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When the telegrapher’s equation furnishes a better approximation to the transport equation
than the diffusion approximation
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~Received 8 July 1996!

It has been suggested that a solution to the transport equation which includes anisotropic scattering can be
approximated by the solution to a telegrapher’s equation@A.J. Ishimaru, Appl. Opt.28, 2210~1989!#. We show
that in one dimension the telegrapher’s equation furnishes an exact solution to the transport equation. In two
dimensions, we show that, since the solution can become negative, the telegrapher’s equation will not furnish
a usable approximation. A comparison between simulated data in three dimensions indicates that the solution
to the telegrapher’s equation is a good approximation to that of the full transport equation at the times at which
the diffusion equation furnishes an equally good approximation.@S1063-651X~97!04205-0#

PACS number~s!: 05.60.1w
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I. INTRODUCTION

Problems related to the transport of matter in disorde
media are common to a number of areas of science and t
nology, and have given rise to a considerable amoun
research aimed at delineating properties of motion in s
media @1,2#. When the medium is a continuum, a natu
starting point for any analysis is based on solving an app
priate transport equation. Since there are no general solu
other than purely numerical ones for such equations i
often difficult to fit experimental data to theory, as would
necessary to determine physically significant paramet
Hence a number of approximation schemes have been
to derive more tractable mathematical models.

The simplest such model which is adequate in many
plications approximates the full transport equation by a d
fusion equation. A related model which has recently be
applied to problems arising in tissue optics is based on
theory of lattice random walks@3–5#. Both of these are de
ficient in failing to properly account for anisotropic scatte
ing, although this problem tends to vanish at increasin
long times, which is essentially the regime in which the ce
tral limit theorem is equivalent to the diffusion approxim
tion. Nevertheless the diffusion equation is appealing
cause it is trivial to solve in unbounded spaces and eas
specify boundary conditions associated with finite media

Several compromises have been suggested to incorp
at least some aspects of anisotropic scattering into the d
sion picture. A strategy used in several optical application
to correct the diffusion constant by using a characteri
parameter related to the degree of anisotropic scattering@6#.
A recent suggestion has been made by Ishimaru in the
text of tissue optics, that anisotropy can be incorporated
the analysis by replacing the diffusion equation by a teleg
pher’s equation~TE! @7#, which has the form

~]2P/]t2! 1@~1/T!~]P/]t !# 5c2¹2P, ~1!

whereT is a parameter with the dimensions of time andc is
a speed. Two motivating factors for Ishimaru’s suggest
551063-651X/97/55~6!/7771~4!/$10.00
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are to be found in an observation by Goldstein that the c
tinuum limit of a persistent random walk is a telegraphe
equation@8#, and from an approximation based on the tran
port equation derived by Ishimaru@9#.

In the present paper we investigate whether the TE p
vides a better approximation to the solution of the full tran
port equation over a physically relevant time span than d
the diffusion equation. We show that this is true for t
single-speed model in one dimension, but that in two dim
sions the TE has a solution that is negative in some regio
the plane, and therefore cannot be identified as a probab
density. In the case of three dimensions we show, by co
paring the theoretical results to data simulated using a ph
cally plausible model, that the solution to the TE is not
good approximation to the simulated results except at co
paratively long times, at which the solution of the TE esse
tially coincides with the solution to the diffusion equation

II. TRANSPORT EQUATION

In modeling transport we will consider the single-spe
model only@10#. Let l be the scattering rate. Absorption i
the medium will be modeled in terms of Beer’s law chara
terized by a rate parameterm @5#. Only the case of a pulse
propagating in a translationally invariant medium will b
considered. Let the direction in which a single partic
moves be denoted by the solid angleV. In three dimensions
V5(u,w), whereu is the polar angle andw is the azimuthal
angle. Further, letb(VuV8) denote the scattering kerne
i.e., the probability that a single scattering changes the di
tion of the photon path fromV8 to a direction falling some-
where in the infinitesimal interval (V,V1dV) is equal to
b(VuV8)dV. The speed between collisions will be taken
be a constantv, and the corresponding velocity, which tak
the direction into account, will be denoted byv(V). For
example, in three dimensions

v~V!5~vsinu cosw,vsinu sin w,vcosu!,

whereu andw are the polar and azimuthal angles, resp
tively. The object of our investigation is to find the probab
7771 © 1997 The American Physical Society
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7772 55BRIEF REPORTS
ity density for the particle to be atr moving in the direction
V at time t. This function will be denoted byp(r,V,t). In
this notation the full transport equation is

]p/]t 52~l1m!p2v~V!•“p

1lE p~r,V8,t !b~VuV8!dV8. ~2!

Only the case in which the initial condition is a single pul
will be analyzed. In three dimensions this allows us to wr

p~r,V8,0!5 ~1/4p! d~r!5 d~r !/16p2r 2 . ~3!

We will assume that the kernelb(VuV8) depends only on
the deflection angleg, i.e., the angle between directionsV
andV8. In this case, the deviation from isotropic scatteri
will be denoted byg5^cosg&. The solution to Eq.~2! can be
expanded in terms of spherical harmonics, although in p
tice the series is generally truncated. The so-calledP1 ap-
proximation, commonly used in nuclear reactor analy
@10,11#, is equivalent to the assumption thatp(r,V,t) is only
weakly dependent on angle. In three dimensions this
equivalent to writing@11#

p~r,V,t !' ~1/4p! P~r,t !1 ~3/4pv2! v„V)•J~r,t !.
~4!

HereP(r,t) is the angle-averaged value ofp(r,V,t), i.e.,

P~r,t !5E p~r,V,t !dV,

and the fluxJ(r,t) is related top(r,V,t) by

J~r,t !5E v~V!p~r,V,t !dV. ~5!

The angle variables appear linearly in Eq.~4! as indicated.
On substituting this expansion into Eq.~2!, we find a coupled
set of equations forP(r,t) andJ(r,t), which is

]P/]t 52mP2“•J, ~6a!

]J/]t 52~l81m!J2 ~v2/3!“P, ~6b!

where

l85l~12g! ~7!

is an anisotropy-corrected scattering rate. On the further
sumption that]J/]t can be neglected in comparison to t
terms on the right-hand side of Eq.~6b!, one finds a damped
diffusion equation forP(r,t),

~]P/]t ! 1mP5D“2P,

with an effective diffusion constant

D5 v2/@3~l81m!# .

If the time derivative of the flux is not considered neg
gible then the functionJ(r,t) can be eliminated from Eq
~6b!, and the equation satisfied byP(r,t) is the damped te-
legrapher’s equation

]2P

]t2
1~l812m!

]P

]t
1m~l81m!P5c2“2P, ~8!
c-

s

is

s-

where the velocityc is equal tov/A3. This equation has
been obtained by taking the divergence on both sides of
~6b!, commuting the divergence operator and]/]t on the
left-hand side, and finally using Eq.~6a! to write “•J in
terms ofP.

We note that the substitutionP(r,t)5Q(r,t)e2mt trans-
forms Eq.~8! into the standard form of the TE in Eq.~1! with
the time parameterT51/l8. We also observe that the solu
tion to the telegrapher’s equation at very long times redu
to a Gaussian@12#, which is the solution to the diffusion
equation in free space. The question to be addresse
whether the solution of the telegrapher’s equation m
faithfully reproduces the solution of the full transport equ
tion than does the diffusion equation. We consider this pr
lem in one, two, and three dimensions.

A. One dimension

In one dimension a particle can move in only two dire
tions, the coordinate of its location at any timet either in-
creasing or decreasing with a constant speed. Thus a des
tion of the system requires consideration of the evolution
two probability densities,pi(x,t), i561, wherei561 re-
fers to a particle having a speed6v. If P(x,t) and J(x,t)
are defined by

P~x,t !5p1~x,t !1p21~x,t !,

J~x,t !5v@p1~x,t !2p21~x,t !#, ~9!

then the full transport equation coincides exactly with t
P1 approximation. Hence it follows from our earlier rema
that the equation satisfied byP(x,t) is the damped telegra
pher’s equation, Eq.~8!, with c5v. Hence in one dimension
the TE provides an exact, rather than approximate, solu
to the full transport equation. This is also implied in the wo
of Goldstein@8#.

B. Two dimensions

The problem of the appropriateness of the TE as a mo
accounting for anisotropy is much more interesting in dime
sions greater than one, since theP1 approximation is not
equivalent to the full transport equation. In two dimensio
the angular coordinateV consists of a single polar angleu.
The P1 approximation is found by retaining only the term
n521, 0, and 1 in the Fourier expansion ofp(r,u,t),

p~r,u,t !5 (
n52`

`

bn~r,t !e
inu, ~10!

and the telegrapher’s equation is given by Eq.~8! with
c5v/A2. We have shown that a simple transformation of t
dependent variable serves to eliminate the parameterm, al-
lowing us to simplify the analysis by neglecting absorptio
The solution to the TE in two dimensions for the set
isotropic initial conditions

p~r,0!5d~r!, ]p/]t u t5050, ~11!

can be obtained by Laplace-Fourier transform, and is writ
in terms of the dimensionless combination

a5 ~l8/vA2!Av2t2/22r 2 ~12!
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as

P~r ,t !5
l8e2l8t/2

23/2pvAv2t2/22r 2
S cosha1

l8tsinha

2a D
3H~vt/A22r !1

e2l8t/2

pA2v
cosha

3
]

]t FH~vt/A22r !

Av2t2/22r 2
G . ~13!

In this equationH(z) is the Heaviside step function
H(z)51, z.0, andH(z)50 for z,0.

Figure 1 compares profiles of the angular dens
2prP(r ,t) for the isotropic model whereg50. The three
values ofP(r ,t) that are plotted arePexact(r ,t), the exact
solution,PTE(r ,t), the solution obtained from Eq.~13!; and
Pdiffusion(r ,t), the solution obtained from the diffusion ap
proximation. The exact solution was obtained in@13# and
reads

FIG. 1. The two-dimensional radial probability densitie
2prPexact(r ,t) ~solid line!, 2prPTE(r ,t) ~dashed line!, and
2prPdiffusion(r ,t) ~dot-dashed line! plotted as a function ofr for ~a! t51 and
~b! t510. Both sets of curves were generated using the parameter v
l5v51.
y

Pexact~r,t !5e2ltFd~r2vt !
2pr

1
l

2pvAv2t22r 2

3expS lAv2t22r 2

v DH~vt2r !G . ~14!

Note that the exact result, Eq.~14!, and the solution to TE,
Eq. ~13!, both converge whent→` to the diffusion approxi-
mation given by

Pdiffusion~r,t !5~l/2v2pt ! exp~2 lr 2/2v2t !. ~15!

We note that the divergence ofP(r ,t) at r5vt/A2 @c.f. Eq.
~13! is due to the time propagation of the singular initi
condition Eq.~11!. The same happens toPexact(r ,t) at the
boundaryr5vt. We also observe that the divergence is
tegrable, and bothP(r ,t) and Pexact(r ,t) are normalized
to 1.

It is evident that the solution forPTE(r ,t) becomes nega
tive somewhere in the interval (0,vt/A2), and therefore can
not be a probability density. Such behavior is a characteri
of solutions found in even-dimensional spaces@12#. In con-
sequence, the TE cannot furnish an accurate approxima
to the solution of the full transport equation in even dime
sions, except in the limit of times so large that the solution
the TE is essentially equal to the solution provided by
diffusion equation. In addition, even in the regions where
solution of the TE is positive, numerical data indicate th
the diffusion approximation is better than the TE soluti
~see Fig. 1!.

C. Three dimensions

An expression is known for the Fourier-Laplace transfo
of the solution of the isotropic transport equation in Eq.~2!
for the fully isotropic case@13#,

b~VuV8!5 1/4p . ~16!

Since the transform cannot be inverted except numerica
we conducted a simulation study to test the quality of
approximation furnished by the TE. Our simulations we
only for particles moving in an unbounded space. The ti
between two successive scattering events were random
ables whose properties were described by a negative e
nential probability density

c~ t !5le2lt. ~17!

In our choice of the form of the kernelb(VuV8), we as-
sumed that this depended only on the deflection angleg,
while the azimuthal anglew was assumed to be uniforml
distributed in the interval (2p,p). Between scatterings th
particles were assumed to move in straight lines. The ef
of anisotropic scattering was mimicked by choosing the sc
tering angle according to the widely used Henyey-Greens
phase function@14#

F~g!5
12g2

2g F 1

12g
2

1

A11g222gcosg
G , 0<g<p.

~18!

es
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Other phase functions may have been used, because the
requirement is that the anisotropic factorg5^cosg&Þ0 is
different than zero.

The data generated in this way were compared with
sults generated from the solution to the three-dimensiona
in free space. Analogously to the two-dimensional case,
solution is expressed in terms of the variable

j5 ~l8/2v !Av2t223r 2 ~19!

as

P~r,t !5
e2l8t/2

2pr FA3l8

4v S 11
l8t

4 D d~r2vt/A3!

2
1

2

]

]r
d~r2vt/A3!G1

3l82e2l8t/2

16pv2Av2t2/32r 2

3F I 1~j!1
l8t

2j
I 2~j!GH~vt/A32r !, ~20!

whereI n(z) are modified Bessel functions. At long times th
solution given in Eq.~20! tends toward the Gaussian solutio
of the diffusion equation, i.e.,

P~r,t !→~3l8/4pv2t !3/2exp~2 3l8r 2/4v2t !. ~21!

Figure 2 shows the results of 105 simulated runs as describe
above and carried out for the parameter valuesg50.5,
v51, andl51. Two sets of data are shown that correspo
to times t55 and 25, which is in the regime in which th
Gaussian form in Eq.~21! is expected to be valid. The agre
ment with the asymptotic Gaussian form ofP(r,t) at the
larger time is seen to be quite good, while the agreem
with the TE at shorter times is not.

The solution given in Eq.~20! is non-negative, but the
fact that the rescaled speed of propagation cannot corres
to the true speed of the scattered particles prevents findi
more accurate approximation, at least in terms of the
This is apparently due to the contributions toP(r,t) from
particles which have never been scattered. It is possible
this shortcoming can be overcome by explicitly decompos
the solution of the transport equation into a contribution fro
the unscattered particles, and one from those that were
tered at least once, as is sometimes done in other prob
related to photon diffusion in turbid media@7#. A study of
this type of approximation is presently under consideratio
.
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III. A FINAL COMMENT

Both simulations and analytical consideratio
suggest that, except in one dimension, there are signifi
difficulties in basing an approximate solution to the fu
transport equation on an ‘‘equivalent’’ telegrapher’s equ
tion. In two dimensions this occurs because the solution
the telegrapher’s equation has regions in which the solu
is negative. In three dimensions the difficulty can be trac
to an inaccurate accounting for particles that remain uns
tered at timet. At very long times, when the number of suc
particles is considerably reduced, the solution to the teleg
pher’s equation is quite accurately approximated by the
lution to a diffusion equation. Our simulations suggest tha
this regime the solution to the full transport equation can a
be modeled quite accurately.

FIG. 2. A comparison of simulation results~square symbols!, the solu-
tion to the three-dimensional TE~dashed line!, and the diffusion approxi-
mation~solid line! plotted as a function ofr for ~a! t55 and~b! t525. The
curves and data points in these curves were generated using paramete
uesl5v51 and the asymmetry factorg50.5. The curves at the earlie
time agree poorly with solutions to both the TE and diffusion equatio
while those at the later time agree reasonably well with the solution to
TE, but that agrees well with the solution to the diffusion equation.
@1# Photon Migration in Tissues, edited by B. Chance~Plenum, New
York, 1989!.

@2# Laser-Doppler Flowmetry, edited by A. P. Shepherd, Jr. and P. A
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