the horizon, on the other hand,
will be determined by the radiation contribution Sr =
pr+ρr

Tr
V 3
h = 4

3
ρr

Tr
V 3
h , where the radiation temperature Tr

is related to its density via: ρr = π2g∗T
4
r /30, with g∗ be-

ing a factor counting the number of effectively massless
degrees of freedom [5]. Using (16) and (25) we find:

SV(â) =
4

3

(
π2g∗
30

)1/4

ρ3/4r (â)V 3
h =

=
8π3

135
g∗

(
T̂I

ĤI

)3

(1− ν)3/4â3(1−ν) . (27)

In the last expression we have conveniently defined T̂I =(
30ρ̂I

π2g∗

)1/4
. Notice that SA ∼ â4(1−ν) and SV ∼ â3(1−ν)

and thus we have a huge entropy production caused by
inflation. In the next section we shall see this result might
provide a solution to the ΛCDM entropy problem. Both
the surface and volume entropy are represented in Figure
3.

Differentiating equations (26) and (27) it can be seen
that (see [5] for details): S′

total(â) > 0 and S′′
total(â) > 0.

That is, the GSL is violated in the early universe. We
shouldn’t be too alarmed by this result as the cosmic
evolution will eventually slow down the growth of entropy
and lead to equilibrium in the final de Sitter epoch, as
we have seen in the previous section. In fact, rewriting
(20):

SA(a) =
π(1− ν)

H2
0 [Ω

0
ma−3(1−ν) +Ω0

Λ − ν]
, (28)

we see that as the ∼ a−3(1−ν) term disappears with the
expansion, the denominator becomes H2

0 (Ω
0
Λ − ν) = c0

FIG. 3: Evolution of SA(â) and SV(â), for ν = 10−3 and
ν = 10−4, normalised to the value at the equality point, in the
early inflationary universe. There is an unrestricted growth
of entropy due to S′′

total(â) > 0.

and the entropy is dominated by the cosmological con-
stant. Therefore, the presence of c0, which is negligible
in the early universe but becomes the dominant term in
the current universe, is responsible for decelerating the
entropy production and setting the universe on the path
towards thermodynamic equilibrium and the fulfillment
of the GSL.

IV. HORIZON AND ENTROPY

Next we will discuss the potential of the RVMs to solve
the horizon and entropy problems afflicting the ΛCDM
model, namely the apparent inability of the latter to ex-
plain neither how the universe evolved from a low entropy
value to a large one (giving rise to the arrow of time) [6],
nor the homogeneity of the universe, as it predicts a de-
creasing horizon moving into the past. Let us first define
the concept of particle horizon, the visible region for a
co-moving observer at a given time [5]:

lp(a) = a

∫ t

ti

dt

a(t)
= a

∫ a

0

da′

a′2H(a′)
. (29)

In the ΛCDM model the integral tends to 0 for a → 0
both in the radiation and matter epochs, with H ∼ a−2

and H ∼ a−3/2 respectively. This means that the ob-
servers become isolated in the past, or in other words that
the number of causally disconnected regions increases. In
the context of the RVMs, however, we can substitute (25)
in the previous equation to find:

lp(a)

a
= lim

ϵ→0

1

ĤI

∫ a

ϵ

da′

a′2

√
1 + â′4(1−ν) → ∞ . (30)

Therefore, the particle horizon increases faster than the
scale factor and becomes infinite (i.e. there is no horizon
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at all) in the primitive universe. In conclusion, the RVMs
seem to have no horizon problem.

In the case of the entropy problem, in the context of the
ΛCDM model the present value enclosed in our horizon
is [6]:

S0 =
2π2

45
g∗,0T

3
r0H

−3
0 ∼ 1088 , (31)

with Tr0 being the current temperature of the CMB. This
result evolves in time as (TH−1)3, and for an adiabatic
evolution T ∼ a−1, so the entropy evolves as S ∼ a3 and
S ∼ a3/2 for the radiation and matter epochs, respec-
tively [6]. At the time of recombination (arec ∼ 10−3),
for example, the entropy would be Srec ∼ 1083, and at
the primordial nucleosynthesis epoch (aBBN ∼ 10−9)
it would be SBBN ∼ 1061. This would imply that
our present horizon contains ∼ 105 regions which were
causally disconnected at recombination, and ∼ 1027 at
primordial nucleosynthesis. We have stumbled upon a
re-phrased horizon problem. In the context of the RVMs,
however, there is a huge entropy production driven by the
O(H4) term during the early inflationary period, which
is then transferred to the radiation epoch and preserved
throughout the cosmic evolution, accounting for the enor-
mous value at present (31). In summary, the RVMs might
also provide a possible solution to the entropy problem.

V. CONCLUSIONS

• In this work we have studied some aspects of the
Running Vacuum Models (RVMs), we have solved
its cosmological equations and studied some of the
thermodynamic implications from the early uni-
verse until the present time. We have explored also
its asymptotic regime, in particular we have con-
sidered if the RVMs universe tends eventually to
a state of thermodynamic equilibrium. From the
confrontation of the RVMs predictions with the ob-
servational data in the present universe, it has been
suggested that the vacuum energy is not necessar-
ily a strict constant, but may be mildly dynamical
due to the ∼ νH2 term [6, 8, 9]. The early uni-

verse, however, is driven by an O(H4) term, which
causes a short period of rapid inflation, with an
exponential increase of the scale factor. During in-
flation, the vacuum energy decays into relativistic
particles, increasing the radiation density ρr, un-
til the vacuum-radiation equality point is reached,
after which they both start decaying (Figure 1).
Nevertheless, during this post-inflationary decay
|ρΛ/ρr| ≪ 1, and therefore the main features of
the ΛCDM radiation epoch are preserved, such as
the Big Bang Nucleosynthesis.

• We introduced the Generalised Second Law (GSL),
which studies the surface entropy of the apparent
horizon as well as the entropy contained inside it;
and tried to determine whether or not the RVMs
comply with it. We found that it is fulfilled in
the present universe, i.e. the current universe is
on the path towards thermodynamic equilibrium
(Figure 2). On the other hand, it was not satis-
fied in the early universe as there is an unlimited
entropy growth (Figure 3). We saw, however, that
this apparent violation of the GSL was not worry-
ing at all, as the presence of the constant term c0
in ρΛ(H), which was negligible in the initial period
of the cosmic evolution but became the dominant
term in the late universe, would eventually slow
down the entropy growth until S′′

total < 0, setting
off towards equilibrium.

• We determined that this enormous entropy produc-
tion during inflation, which is preserved throughout
the entire cosmic history up until the present, may
be able to provide a solution to the ΛCDM entropy
problem. The RVMs might also solve the horizon
problem, as they have no particle horizon at all
in the primitive universe and hence there are no
causality issues.
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[4] J. Solà, Phil. Trans. R. Soc. A 380 (2022) 20210182.
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