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Dispersion of passive particles by a quasi-two-dimensional turbulent flow
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Using the experimental data of Paret and Tabe]ligys. Rev. Lett79, 4162(1997)] we consider in detail
the dispersion of particle pairs by a two-dimensional turbulent flow and its relation to the kinematic properties
of the velocity field. We show that the mean square separation of a pair of particles is governed by rather rare,
extreme events and that the majority of initially close pairs are not dispersed by the flow. Another manifesta-
tion of the same effect is the fact that the dispersion of an initially dense cluster is not the result of homoge-
neously spreading the particles within the whole system. Instead it proceeds through a splitting into smaller but
also dense clusters. The statistical nature of this effect is discUssEab63-651X%99)09804-9

PACS numbds): 47.27.Qb, 05.406-a

Understanding the dispersion of particles in a turbulentRefs.[3] and[5]. The details of the experimental setup, data
velocity field is both of practical importance and of much acquisition, and preprocessing procedures can be found in
theoretical interest. It is of fundamental importance for thethe same publications. The velocity field, in a cell of ap-
correct modeling of turbulent diffusion and mixing proper- proximate dimensions 16 ciil6 cm, is digitalized on a 64
ties of flows, a basic issue in environmental studies. A greak 64 square grid, corresponding to a grid constantaof
deal of experimental insight has been gained following the=0.25cm. This gives an array of 4096 velocity vectors
pioneering work of Richardsof1926, Ref.[1], but a full  V;(t) per time step ofAt=0.04 sec, fromt=0 until ty,,
understanding of the problem is still lackitgee Ref[2] for =60 sec. The fine time-discretization allows use\bfas the
a review. integration step. In space, the value of the veloditfr)

Experimental studies of particle dispersion by turbulent=(v*(r),VvY(r)) at the pointr=(x,y) is interpolated using
flows are always complicated by molecular diffusivity or the bilinear form
buoyancy effects. Moreover, it is difficult to connect directly
the properties of dispersion to the Lagrangian statistics of the

velocity field since the particles’ positions and the velocities VAN =(1-8(1=nV5+(1=8nVp i1
are usually not measured simultaneously in one experiment, B « «
for the same flow realization. However, applying the digital A= mVpi1gT €MV pi1gi1s )

particle-image velocimetry method to model flows in two-

dimensional cells one can obtain velocity fiekds,t) with where o denotes the velocity’s Cartesian componept,
fine spatial and temporal resolution. These can then be used[x/a] andq=[y/a] give the coordinates of the grid’s cell
both for the analysis of Eulerian characteristics of the velocin which the pointr is situated, and the values & {x/a}
ity field and for gaining arbitrary Lagrangian information by gng n={yla} determine the relative position of a point
integrating the equations of motion of “fictive” particles \ithin the cell. Here[z] and{z} denote the whole and frac-

(fluid elementy tional parts ofz, respectively. This type of interpolation gives
continuous coordinate-dependence for the velocity's spatial
ﬂ:V(r t) (1) partial derivatives, and thus extrapolates reasonably well to
dt o small scales first-order differential forms such as\fair the

strain tensor. The interpolation allows to use a simple Euler

starting from a given initial point(ty) at a given instant of algorithm for integrating Eq1) and to start integration from
time t;. This “semiexperimental” fictive-particle approach interparticle separations smaller that the grid constant in or-
to the transport processes under turbulence, pursued earlider to use the whole dynamic range of data.
in Refs.[3-5], may be extremely fruitful. As shown in Ref. [3], the flow (although two-

In this paper we focus on the properties of particle pairdimensional shows the typical Kolmogorov-Obukhdy /2
and cluster dispersion by a two-dimensional turbulent flowenergy spectrunfwithin thek interval of almost one order of
generated in a shallow cell under electromagnetic forcingnagnitude in wave numberThe possibility of the appear-
and density stratification. The most attention will be paid toance of the Kolmogorov-Obukhok *? scaling in two-
the connection between the dispersion and the relative velodimensional turbulent flow generated by inverse cascade is
ity correlation function, a quantity which is fundamental for not surprising and was predicted in late 1960s in REg$.
the theoretical understanding of dispersion, and which isnd[7]. In Ref.[5] Richardson’s law(r%(t))«t* for the par-
hardly accessible otherwise. The experimental data were praicle dispersion was observed within a time window of dura-
vided by Paret and Tabeling, and are the same as that usedtion slightly smaller than one order of magnitude. The aim of
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lo g 1 Ot FIG. 2. Mean square radial component of relative velocity of a

flow (vf(r)) (in cm/seg¢, as a function of a distandgn cm). The
FIG. 1. Mean square displacement(t)) as a function of time ~ dashed line represents the behavi¢r) =0.26>* used in further
shown on double logarithmic scales. The dashed line has the sloggstimates.
3. The inset shows the behavior ¢f2(t))/t3; the horizontal line
corresponds to the value &= 0.0025. connected with the energy dissipation rate in the fl[@k
The behavior of2(r) obtained from the experimental data is
the present work is to connect the appearance of the Richshown in Fig. 2. The characteristic value lofiviewed as a
ardson’s law with the correlation prOpertieS of the VelOCitycrossover from the power law to a p|ateau regioan be
field is space and time. estimated asL~3cm. A rough estimate for the lower
Starting from the set of close particles with initial separa-hoyndary, based on a log-log presentationvpfr), gives
tion fixed atr=0.05cm and initially placed within a square ) —q 5cm. This value is of the same order of magnitude as
of size 1cmx1cm in the center of the system we integrateie characteristic discretization length of the systen,
Eq. (1) for the particle pairs and average owdr=15000 ~ —g 25cm, and is thus somewhat ambiguous. The coefficient
initial positions. The maximal integration time is chosen ing gptained by a least-square-fit to the data in the range
such a way that the particles do not come into close vicinityg 5 s« r <3 cm isB~(0.26=0.02 cn’¥se.

of a boundary 0 as to avoid finite-size effects. The time The yalue of the constam is connected to the behavior
dependence dfr °(t)), within a time range from 2 to 10 S€C ¢ (1) as a function of and to the temporal correlations of
can be well fitted by the cubic form the relative velocities, see Refd0] and[11]. Note that the
(r2(t))~Re &) t_3 I_aw stems e_ssentially from pairs of p_artic_les moving “bal-
' listically,” i.e., in such a way that the direction of the veloc-
with the constanR= (2.5+0.1)x 10”3, as shown in Fig. 1, ity Iis fixed, so that the relative di_stance is increasing. To
Where the behavior (ﬁrz(t)> is p|0tted on doub|e |ogarith_ estimate the mean Squat‘e Separatlon one can start from Inte-
mic scales. The value @® is obtained as a mean value of 9rating the ballistic equation of motion for the relative dis-
(r?(t))/t® for 2 see<t<10sec and the error bars denote thetancedr/dt=wvs.{r), and take the separation velocity to be
standard deviation of the mean. The inset shows the timgf the order of rms relative velocity at the distance
dependence dfr 2(t))/t3, which renders evidence of the ex- vsed)=[¥(r)]*’% as in Ref.[9]. For the mean square
istence of a plateau corresponding to Richardson’s law angeparation one then gets
shows the value oR. The value ofR found here agrees with
one that can be infered from Fig. 18 of RE3] using another r2=A(/Bt)3 (5)
initial distribution of particles. The time range 2 set

<10sec will be referred to as Richardson’s range. Our NeXiih the numerical coefficiend being of the order of unity
task will be to relate this information to features of the klne—(but dependent on the exact assumptions tidBguation(s)
matics of the velocity field. _ typically overestimateR by 1.5—2 orders of magnitude com-
The relative velocity(r) of two particles depends on the pareq to its measured valgehis is too strong a discrepancy
mutual distance and its mean square valge’(r)) is (inthe  ayen for a simple scaling estimat&his means that only a
stationary regimea function ofr only [8,9]. Its radial part,  gma)| part of the pair population really separates in a ballistic
responsible for the particle dispersion, behaves typically asay and thus contributes considerably to the overall disper-

Ar2 for r<\ sion, i.e., it indicates that the dispersion in a two-dimensional
velocity field is governed not by typical but by rare, extreme
v2(r)o Br2® for n<r<L (4)  events(possibly Lery-enhanced, as proposed in Rif1]).
const forr>L, The associated population can be estimated by calculating

the direction correlation function of the relative motion
where\ is the characteristic viscous scale dni$ the upper ¥ (t)=(e(to)e(to+1)), where the average is taken over the
dimension of the Kolmogorov range. The coefficidhitis  pairs and over the timeg. Heree(t) is a unit vector in the
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FIG. 3. Correlation function of the direction of relative motion, FIG. 4. T_|me dependence of _the medlml(/g) (_(:lrcles), mean
W(t)=(e(to)e(to+1)), as a function of timésed. Note the plateau valuem(t) (diamonds, and the variancgo(t)]* (triangles of the
in W(t) for 2 see<t<7 sec. The height of the plateéobtained as distribution qf the interparticle distances as functions of time. See
the function’s mean value in this time interyds approximately ~t€xt for details.
0.006 and is shown as a dashed line. .

m(t)=(r(t)) and the mediam (t), defined as the distance

direction of the relative velocity of a pair of particles at time Such that exactiyN/2 of the pairs hav/e the separation
t, e(t)=v(t)/|v(t)], andv(t) is a relative velocity of a pairat <A . The time evolution ofr(t) =(r3(t))*?, m(t), andA(t)
time t. The function¥ (t) is presented in Fig. 3 and shows for the times within the Richardson’s range is shown in Fig.
rather unexpected behavior: at short times? sec it decays 4. The results show that the relative first moment
exponentially, but then it stagnates and reaches a plateaaM(t)/o(t) does not strongly change during the Richardson’s
region lasting almost throughout the whole Richardson’s@nge and eventually reaches the value of approximately 0.5.
range, untitt=7 sec. After this it starts to oscillate near zero, On the other hand, the relative value of the median,
these oscillations probably have purely statistical character- A(t)/o(t), at the end of the Richardson’s range is ap-
The height of the plateau obtained as a mean valug @i ?rﬁ)xmatelfy 0-07;3- \é\(ehCO(;npare ghgse. values to the ones
the interval 2 sect<7 sec is approximatel ~6x 1073 otowing from the Richardson's d usion approxmgtlon

The important role played l%le(t) is ren%,ered clear by E]le}i, ﬂgi?régwgié?]e process by the equation for the distance
turning to a Drude-like kinematic description of dispersion g '
[11], _based_on abg/-walk-picture_of Ref[12]. In Ref.[11] _ ap(rt) ( r?p(r,t))
the dispersion process was considered to be due to a laminar = —| K(r)
ballistic motion interrupted by distinct scattering events. Af- o i i
ter such an event the direction of the relative velocity iswith the effective turbulent diffusivity (r)=ar*3. The
chosen at random. In this model the funciiinft) is exactly rotation-symmetric solution of this equation in 2D .reads
the probability that no scattering has taken place during the

time t, and thus the value o¥ is a good estimate of the 243 3
effective fraction of particles undergoing ballistic separation. p(r,t)= a(at) expg —
Note that the simple weighing of the valuerd{t), given by

Eq. (4), with the factor¥ gives an estimate for the propor- From Eq.(7) the time-independent, universal valuezand
tionality factorR in Eq. (3), which has the correct order of | follow. That is, z=715m/64~0.751 andl is approxi-
magnitude. This estimate shows that only the pairs that unmately 0.565. The value dfis equal tol = 7%%2/15, with ¢
dergo ballistic separation contribute considerably to the relais a root of the transcendent equatieh=2+2(+ ¢2. We
tive dispersion. The number of such pairs, keeping constargee that both values are larger than those obtained through
the average direction of the relative velocity for considerablesimulations. Especially drastic is the discrepancy in the val-
times, is small. The pairs whose relative velocity hasues ofl; the value from diffusion approximation is almost 2
changed many times, contribute much less to the overall dissrders of magnitude larger than the “experimental” one.
persion; the particles in such pairs stay closer together duringhis means that the typical pair is hardly dispersed by the
considerable time. Thus, the Richardson’s behavior in thdlow, and that particles initially close together stay clustered
case considered stems not from tiypical separation in a during considerable times. This finding parallels the picture
pair of particles, but from the extremely and ballistically of dispersion of two close patrticles following from the simu-
separated ones. lations of Ref[13].

To prove this assumption we calculated the distribution of Let us confront these findings with the behaviorsafgle
the interparticle distances at different times and mostly conpatrticles. The fractal non-Brownian trajectories of particles
centrated on the low-order integral characteristics of this diswere found in many different types of fluid motion, e.g., in
tribution. Thus, in addition to the mean-square distancechaotic flows[14], in motion of particles driven by capillary
a?(t)=(r%(t)) we calculated the mean absolute distancevaves[15], and in two-dimensional turbulent flows, both

(6)

9r2/3

Aot (7
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tic distance between the clusters; the characteristic dimen-
sion of the clusters is only slightly larger than The exis-
tence of clustergclouds is a very important feature of
turbulent mixing in 2D and must be of extreme importance
when considering, for example, the pollutants’ spreading in
the atmosphere. This clustering leads to a distribution of in-
terparticle distances showing the pronounced peak at small
distances. This finding is parallel to the results of they-e
walks based Drude-approach of Réfl]. Following a “real-
time” development of the particles’ position on a screen as a
sort of movie we find that the dispersion mechanism corre-
sponds in general to stretching and detachment of clusters,
but that situations in which two clusters or individual par-
ticles merge together and travel for a while as a compact
cloud also occure.

"‘“‘5"" The clustering phenomenon shows the week mixing abil-
. ity of a quasi-two-dimensional turbulent flow. This finding is
parallel to the results of experiments of REf6], where the
measured spectra of passive scalars stirred by similar turbu-
FIG. 5. Snapshots of the positions of 400 partigesown as  lent flows could be fitted only supposing the effective strain
crossepstarting at=0 in a square of a side 1 cm in the middle of ratesy.4 along the Lagrangian trajectories which are 3 or-
the system at=1, 3, 9, and 30 sec. Note that particles’ dispersionders of magnitude smaller than the principal strain rate aver-
results from stretching and folding the initial region. Note also thataged over the system’s volume. Of course, some reservations
even att=30 strong clustering is present. must be made when extrapolating our findings for quasi-two-

. , . dimensional flows to purely two-dimensional and to three-
decaying and stationarfs]. In all these cases the typical gimensional ones. The two-dimensional velocity fields ob-

behavior of tracer particles can be considered as a sequenggneq as projections of instantaneous velocity fields in a
of periods of fast, directed motiofflights) interrupted by gpaliow cell on a horizontal plane are not absolutely
periods of slow, erratic motiofquoted as traps in Reffl4]).  givergence-free, due to possible vertical motions. The char-
When we turn to the consideration of pairs of particles, We,teristic values of divergence are small, being a316f

find that most of the initially close pairs stay close to each, | ~we calculated the divergence charts for the same
other during considerable times, performing similar motion;mes as when the positions of the particles were calculated,
both during the flight and the trapping periods, and followingang piotted them together with the particles’ positions. The

close trajectories in space. On the other hand, this means thaf,sters are not associated with the regions in the flow with

the large separations giving rise to the overall dispersiomeqativeinstantaneousdivergence. On the other hand, the
(i.e., flights in the relative motion of particlesre much  honser0 divergences, although small but persisting over
more rare than when assuming the particles to move indgynger times, could nevertheless be manifested on the back-

pendently from each other. On the other hand these evenig g nq of stochastic mixing, thus interferring with turbulent
(although rargare the ones contributing considerably to Ri- stirring.

chardson’s dispersion. o . To conclude, we summarize our findings. Using the ex-
We illustrate the cluster nature of the particles’ dispersion,erimental data for turbulent velocity fields in a shallow cell,
by presenting the result of calculations in which we simulta~ye consider the dispersion of pairs and clusters of particles
neously traceN=400 particles, initially placed within a py gych quasi-two-dimensional turbulent flow. We show that
1cmx1cm square. The size of the region is laying within \he mean square separation of a pair of particles in such flow
the inertial range, so that the region is inevitably disperseds connected with rare and extreme events. The connection of

We show snapshots of the particles’ positiongatl, 3, 9,  {hese findings with the correlation properties of the velocity
and 30 sec in Fig. 5. We see that particles’ dispersion resultgg|q in space and time is discussed.

from stretching and folding the initial region. On the other

hand, even at very long times the particles stay clustered in We are extremely grateful to J. Paret and P. Tabeling for
few dense ‘“clouds,” and only few of them are present asproviding the experimental velocity fields. We are thankful
solitary ones. This cluster nature of turbulent dispersion waso A. Blumen, J. Klafter, K. Lindenberg, F. Sagyand J. M.
already clear to Richardsaisee Figs. 1-5 of Refl]), but  Sancho for fruitful discussions. The support of the DFG
was rarely stressed after him. Thus, the mean square distan(@B 428 and of an “ACCIONES INTEGRADAS"-—
between the particles is mostly governed by the characteriddAAD grant are gratefully acknowledged.
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