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When the telegrapher’s equation furnishes a better approximation to the transport equation
than the diffusion approximation
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It has been suggested that a solution to the transport equation which includes anisotropic scattering can be
approximated by the solution to a telegrapher’s equdtod. Ishimaru, Appl. Opt28, 2210(1989]. We show
that in one dimension the telegrapher’s equation furnishes an exact solution to the transport equation. In two
dimensions, we show that, since the solution can become negative, the telegrapher’s equation will not furnish
a usable approximation. A comparison between simulated data in three dimensions indicates that the solution
to the telegrapher’s equation is a good approximation to that of the full transport equation at the times at which
the diffusion equation furnishes an equally good approximafish063-651X%97)04205-0

PACS numbd(s): 05.60+w

[. INTRODUCTION are to be found in an observation by Goldstein that the con-
tinuum limit of a persistent random walk is a telegrapher’s
Problems related to the transport of matter in disorderegquation[8], and from an approximation based on the trans-
media are common to a number of areas of science and techert equation derived by Ishimaf®].
nology, and have given rise to a considerable amount of In the present paper we investigate whether the TE pro-
research aimed at delineating properties of motion in suckides a better approximation to the solution of the full trans-
media[1,2]. When the medium is a continuum, a natural port equation over a physically relevant time span than does
starting point for any analysis is based on solving an approthe diffusion equation. We show that this is true for the
priate transport equation. Since there are no general solutiorsingle-speed model in one dimension, but that in two dimen-
other than purely numerical ones for such equations it isions the TE has a solution that is negative in some region of
often difficult to fit experimental data to theory, as would bethe plane, and therefore cannot be identified as a probability
necessary to determine physically significant parametersiensity. In the case of three dimensions we show, by com-
Hence a number of approximation schemes have been usgaring the theoretical results to data simulated using a physi-
to derive more tractable mathematical models. cally plausible model, that the solution to the TE is not a
The simplest such model which is adequate in many apgood approximation to the simulated results except at com-
plications approximates the full transport equation by a dif-paratively long times, at which the solution of the TE essen-
fusion equation. A related model which has recently beeriially coincides with the solution to the diffusion equation.
applied to problems arising in tissue optics is based on the
theory of lattice random walkg3—5]. Both of these are de- Il. TRANSPORT EQUATION
ficient in failing to properly account for anisotropic scatter- In modeling t ¢ il ider the single- q
ing, although this problem tends to vanish at increasingly Ing transport we will consider the single-spee
long times, which is essentially the regime in which the cen-mOOIeI only[10]. Let A be the scattering rate. Absorption in

tral limit theorem is equivalent to the diffusion approxima- EZﬁnggdb'un; \:\gltlebear;wa(?:]jg:ed[lsr} teorms ?rIeBc?:sreS cl)‘?’; chu?;aec-
tion. Nevertheless the diffusion equation is appealing be- y P gr (o). y P

cause it is trivial to solve in unbounded spaces and easy tBr?lp?(?artlr:jg :? ta t;rang:?t'a??:lyir:nxviri'ar?t meitzlulm WII:tible
specify boundary conditions associated with finite media. cons ebe d et d E th ec ?’d ICtha Sd.g € particie
Several compromises have been suggested to incorpora pves be denoted by the solid andke In three dimensions

at least some aspects of anisotropic scattering into the diffu= =(0.¢), whered is the polar angle ang is the azimuthal

sion picture. A strategy used in several optical applications igmgle. Further,. _IetB(Q|Q ) denote th? scattering kerngl,
to correct the diffusion constant by using a characteristid:S-+ the probability that a single scattering changes the direc-

; ; tion of the photon path fron)’ to a direction falling some-
arameter related to the degree of anisotropic scattg6:
A d ! o ; #6ihg rx(\_/here in the infinitesimal interval(¢,Q+dQ) is equal to

text of tissue optics, that anisotropy can be incorporated inttg(ﬂml)dﬂ' The speed between collisions will be taken to

the analysis by replacing the diffusion equation by a telegraP€ & constant, and the corresponding velocity, which takes
pher's equation(TE) [7], which has the form the direction into account, will be denoted k). For

example, in three dimensions
2 2 — ~2yv2
(9°P1t) +[(1/T)(9P/ot)] =c V7P, @) v(Q)=(vsind cos ¢,vsind sin ¢,vCcoY),

whereT is a parameter with the dimensions of time anid  where # and ¢ are the polar and azimuthal angles, respec-
a speed. Two motivating factors for Ishimaru’s suggestiortively. The object of our investigation is to find the probabil-
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ity density for the particle to be atmoving in the direction where the velocityc is equal tov/+/3. This equation has
Q at timet. This function will be denoted bp(r,Q,t). In been obtained by taking the divergence on both sides of Eq.

this notation the full transport equation is (6b), commuting the divergence operator askbt on the
oplat =— (N + w)p—v(Q)-Vp Ittzfrtr-r?saggpade, and finally using E@6a) to write V-J in

, , , We note that the substitutioR(r,t)=Q(r,t)e # trans-

H\f p(r, Q") B(QQ")dQ’. (2 forms Eq.(8) into the standard form of the TE in E€L) with

the time parametefr =1/\". We also observe that the solu-
Only the case in which the initial condition is a single pulsetion to the telegrapher’s equation at very long times reduces
will be analyzed. In three dimensions this allows us to writeto a Gaussiai12], which is the solution to the diffusion
r.Q.0)= (1/4m) 8(r)= 8(r)/16m2r2. 3 equation in free space. The question to be addressed is
P( )= (1/4m) &(r)= &(r) ©® whether the solution of the telegrapher’s equation more
We will assume that the kerng(| Q') depends only on faithfully reproduces the solution of the full transport equa-
the deflection angley, i.e., the angle between directiogs  tion than does the diffusion equation. We consider this prob-
and€Q’. In this case, the deviation from isotropic scattering!€m in one, two, and three dimensions.
will be denoted byg={(cosy). The solution to Eq(2) can be
expanded in terms of spherical harmonics, although in prac- A. One dimension
tice the series is generally truncated. The so-cafgdap- |5 one dimension a particle can move in only two direc-
proximation, commonly used in nuclear reactor analysigjons, the coordinate of its location at any tirheither in-

[10,11], is equivalent to the assumption thr,€2,t) isonly  creasing or decreasing with a constant speed. Thus a descrip-
weakly dependent on angle. In three dimensions this igion of the system requires consideration of the evolution of

equivalent to writingf 11] two probability densitiesp;(x,t), i=*1, wherei=+1 re-
p(r,Q,t)~ (1/4m) P(r,t)+ (3/4mwv?) v(Q)- I(r,t). fers to a particle having a speedv. If P(x,t) andJ(x,t)
(4 are defined by
Here P(r,t) is the angle-averaged value pfr,Q,t), i.e., P(X,t)=pa(x,t) +p_1(X,t),
Jx, ) =v[p1(x,t) —p_1(x,1)], C)
P(r,t)=[ p(r,Q,1)dQ,
then the full transport equation coincides exactly with the
and the fluxJ(r,t) is related top(r,€,t) by P, approximation. Hence it follows from our earlier remark
that the equation satisfied W(x,t) is the damped telegra-
Irt)= Q)p(r.Q.1)dO. 5 pher’s equation, Eq8), with c=v. Hence in one dimension
Y J v(€2)p(r ) ® the TE provides an exact, rather than approximate, solution

to the full transport equation. This is also implied in the work

The angle variables appear linearly in Ed) as indicated. Goldstein[8].

On substituting this expansion into E&), we find a coupled

set of equations foP(r,t) andJ(r,t), which is B. Two dimensions

IPIot=—uP=V-J, (63 The problem of the appropriateness of the TE as a model
ddlot =—(N'+p)d— (v23)VP (6b)  accounting for anisotropy is much more interesting in dimen-
sions greater than one, since tRg approximation is not
where equivalent to the full transport equation. In two dimensions
, the angular coordinat® consists of a single polar angke
A'=AN(1-9) (7)

The P, approximation is found by retaining only the terms

is an anisotropy-corrected scattering rate. On the further adl™~ 1, 0, and 1 in the Fourier expansion pfr,6,1),

sumption that?J/Jt can be neglected in comparison to the * .
terms on the right-hand side of E@b), one finds a damped p(r,6,t)= 2 bn(r,t)e'"?, (10
diffusion equation forP(r,t), n=-

(9Pl dt) + uP=DV?P, and the telegrapher's equation is given by E8) with
c=v/\2. We have shown that a simple transformation of the

with an effective diffusion constant dependent variable serves to eliminate the parameeal-
D= 0v2/[3(\' +p)]. lowing us to simplify the analysis by neglecting absorption.

The solution to the TE in two dimensions for the set of
If the time derivative of the flux is not considered negli- iSotropic initial conditions

gible then the functionl(r,t) can be eliminated from Eq. p(r,00=48(r), pldt|,—o=0, (12)
(6b), and the equation satisfied B(r,t) is the damped te- B
legrapher’s equation can be obtained by Laplace-Fourier transform, and is written
2P IP in terms of the dimensionless combination
- ' _ ' _ ~2g2
gz TV 2p0) Tt p (N w)P=cTVER, - (8) a= (N 1v\2)vZZ2—12 (12)
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T — Note that the exact result, E¢L4), and the solution to TE,
~.. Eq. (13), both converge wheth— o to the diffusion approxi-
0= i mation given by

| Pifusion(F.1) = (M 2v2mt) exp( — Ar2/2v%t). (15

-1 - i We note that the divergence Bf(r,t) atr=vt/2 [c.f. Eq.
(13) is due to the time propagation of the singular initial
condition Eq.(11). The same happens ®,.{r,t) at the
boundaryr =vt. We also observe that the divergence is in-
| tegrable, and bottP(r,t) and Pg,,{r.t) are normalized
to 1.
It is evident that the solution fdP(r,t) becomes nega-
S ] tive somewhere in the interval (@//2), and therefore can-
02 4 /S AN | not be a probability density. Such behavior is a characteristic
g ) | of solutions found in even-dimensional spa¢&g]. In con-
sequence, the TE cannot furnish an accurate approximation
to the solution of the full transport equation in even dimen-
sions, except in the limit of times so large that the solution of
the TE is essentially equal to the solution provided by the
diffusion equation. In addition, even in the regions where the
solution of the TE is positive, numerical data indicate that
0.0 . . . ' the diffusion approximation is better than the TE solution
0 2 4 8 8 ro (see Fig. 1
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FIG. 1. The two-dimensional radial probability densities
27 Pgyacfr,t) (solid line, 2mrPqg(r,t) (dashed Iling and
27 P gifusior T 1) (dot-dashed lingplotted as a function af for (a) t=1 and An expression is known for the Fourier-Laplace transform
(b) t=10. Both sets of curves were generated using the parameter valu% the solution of the isotropic transport equation in m

C. Three dimensions

A==l for the fully isotropic cas¢13],
as B(QQ )= 1/47. (16)
Since the transform cannot be inverted except numerically,
N e Mt2 \’tsinha we conducted a simulation study to test the quality of the
P(r,t)= (cosm+—) approximation furnished by the TE. Our simulations were
2827y \Jut?12—r? 2a only for particles moving in an unbounded space. The time
1o between two successive scattering events were random vari-
_ e ables whose properties were described by a negative expo-
XH(t/\2-1)+ m\2v coshr nential probability density
— =\t
o [Hut/\2-r) a3 P(H)=hre ™. (17
| JoH%2-r? | In our choice of the form of the kerngg(Q|Q’), we as-

sumed that this depended only on the deflection angle

while the azimuthal angle was assumed to be uniformly
In this equationH(z) is the Heaviside step function, distributed in the interval € 7, 7). Between scatterings the
H(z)=1, z>0, andH(z) =0 for z<O. particles were assumed to move in straight lines. The effect

Figure 1 compares profiles of the angular densityof anisotropic scattering was mimicked by choosing the scat-

2arP(r,t) for the isotropic model wherg=0. The three tering angle according to the widely used Henyey-Greenstein
values of P(r,t) that are plotted ard®.,.(r,t), the exact Phase functior14]
solution, Ptg(r,t), the solution obtained from E¢13); and )
Pitusion(r »t), the solution obtained from the diffusion ap- ()= 1-9 1 _ 1
proximation. The exact solution was obtained[I8] and 29 |1-9 1+g?—2gcosy|’
reads (18

O=svy=<m.
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Other phase functions may have been used, because the only o.ﬁ
requirement is that the anisotropic factgr=(cosy)#0 is o @
different than zero. 034 b
The data generated in this way were compared with re- = J .
sults generated from the solution to the three-dimensional TE T o2+ °
in free space. Analogously to the two-dimensional case, this 2 5
solution is expressed in terms of the variable 01
/
£= (N'12v)Jv’t?—3r? (19 7/ o
0.0 —ononoc P T
as 0 ; zlt 6 8 10
—\t/2 ’ ’ '
e NN At
P(rt)=—5——| | 1+ | 8(r—vt/\/3) 012
19 \/_ 3)\’2e7)\’t/2 0.09 |
— = —=8(r—uvt/y3) |+ =
2 0r 16mv2\Jv°t?/3—r? £ oos
N M T
Nt -
X|11(6)+ 57 12(6) |HU\3-), (20
wherel ,(z) are modified Bessel functions. At long times the 0.00
solution given in Eq(20) tends toward the Gaussian solution °
of the diffusion equation, i.e., FIG. 2. A comparison of simulation resultsquare symbo)s the solu-

tion to the three-dimensional Tklashed ling and the diffusion approxi-
’ 241312 12 2
P(r,t)—(3\'/4mv )~ exp(— 3N'r9/4v%). (21 mation(solid line) plotted as a function of for (a) t=5 and(b) t=25. The
. . . curves and data points in these curves were generated using parameter val-
Figure 2 shows the results of 18imulated runs as described yesx=p=1 and the asymmetry factg=0.5. The curves at the earlier

above and carried out for the parameter valges0.5, time agree poorly with solutions to both the TE and diffusion equations,
v=1, and\ =1. Two sets of data are shown that corresponth”e those at the later time agree rea_sonably We_II wi_th the sol_ution to the
to timest=5 and 25, which is in the regime in which the TE, but that agrees well with the solution to the diffusion equation.
Gaussian form in Eq21) is expected to be valid. The agree-

ment with the asymptotic Gaussian form Bf{r,t) at the 1. A FINAL COMMENT

larger time is seen to be quite good, while the agreement

with the TE ?‘t shqrter Flmes IS nqt. . suggest that, except in one dimension, there are significant

The solution given in Eq(20) is hon-negative, but the difficulties in basing an approximate solution to the full
fact that the rescaled speed of propagation cannot correspo nsport equation on an “equivalent” telegrapher's equa-
to the true speed of the scattered particles prevents finding gy, 1n two dimensions this occurs because the solution to
more accurate approximation, at least in terms of the TEie telegrapher’s equation has regions in which the solution
This is apparently due to the contributions Rgr,t) from s negative. In three dimensions the difficulty can be traced
particles which have never been scattered. It is possible th@ an inaccurate accounting for particles that remain unscat-
this shortcoming can be overcome by explicitly decomposingered at timet. At very long times, when the number of such
the solution of the transport equation into a contribution fromparticles is considerably reduced, the solution to the telegra-
the unscattered particles, and one from those that were scgiher’'s equation is quite accurately approximated by the so-
tered at least once, as is sometimes done in other problenhgtion to a diffusion equation. Our simulations suggest that in
related to photon diffusion in turbid medf@]. A study of this regime the solution to the full transport equation can also
this type of approximation is presently under consideration.be modeled quite accurately.
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