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Dispersion of passive particles by a quasi-two-dimensional turbulent flow
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Using the experimental data of Paret and Tabeling@Phys. Rev. Lett.79, 4162~1997!# we consider in detail
the dispersion of particle pairs by a two-dimensional turbulent flow and its relation to the kinematic properties
of the velocity field. We show that the mean square separation of a pair of particles is governed by rather rare,
extreme events and that the majority of initially close pairs are not dispersed by the flow. Another manifesta-
tion of the same effect is the fact that the dispersion of an initially dense cluster is not the result of homoge-
neously spreading the particles within the whole system. Instead it proceeds through a splitting into smaller but
also dense clusters. The statistical nature of this effect is discussed.@S1063-651X~99!09804-9#

PACS number~s!: 47.27.Qb, 05.40.2a
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Understanding the dispersion of particles in a turbul
velocity field is both of practical importance and of mu
theoretical interest. It is of fundamental importance for t
correct modeling of turbulent diffusion and mixing prope
ties of flows, a basic issue in environmental studies. A gr
deal of experimental insight has been gained following
pioneering work of Richardson~1926!, Ref. @1#, but a full
understanding of the problem is still lacking~see Ref.@2# for
a review!.

Experimental studies of particle dispersion by turbule
flows are always complicated by molecular diffusivity
buoyancy effects. Moreover, it is difficult to connect direc
the properties of dispersion to the Lagrangian statistics of
velocity field since the particles’ positions and the velocit
are usually not measured simultaneously in one experim
for the same flow realization. However, applying the digi
particle-image velocimetry method to model flows in tw
dimensional cells one can obtain velocity fieldsv(r ,t) with
fine spatial and temporal resolution. These can then be u
both for the analysis of Eulerian characteristics of the vel
ity field and for gaining arbitrary Lagrangian information b
integrating the equations of motion of ‘‘fictive’’ particle
~fluid elements!

dr

dt
5V~r ,t !, ~1!

starting from a given initial pointr (t0) at a given instant of
time t0 . This ‘‘semiexperimental’’ fictive-particle approac
to the transport processes under turbulence, pursued e
in Refs.@3–5#, may be extremely fruitful.

In this paper we focus on the properties of particle p
and cluster dispersion by a two-dimensional turbulent fl
generated in a shallow cell under electromagnetic forc
and density stratification. The most attention will be paid
the connection between the dispersion and the relative ve
ity correlation function, a quantity which is fundamental f
the theoretical understanding of dispersion, and which
hardly accessible otherwise. The experimental data were
vided by Paret and Tabeling, and are the same as that us
PRE 591063-651X/99/59~5!/5412~5!/$15.00
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Refs.@3# and@5#. The details of the experimental setup, da
acquisition, and preprocessing procedures can be foun
the same publications. The velocity field, in a cell of a
proximate dimensions 16 cm316 cm, is digitalized on a 64
364 square grid, corresponding to a grid constant ofa
50.25 cm. This gives an array of 4096 velocity vecto
V i , j (t) per time step ofDt50.04 sec, fromt50 until tmax
560 sec. The fine time-discretization allows use ofDt as the
integration step. In space, the value of the velocityV(r )
5„Vx(r ),Vy(r )… at the pointr5(x,y) is interpolated using
the bilinear form

Va~r !5~12j!~12h!Vp,q
a 1~12j!hVp,q11

a

1j~12h!Vp11,q
a 1jhVp11,q11

a , ~2!

where a denotes the velocity’s Cartesian component,p
5@x/a# andq5@y/a# give the coordinates of the grid’s ce
in which the pointr is situated, and the values ofj5$x/a%
and h5$y/a% determine the relative position of a poin
within the cell. Here@z# and $z% denote the whole and frac
tional parts ofz, respectively. This type of interpolation give
continuous coordinate-dependence for the velocity’s spa
partial derivatives, and thus extrapolates reasonably we
small scales first-order differential forms such as rotV or the
strain tensor. The interpolation allows to use a simple Eu
algorithm for integrating Eq.~1! and to start integration from
interparticle separations smaller that the grid constant in
der to use the whole dynamic range of data.

As shown in Ref. @3#, the flow ~although two-
dimensional! shows the typical Kolmogorov-Obukhovk25/3

energy spectrum~within thek interval of almost one order o
magnitude in wave number!. The possibility of the appear
ance of the Kolmogorov-Obukhovk25/3 scaling in two-
dimensional turbulent flow generated by inverse cascad
not surprising and was predicted in late 1960s in Refs.@6#
and@7#. In Ref. @5# Richardson’s laŵ r 2(t)&}t3 for the par-
ticle dispersion was observed within a time window of du
tion slightly smaller than one order of magnitude. The aim
5412 ©1999 The American Physical Society
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PRE 59 5413DISPERSION OF PASSIVE PARTICLES BY A QUASI- . . .
the present work is to connect the appearance of the R
ardson’s law with the correlation properties of the veloc
field is space and time.

Starting from the set of close particles with initial sepa
tion fixed atr 050.05 cm and initially placed within a squar
of size 1 cm31 cm in the center of the system we integra
Eq. ~1! for the particle pairs and average overN515 000
initial positions. The maximal integration time is chosen
such a way that the particles do not come into close vicin
of a boundary so as to avoid finite-size effects. The ti
dependence of̂r 2(t)&, within a time range from 2 to 10 se
can be well fitted by the cubic form

^r 2~ t !&'Rt3, ~3!

with the constantR5(2.560.1)31023, as shown in Fig. 1,
where the behavior of̂r 2(t)& is plotted on double logarith
mic scales. The value ofR is obtained as a mean value
^r 2(t)&/t3 for 2 sec,t,10 sec and the error bars denote t
standard deviation of the mean. The inset shows the t
dependence of̂r 2(t)&/t3, which renders evidence of the ex
istence of a plateau corresponding to Richardson’s law
shows the value ofR. The value ofR found here agrees with
one that can be infered from Fig. 18 of Ref.@5# using another
initial distribution of particles. The time range 2 sec,t
,10 sec will be referred to as Richardson’s range. Our n
task will be to relate this information to features of the kin
matics of the velocity field.

The relative velocityv(r ) of two particles depends on th
mutual distancer and its mean square value^v2(r )& is ~in the
stationary regime! a function ofr only @8,9#. Its radial part,
responsible for the particle dispersion, behaves typically

v r
2~r !}H Ar2 for r ,l

Br2/3 for l,r ,L

const for r .L,

~4!

wherel is the characteristic viscous scale andL is the upper
dimension of the Kolmogorov range. The coefficientB is

FIG. 1. Mean square displacement^r 2(t)& as a function of time
shown on double logarithmic scales. The dashed line has the s
3. The inset shows the behavior of^r 2(t)&/t3; the horizontal line
corresponds to the value ofR50.0025.
h-

-

y
e

e

d

xt
-

s

connected with the energy dissipation rate in the flow@9#.
The behavior ofv r

2(r ) obtained from the experimental data
shown in Fig. 2. The characteristic value ofL ~viewed as a
crossover from the power law to a plateau region! can be
estimated asL'3 cm. A rough estimate for the lowe
boundary, based on a log-log presentation ofv r

2(r ), gives
l'0.5 cm. This value is of the same order of magnitude
the characteristic discretization length of the system,a
50.25 cm, and is thus somewhat ambiguous. The coeffic
B obtained by a least-square-fit to the data in the ra
0.5 cm,r ,3 cm isB'~0.2660.02! cm4/3/sec2.

The value of the constantR is connected to the behavio
of v(r ) as a function ofr and to the temporal correlations o
the relative velocities, see Refs.@10# and @11#. Note that the
t3 law stems essentially from pairs of particles moving ‘‘ba
listically,’’ i.e., in such a way that the direction of the veloc
ity is fixed, so that the relative distance is increasing.
estimate the mean square separation one can start from
grating the ballistic equation of motion for the relative di
tance,dr/dt5nsep(r ), and take the separation velocity to b
of the order of rms relative velocity at the distancer,
nsep(r )>@n r

2(r )#1/2, as in Ref. @9#. For the mean square
separation one then gets

r 25A~ABt!3 ~5!

with the numerical coefficientA being of the order of unity
~but dependent on the exact assumptions done!. Equation~5!
typically overestimatesRby 1.5–2 orders of magnitude com
pared to its measured value~this is too strong a discrepanc
even for a simple scaling estimate!. This means that only a
small part of the pair population really separates in a ballis
way and thus contributes considerably to the overall disp
sion, i.e., it indicates that the dispersion in a two-dimensio
velocity field is governed not by typical but by rare, extrem
events~possibly Lévy-enhanced, as proposed in Ref.@11#!.

The associated population can be estimated by calcula
the direction correlation function of the relative motio
C(t)5^e(t0)e(t01t)&, where the average is taken over th
pairs and over the timest0 . Heree(t) is a unit vector in the

pe

FIG. 2. Mean square radial component of relative velocity o
flow ^v r

2(r )& ~in cm/sec!, as a function of a distance~in cm!. The
dashed line represents the behaviorv(r )50.26r 2/3 used in further
estimates.
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direction of the relative velocity of a pair of particles at tim
t, e(t)5v(t)/uv(t)u, andv(t) is a relative velocity of a pair a
time t. The functionC(t) is presented in Fig. 3 and show
rather unexpected behavior: at short times,t,2 sec it decays
exponentially, but then it stagnates and reaches a pla
region lasting almost throughout the whole Richardso
range, untilt57 sec. After this it starts to oscillate near zer
these oscillations probably have purely statistical charac
The height of the plateau obtained as a mean value ofC in

the interval 2 sec,t,7 sec is approximatelyC̄'631023.
The important role played byC(t) is rendered clear by

turning to a Drude-like kinematic description of dispersi
@11#, based on a Le´vy-walk-picture of Ref.@12#. In Ref. @11#
the dispersion process was considered to be due to a lam
ballistic motion interrupted by distinct scattering events. A
ter such an event the direction of the relative velocity
chosen at random. In this model the functionC(t) is exactly
the probability that no scattering has taken place during

time t, and thus the value ofC̄ is a good estimate of the
effective fraction of particles undergoing ballistic separatio
Note that the simple weighing of the value ofr 2(t), given by

Eq. ~4!, with the factorC̄ gives an estimate for the propo
tionality factor R in Eq. ~3!, which has the correct order o
magnitude. This estimate shows that only the pairs that
dergo ballistic separation contribute considerably to the r
tive dispersion. The number of such pairs, keeping cons
the average direction of the relative velocity for considera
times, is small. The pairs whose relative velocity h
changed many times, contribute much less to the overall
persion; the particles in such pairs stay closer together du
considerable time. Thus, the Richardson’s behavior in
case considered stems not from thetypical separation in a
pair of particles, but from the extremely and ballistica
separated ones.

To prove this assumption we calculated the distribution
the interparticle distances at different times and mostly c
centrated on the low-order integral characteristics of this
tribution. Thus, in addition to the mean-square distan
s2(t)5^r 2(t)& we calculated the mean absolute distan

FIG. 3. Correlation function of the direction of relative motio
C(t)5^e(t0)e(t01t)&, as a function of time~sec!. Note the plateau
in C(t) for 2 sec,t,7 sec. The height of the plateau~obtained as
the function’s mean value in this time interval! is approximately
0.006 and is shown as a dashed line.
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m(t)5^r (t)& and the medianL(t), defined as the distanc
such that exactlyN/2 of the pairs have the separationr
<L. The time evolution ofs(t)5^r 2(t)&1/2, m(t), andL(t)
for the times within the Richardson’s range is shown in F
4. The results show that the relative first momentz
5m(t)/s(t) does not strongly change during the Richardso
range and eventually reaches the value of approximately
On the other hand, the relative value of the medianl
5L(t)/s(t), at the end of the Richardson’s range is a
proximately 0.075. We compare these values to the o
following from the Richardson’s diffusion approximatio
@1#, describing the process by the equation for the dista
neighbor function,

]p~r ,t !

]t
5

]

]r i
S K~r !

]p~r ,t !

]r i
D ~6!

with the effective turbulent diffusivityK(r )5ar 4/3. The
rotation-symmetric solution of this equation in 2D reads

p~r ,t !5
243

64
~at !23 expS 2

9r 2/3

4at D . ~7!

From Eq.~7! the time-independent, universal values ofz and
l follow. That is, z57A15p/64'0.751 andl is approxi-
mately 0.565. The value ofl is equal tol 5z3/2/2A15, with z
is a root of the transcendent equationez5212z1z2. We
see that both values are larger than those obtained thro
simulations. Especially drastic is the discrepancy in the v
ues ofl; the value from diffusion approximation is almost
orders of magnitude larger than the ‘‘experimental’’ on
This means that the typical pair is hardly dispersed by
flow, and that particles initially close together stay cluster
during considerable times. This finding parallels the pictu
of dispersion of two close particles following from the sim
lations of Ref.@13#.

Let us confront these findings with the behavior ofsingle
particles. The fractal non-Brownian trajectories of partic
were found in many different types of fluid motion, e.g.,
chaotic flows@14#, in motion of particles driven by capillary
waves @15#, and in two-dimensional turbulent flows, bot

FIG. 4. Time dependence of the medianL(t) ~circles!, mean
valuem(t) ~diamonds!, and the variance@s(t)#1/2 ~triangles! of the
distribution of the interparticle distances as functions of time. S
text for details.
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decaying and stationary@5#. In all these cases the typica
behavior of tracer particles can be considered as a sequ
of periods of fast, directed motion~flights! interrupted by
periods of slow, erratic motion~quoted as traps in Ref.@14#!.
When we turn to the consideration of pairs of particles,
find that most of the initially close pairs stay close to ea
other during considerable times, performing similar motio
both during the flight and the trapping periods, and followi
close trajectories in space. On the other hand, this means
the large separations giving rise to the overall dispers
~i.e., flights in the relative motion of particles! are much
more rare than when assuming the particles to move in
pendently from each other. On the other hand these ev
~although rare! are the ones contributing considerably to R
chardson’s dispersion.

We illustrate the cluster nature of the particles’ dispers
by presenting the result of calculations in which we simul
neously traceN5400 particles, initially placed within a
1 cm31 cm square. The size of the region is laying with
the inertial range, so that the region is inevitably dispers
We show snapshots of the particles’ positions att51, 3, 9,
and 30 sec in Fig. 5. We see that particles’ dispersion res
from stretching and folding the initial region. On the oth
hand, even at very long times the particles stay clustere
few dense ‘‘clouds,’’ and only few of them are present
solitary ones. This cluster nature of turbulent dispersion w
already clear to Richardson~see Figs. 1–5 of Ref.@1#!, but
was rarely stressed after him. Thus, the mean square dist
between the particles is mostly governed by the characte

FIG. 5. Snapshots of the positions of 400 particles~shown as
crosses! starting at50 in a square of a side 1 cm in the middle
the system att51, 3, 9, and 30 sec. Note that particles’ dispers
results from stretching and folding the initial region. Note also t
even att530 strong clustering is present.
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tic distance between the clusters; the characteristic dim
sion of the clusters is only slightly larger thanl. The exis-
tence of clusters~clouds! is a very important feature o
turbulent mixing in 2D and must be of extreme importan
when considering, for example, the pollutants’ spreading
the atmosphere. This clustering leads to a distribution of
terparticle distances showing the pronounced peak at s
distances. This finding is parallel to the results of the Le´vy-
walks based Drude-approach of Ref.@11#. Following a ‘‘real-
time’’ development of the particles’ position on a screen a
sort of movie we find that the dispersion mechanism cor
sponds in general to stretching and detachment of clus
but that situations in which two clusters or individual pa
ticles merge together and travel for a while as a comp
cloud also occure.

The clustering phenomenon shows the week mixing a
ity of a quasi-two-dimensional turbulent flow. This finding
parallel to the results of experiments of Ref.@16#, where the
measured spectra of passive scalars stirred by similar tu
lent flows could be fitted only supposing the effective stra
ratesgeff along the Lagrangian trajectories which are 3 o
ders of magnitude smaller than the principal strain rate av
aged over the system’s volume. Of course, some reserva
must be made when extrapolating our findings for quasi-tw
dimensional flows to purely two-dimensional and to thre
dimensional ones. The two-dimensional velocity fields o
tained as projections of instantaneous velocity fields in
shallow cell on a horizontal plane are not absolute
divergence-free, due to possible vertical motions. The ch
acteristic values of divergence are small, being a 1023 of
v0 /L. We calculated the divergence charts for the sa
times as when the positions of the particles were calcula
and plotted them together with the particles’ positions. T
clusters are not associated with the regions in the flow w
negativeinstantaneousdivergence. On the other hand, th
nonzero divergences, although small but persisting o
longer times, could nevertheless be manifested on the b
ground of stochastic mixing, thus interferring with turbule
stirring.

To conclude, we summarize our findings. Using the e
perimental data for turbulent velocity fields in a shallow ce
we consider the dispersion of pairs and clusters of partic
by such quasi-two-dimensional turbulent flow. We show th
the mean square separation of a pair of particles in such
is connected with rare and extreme events. The connectio
these findings with the correlation properties of the veloc
field in space and time is discussed.
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