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A model of a phase-separating two-component Langmuir monolayer in the presence of a photoinduced
reaction interconverting two components is formulated. An interplay between phase separation, orientational
ordering, and reaction is found to lead to a variety of nonequilibrium self-organized patterns, both stationary
and traveling. Examples of the patterns, observed in numerical simulations, include flowing droplets, traveling
stripes, wave sources, and vortex defects.
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I. INTRODUCTION

Spurred by experimental and technological developments
in supramolecular chemistry and biophysics, there is increas-
ing interest in studying nonequilibrium structures related to
self-organization phenomena in weakly condensed systems.
In such systems, attractive potential interactions between
constituent molecules are essential. Equilibrium structures in
soft matter correspond to minima of free energy, and are
caused by the competition between short-range attractive and
long-range repulsive interactions[1]. In contrast to this, non-
equilibrium patterns require a permanent supply of energy
and correspond to persistent(stationary or time-dependent)
kinetic states of a system[2]. Typically, they result from an
interplay between reactions, diffusion, and phase transitions.
Examples of nonequilibrium pattern formation in reactive
soft matter include stationary Turing-like patterns in phase-
separating binary polymer mixtures with chemical reactions
[3–5] and in monomolecular adsorbates on metal surfaces
[6,7]. Theoretical analysis for two-component reactive adsor-
bates[8,9] and for three-component reactive polymer sys-
tems[10,11] has further shown that not only stationary pat-
terns, but also traveling and standing waves are possible.

Langmuir films are monomolecular layers of amphiphilic
molecules on an air-water interface. Such films are a classi-
cal example of soft matter and, generally, it should be ex-
pected that, in the presence of chemical reactions and energy
flows, they would form nonequilibrium patterns. Though
equilibrium properties of Langmuir monolayers are thor-
oughly investigated(see Ref.[12]), nonequilibrium phenom-
ena in these systems still remain less explored. In an inter-
esting series of experiments, Tabe and co-workers have
studied illuminated Langmuir monolayers of amphiphilic de-
rivatives of azobenzene by means of the Brewster-angle mi-
croscopy[13–16]. In these experiments, transitions between
trans and cis conformations of individual molecules were
photoinduced by polarized light of a selected wavelength.
Since physical properties of the two conformations are dif-
ferent, thetrans andcis isomers essentially represented two
different species. In addition to photoinduced periodic sta-
tionary patterns, these experiments have shown, for the first
time, spontaneously emerging patterns of propagating waves
of molecular reorientation under appropriate illumination
conditions.

In Ref. [17], we proposed a model of reactive two-
component Langmuir monolayers with orientational order-
ing. This model was taking into account phase separation in
the two-component system, reaction interconverting both
species, and diffusion of reactants and processes of orienta-
tional ordering. Interactions between the components of the
monolayer resulted not only from the positional, but also
from the orientational order of the hydrophobic tails of con-
stituent molecules, determined by their tilt. We have shown
that this model already reproduces nonequilibrium traveling-
wave patterns which arise as a consequence of a Hopf bifur-
cation with a finite wave number. To simplify the analysis, it
was assumed that the azimuthal orientation of molecules re-
mained fixed and uniform, so that only their tilts could vary.
Moreover, some orientational-order contributions to the free
energy of the monolayer were neglected. The inclusion of
azimuthal variations is, however, important for a comparison
with the experimental data yielded by the Brewster-angle
microscopy that is sensitive to the local azimuthal orienta-
tional ordering.

The aim of the present paper is to formulate and to study
a more general model that contains both orientational vari-
ables, and includes bend and splay distortion terms. Our ana-
lytical and numerical investigations show that this model has
a significantly different phase diagram and new kinds of non-
equilibrium patterns are possible here. After introduction of
the model in Sec. II, we investigate in Sec. III the behavior
of the system in the equilibrium case, when the reaction is
absent. The bifurcation analysis of the uniform steady state
of the nonequilibrium system under illumination is presented
in Sec. IV. Numerical simulations, revealing the formation of
such nonequilibrium patterns as traveling droplets and
stripes, stationary splay defects, and complex azimuth reori-
entation kinetics, are reported in Sec. V. The paper ends with
the conclusion and the discussion of the obtained results.

II. THE MODEL

We consider a monolayer formed by two diffusive immis-
cible componentsA and B, which have strongly different
shapes. Modeling the situation in the photoisomerization ex-
periments, moleculesA are supposed to have an elongated
shape with a long tail(the trans isomer) and moleculesB to

PHYSICAL REVIEW E 69, 041103(2004)

1539-3755/2004/69(4)/041103(10)/$22.50 ©2004 The American Physical Society69 041103-1



have a crumpled conformation(thecis isomer). According to
this assumption, only moleculesA are subject to orientational
order, whereas moleculesB play essentially the role of pas-
sive dilution with respect to such ordering. Furthermore, a
photoinduced reaction interconvertingA andB molecules is
considered. The total concentration of componentsA andB
in the monolayer is assumed constant. Therefore, the local
composition of the monolayer is characterized by the con-
centration order parameterc representing the local fraction
of moleculesA (so that 1−c gives the local fraction of mol-
eculesB). The local orientational order is described by the
order parameteraW that corresponds to the projection of the
local mesoscopic average of the unit molecular directornW of
the elongated moleculesA onto the monolayer plane(see
Fig. 1). The vector aW is defined by its modulusa= uaW u
=sin h, whereh is the tilt angle andw its azimuth angle.

After we have introduced the two order parametersc and
aW needed to describe the system, the kinetic equations for
their evolution should be formulated. Following the mesos-
copic approach[17], the evolution equation forc reads as

] c

] t
= D¹2c +

D

kBT
¹W · fcs1 − cd¹W mg + Rscd. s1d

HereD is the diffusion coefficient,T is temperature, andm is
the chemical potential defined asm=dF /dc, whereF is the
free energy functional that will be specified below. In the
presence of nonpolarized light, the reactive termRscd is
given f18–20g by

Rscd = fIgsld + k−1
0 gs1 − cd − fIf sld + k1

0gc, s2d

where the first term corresponds to the conversion of mol-
eculesB into moleculesA and the second term describes the
reverse conversion process. In this equation,I is the light
intensity,l is the wavelength of light, andfsld andgsld are
related to the surface molar extinction coefficients and quan-
tum yields for the conformations ofA and B, respectively.
For moderate and high illumination intensities, photoinduced
conversion dominates over the thermal conversion processes,
so that the thermal rate constantsk±1

0 can be neglected. In this
case, the ratio of conversion rates for forward and backward
processes is independent of temperature or light intensity,
and determined only by the light wavelengthl. For simplic-
ity, we shall assume in our subsequent analysis that the
wavelengthl is chosen in such a way thatfsld=gsld. Under
this condition, Eq.s2d takes the form

Rscd = ks1 − 2cd, s3d

wherek= If sld= Igsld is the reaction constant proportional to
the intensity of the applied light.

The kinetic equation for the local orientation vectoraW is
chosen as

] aW

] t
= − G

dF
daW

− kqscdaW . s4d

The first term on the right-hand side corresponds to relax-
ation with a typical relaxation timeG−1. The second term
takes into account that the reaction, interconverting one mo-
lecular conformation to another, also affects the local aver-
age orientation of molecules.

The choice of the functionqscd should be based on the
kinetic analysis with respect to the orientation of molecules
involved in the reactive process. In our model, the reaction
B→A, transforming crumpled molecules into the elongated
form, is assumed to be strongly energetically activated by
light. This means that new moleculesA would be created
with high initial energy and can adopt any orientationaW,
independent of the orientation of surrounding molecules.
Therefore, the orientation of newly created moleculesA is
random and the statistical average ofaW is zero. Because any
conversion from an elongated moleculeA to the crumpled
moleculeB decreases the local order and the reverse conver-
sion process does not increase it, the overall reaction effect is
that it tends to destroy orientational ordering. Under such
assumptions, local evolution for the orientation momentum
caW is described by a simple equation]tscaWd=−kcaW, which
corresponds to the loss ofcaW when moleculesA transform
into B, having no defined orientation. Splitting]tscaWd and
substituting the local variation ofc due to reaction,]tc
=ks1−2cd leads to ]taW =−kaWs1−cd /c. Therefore, we have
qscd=s1−cd /c. This functionqscd is used below.

The energy functionalF is constructed in terms of the
order parametersc andaW of the system. We decompose the
energy functional into two parts: one that accounts for the
affinity between the two isomers in the monolayer, and the
other due to the tail-tail orientational interactions. The first of
these contributions,Fc, depends exclusively onc, whereas
the tail-tail interactionFor is sensitive to bothc and the
orientation of the elongated molecules. Accordingly,F
=Fcscd+Forsc,aWd. Note that entropic contributions are not
considered, since they have been directly included as the
diffusive term in the kinetic equation(1). The expression for
Fc reads[17] as

Fc =E dxdyF− x̃0c
2 +

1

2
x̃2s¹W cd2G , s5d

and describes phase separation due to lateral interactions be-
tween molecules. In the limit of short-range lateral interac-
tion potentials,x̃0 is determined by its strength, andx2 can
be estimated asx̃2< 1

2x̃0r0
2, wherer0 is the characteristic ra-

dius of the interactionf21g. Near the critical point of the
equilibrium phase separation, the combination of Eqs.s1d
ands5d is equivalent to the usual Cahn-Hilliard equation with
the Landau free energy functionalf7g.

FIG. 1. Schematic illustration of the variables used to describe
the tilted elongated molecules in the monolayer.

REIGADA, MIKHAILOV, AND SAGUÉS PHYSICAL REVIEW E 69, 041103(2004)

041103-2



The part of the free energy functional associated with the
distortion of the orientation of tilted molecules in the mono-
layer can be written as

For =E dx dyF−
1

2
p̃scda2 +

1

4
b̃a4 +

Ks

2
s¹W ·aWd2 +

K̃b

2
s¹W

3 aWd2 + L̃cs¹W ·aWdG . s6d

The first two terms correspond to the Landau expansion up
to the quartic term for the modulus of the orientation vector
f12g. This expansion is only justified for sufficiently smallh,
since in this casea=sin h<h is small as well. Generally,
all coefficients in the Landau decomposition should de-
pend on the local concentrationc. We shall, however, con-
sider only weakly nonuniform states, where local devia-
tions of the concentrationc from the uniform stationary
state c̄=1/2 are small. Therefore, we neglect the depen-

dence of the coefficientb̃ on the variablec. However, the
coefficient p̃ of the quadratic term in the Landau free en-
ergy is already small near the instability and its depen-
dence onc must be retained. For condensed phases, low-
ering the lateral pressure of a Langmuir monolayer leads
to an increase of its equilibrium tiltf12g. Since we as-
sumed that moleculesB play a role of passive dilution for
the tilted moleculesA, decreasingc is roughly equivalent
to decreasing the lateral pressure. Thus, we choose a lin-
ear dependencep̃scd=p̃0+2ãs0.5−cd, whereã is a positive
coefficient andp̃0 is a decreasing function of the lateral
pressure which determines the equilibrium tilt in the
monolayer withc= c̄.

The other contributions in Eq.(6) stand for the bend and
splay distortion terms[22]. More specifically, the third and
fourth terms correspond to the classical Frank elasticity
terms that account for the splay and bend distortions, respec-
tively. Normally, one takes the single Frank constant ap-

proximationsK̃=K̃s=K̃bd. The fifth term is the lowest-order

splay contributions¹W 3aWd that appears coupled to the com-
position order parameterc. Although some authors[23,24]
prefer to couple the linear splay term to the tilt angle, we
follow the suggestion by Selingeret al. [25] for a two-
component monolayer undergoing phase separation, as it is
in our case. A similar approach was taken by Tabe and
Yokoyama[14,15] who coupled the linear splay term with a
certain order parameter related to the molecular density that
varies across the monolayer. In general, for sufficiently

strong couplingL̃, the linear splay term destabilizes uni-
formly oriented phases, leading to equilibrium nonhomoge-
neous splayed states(see Sec. III). Finally, notice that a term

s¹W 3aWd linear with respect to bend distortion is not consid-
ered, because it is not permitted by symmetry in achiral
Langmuir monolayers.

Summarizing, the model presented here can be viewed as
a Cahn-Hilliard equation for the composition variablec,
coupled to a relaxational equation for the orientation order
parameteraW. The contributions to the free energy have been

derived considering thatc is close to its stationary uniform
solution and for sufficiently small tilt anglesh.

The analysis can be simplified by appropriately adimen-
sionalizing energy, time, and space. Energy is measured in
units of kBT, time in units of the relaxational timesGkBTd−1,
and spatial coordinates are rescaled with the relaxational
length ÎD / sGkBTd. The model is then characterized by the
dimensionless parametersx0= x̃0/kBT, x2= x̃2G /D, p0

=p̃0/kBT, a=ã /kBT, b=b̃ /kBT, k=ksGkBTd−1, K=K̃G /D,

and L=L̃ÎGsDkBTd−1. With this choice, the final equations
for the evolution ofc and the two components of vectoraW
read as

] c

] t
= ¹2c + ¹W · fcs1 − cd¹W mg + ks1 − 2cd,

] aW

] t
= pscdaW − ba2aW + K¹2aW + L¹W c − k

1 − c

c
aW , s7d

where

m = − 2x0c − x2¹
2c + aa2 + L¹W ·aW ,

and pscd= p̃scdskBTd−1=p0+2as0.5−cd. This is the math-
ematical model which will be investigated below.

In order to obtain numerical results from the model, we
numerically integrate Eqs.(7) on a 1003100 square grid,
using an explicit Euler scheme with a mesh sizeDx and a
time stepDt, which assure a good numerical accuracy. Peri-
odic boundary conditions are chosen to model the behavior
in a large system far from the boundaries. As initial condi-
tions, small random perturbations around the stationary uni-
form states of the systemsc̄ andā, and a random distribution
of azimuth angleswP s0,2pd are taken. To display simula-
tion results, snapshots of the patterns after the transients are
given in the figures. Each figure consists of two panels: the
left panel shows in gray scale the spatial distribution of the
composition variablec, with larger values corresponding to
the darker color, and the right panel is used for visualization
of the orientational fieldaW. The local directions of this field
are visualized by using small arrows. Note that, for technical
reasons, such arrows could not be used to indicate the states
of all grid points in the simulations and therefore the visual-
ization of the azimuthal orientation is rough. The gray color
in the right panels is used to display the local tilta, and
again, darker regions correspond to the larger values of this
variable. In some cases, videos of time-dependent patterns
are also provided(see Ref.[26]).

III. EQUILIBRIUM PATTERNS

Before addressing the nonequilibrium cases, we show
some examples of equilibrium pattern formation in the con-
sidered system. The equilibrium conditions correspond to ab-
sence of illumination and are realized if all reactive terms in
Eqs. (7) are omitted. One of the limitations of our previous
simpler model[17] was that it did not exhibit any equilib-
rium pattern formation, despite the experimental evidence of
spontaneous generation of striped patterns in nonilluminated
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monolayers[13–15]. The linear splay term included in Eq.
(6) can already lead to the formation of equilibrium orienta-
tional structures.

In the limit of a→0 (i.e., in the absence of the quadratic
Landau term for the tilt variation), the nonreactive version of
the present model is similar to the description proposed by
Selingeret al. [25] for nonchiral Langmuir monolayers. In
their study, three different nonuniform phases(sinusoidal
stripes, soliton stripes, and square lattice of vortices) were
found for smectic films undergoing chiral symmetry break-
ing under variation of a control parameter(corresponding to
temperature), and similar phases for multicomponent Lang-
muir monolayers were predicted. As illustrated in Figs. 2–5,
our model reproduces these regimes under appropriate
choices of the parameterx0 specifying the relative intensity
of energetic lateral interactions.

When the characteristic energy of lateral interaction is
much weaker than the orientation energy, a square array of
alternating “inward” and “outward” splay defects(vortices)
is formed (Fig. 2). The “inward” defects represent regions
rich in elongated moleculesA which are oriented towards the
center of the defect. In analogy to the “escape to the third
dimension” found in defects in three-dimensional nematics
[27], the tilt in the center of these defects is almost zero,
reducing the Frank elastic energy near that point. The out-
ward splay defects are poor in elongated moleculesA, but
also exhibit vanishing tilt in their centers. Increasing the lat-

eral interactions with respect to the splay coupling, the sys-
tem organizes into a stripe phase with smooth variations ofc
and a (see Fig. 3). The profiles of variation ofc, a, and w
across a stipe are displayed in Fig. 4. The equilibrium stripe
patterns are similar to those observed in the experiments in
absence of illumination[14,15,28]. The modulation of the tilt
(absent in the model by Selingeret al. because tilt variations
were not included there) has a spatial frequency twice that of
the azimuthal and concentration modulations. Moreover, in
agreement with the experiments the amplitude of the tilt
angle modulation depends on the stripe size, decreasing as
the stripe widens(this is observed, for example, by decreas-
ing the parameterL).

Strong lateral attractive interactions(i.e., large interaction
strengthsx0) lead to the formation of a striped phase with
sharp wall domains(“soliton stripes”) in the modulation of
composition, tilt, and azimuth, which has also been reported
by Selingeret al. [25]. In Fig. 5 profiles of variation ofc, a,
andw across such a stripe are plotted. Note again the double

FIG. 2. Concentration(left panel) and orientation(right panel)
fields in the equilibrium pattern representing an array of splay de-
fects for L=2, K=0.25, p0=a=0, b=4, x2=1, andx0=1 in the
absence of reactionsk=0d. The gray color is used in the right panel
to display the local tilta of the molecules. In both panels, darker
regions correspond to higher values of the displayed variables.

FIG. 3. Equilibrium stripe pattern forL=2, K=0.25,p0=a=0,
b=4, x2=1, andx0=2, in the absence of reactionsk=0d.

FIG. 4. Profiles of composition, tilt, and azimuth angle along the
cross section of the stripe pattern indicated by a line segment in the
left panel of Fig. 3. The azimuthal angle is measured with respect to
the positive direction of thex axis.

FIG. 5. Profiles of composition, tilt, and azimuth angle along a
cross section of the equilibrium solitonlike pattern with sharp wall
domains found forx0=8 and the same other parameters as in Figs.
2 and 3.
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frequency modulation of the tilt with respect to the compo-
sition and azimuth variation.

We have checked that the inclusion of the quadratic Lan-
dau term for the tilt variable, neglected in the simulations
described in this section, does not lead to significative differ-
ences in the properties of equilibrium patterns.

IV. NONEQUILIBRIUM PHENOMENA:
LINEAR STABILITY ANALYSIS

Full numerical exploration of the parameter space of the
model is difficult because of the large number of relevant

parameters. The linear stability analysis of the uniform sta-
tionary states can provide indications of what regions of the
parameter space are worth being examined in search for a
particular kind of a pattern. The stationary states of the sys-
tem (7) are c= c̄=1/2 anda= ā=Îsp0−kd /b, provided that
p0.k. The azimuthal orientation is arbitrary in such a state.
For convenience, we chooseāx= ā and āy=0. The linear sta-
bility of these uniform solutions is performed by adding
small plane-wave perturbationsdc, dax, andday proportional
to expfiqxx+ iqyy+gsqWdtg, and linearizing Eqs.(7). This leads
to the linearization matrix

L =1−
q2

2
S− x0 +

q2

2
x2 + 2D − 2k −

q2

2
Saā + i

L

2
qxD − i

L

4
qyq

2

2ās2k − ad + iqxL p0 − k − 3bā2 − Kq2 0

iqyL 0 − Kq2
2 , s8d

whereqW =sqx,qyd is the wave vector of the considered mode.
The first line in the matrix corresponds to the composition
variabledc and the next two lines stand for the orientation
componentsdax andday.

The (complex) rates gsqWd of various modes are deter-
mined by the eigenvalues of the linearization matrixL. The
unstable modes are identified like those with RefgsqWdg.0. If
the imaginary part ofgsqWd is not zero for the first unstable
mode, we have a wave instability(a Hopf bifurcation with a
finite wave number), resulting in traveling or standing waves
(cf. Ref. [29]). On the other hand, if ImfgsqWdg=0 for the first
unstable mode, a Turing instability leading to nonequilibrium
stationary periodic patterns is realized. The values ofgsqWd
are yielded as the roots of the characteristic equation associ-
ated with the matrixL. This characteristic equation is, how-
ever, cubic, and therefore its analytical solution is possible
only in some special cases.

If splay coupling is absentsL=0d, the stability analysis is
simplified and becomes equivalent to that of the previously
studied reduced model[17]. The phase diagram for the non-
splay case in the planesp0,kd is presented in Fig. 6(a). We
see five different regions, whose boundaries and marginal
wave numbers can be obtained analytically[17]. Region I
corresponds to the wave instability regime, where traveling
or standing waves are expected. In region II we have the
Turing instability region, where stationary dropletlike struc-
tures with periodic variation of both local concentration and
tilt are found. Region III corresponds to the uniform tilted
phase. Whenp0,k, only nontilted phasessā=0d exist: a
nonuniform phase due to a Turing instability in region IVa
and stable uniform phase in region IVb.

In order to understand the effects of the linear splay term
that was neglected above, we perform the stability analysis
of the full model equations for a fixed wave planeqy=0. In

FIG. 6. Phase diagrams of the considered model for the parameter valuesx2=0.0052,x0=2.27,a=1.5, andb=2 in the limit K→0 (a)
without splay coupling and(b) with weak splay couplingsL=0.01d. The diagram(b) is obtained by the linear stability analysis with respect
to the perturbations withqy=0. Dashed lines in this diagram show the boundaries of the respective regions in the absence of splay coupling
(a). Other notations are explained in the text.
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this case, the variableay is decoupled from the other two
degrees of freedom[actually, its dynamics is exclusively
governed by the elastic damping term, see Eq.(8)], so that
the stability analysis is reduced to a 232 problem. The fol-
lowing results, summarized in Fig. 6(b), are obtained: For
nontilted phasessp0,kd, the effect of the linear splay term
is to move to larger reaction ratesk the boundary between
the Turing-instability regionsIVad and the uniform nontilted
phasesIVbd. For tilted phasessp0.kd, the changes are more
profound. All unstable modes in this area of the parameter
space have now a nonvanishing imaginary part ImfgsqWdg.
Therefore, the region II with Turing instability and stationary
tilted patterns completely disappears and becomes replaced
by the region I with traveling waves. Additionally, the region
III occupied by the tilted uniform phase is reduced.

Based on this(limited) stability analysis, one can expect
that the traveling patterns would be found more often when
the splay interactions are taken into account. Furthermore, it
can be expected that the traveling patterns in the parameter
region occupied by stationary Turing-like structures in ab-
sence of splay interactions[region II in Fig. 6(a)], would be
different for weak splay interactions from the traveling pat-
terns in the parameter region where traveling waves are ob-
served even without the splay effects[region I in Fig. 6(a)].
As L→0, traveling waves in the former region II should
slow down and become frozen atL=0. Indeed, the analytical
stability investigation shows that, in this region, the velocity
of the most unstable mode is proportional tokLā. On the
other hand, the velocity of patterns in the former region I
remains finite in the limitL→0.

Numerical simulations of the model, which represent the
main part of the reported study, agree with the predictions of
the stability analysis.

V. NONEQUILIBRIUM PHENOMENA:
NUMERICAL RESULTS

To facilitate the comparison with previous simulations of
the model without azimuthal variation[17], we choose here
the same numerical values of the common parametersx2
=0.0052,x0=2.27,a=1.5, andb=2. The above mentioned
changes in the phase diagram due to the inclusion of the
linear splay term indicate that this parameter region is worth
examining with the model presented here in order to obtain
spatiotemporal behaviors involving now composition, tilt,
and azimuth modulations. We examine numerically such pa-
rameter region, and the results are summarized in the follow-
ing three sections according to the value fixed for the splay
coupling constantL. All simulations are perfomed for a sys-
tem with a linear sizeL=5.

A. No splay coupling

When splay coupling is absentsL=0d, azimuthal orienta-
tion of elongated molecules is not influenced by variations of
the local compositionc or the local tilta. Indeed, by looking
at the second of equations(7) we notice that then all terms
on the right hand side of this equation, except for the elastic
term K¹2aW, are proportional toaW and therefore cannot

change the direction of this vector. If the azimuthal orienta-
tion is initially uniform sw=constd, this state is maintained at
all times. For such a state, Eqs.(7) reduce to the model
which was already investigated in Ref.[17] and new numeri-
cal simulations are not needed. If the initial azimuthal orien-
tation is not uniformswÞconstd, the subsequent evolution of
the orientation field is determined only by the elastic term.

In numerical simulations, we choose the parameters inside
the region I with traveling waves in the phase diagram
shown in Fig. 6(a), by fixing p0=1.5, k=1, and taking a
small valueK=0.001 of the elastic interaction constant. Ran-
dom distribution of azimuthal orientations is chosen as the
initial condition. The simulation results are presented in Fig.
7. [See also video(Ref. [26], video Fig7.mpg).] Because of
elastic interactions, the molecules tend to have parallel ori-
entation, and this leads, after some time, to a pattern charac-
terized by a number of orientational defects that remains sta-
tionary henceforth. In the center of a defect, the molecules
are nontilted; the azimuthal direction changes by 2p after
passing around a defect. The waves, similar to those de-
scribed in Ref.[17], travel on the background of the station-
ary orientational pattern, and their motion is not generally
influenced by the azimuth angle distribution. The waves,
however, break when they pass through a defect.

Inside the region II in the phase diagram in Fig. 6(a),
stationary Turing-like patterns representing arrays of droplets
are observed.

B. Weak splay coupling

The most important change in the phase diagram due to
the inclusion of the linear splay term is that the region II
occupied by the Turing-like patterns in absence of splay cou-
pling [Fig. 6(a)] is transformed into region I where traveling
patterns should be observed[Fig. 6(b)]. However, as we shall
see, the properties of traveling patterns in the parameter do-
main are different, for weak coupling, from those of the trav-
eling waves in the old region I.

Figure 8 and Ref.[26], video Fig8.mpg, show the travel-
ing pattern yielded by numerical simulation with the param-
etersk=0.5, p0=1.25, andL=K=0.01 that correspond to
the former region II. The pattern looks like a flow of drop-

FIG. 7. A snapshot of concentration and orientation fields in a
pattern of traveling waves that interact with orientational defects;
L=0, K=0.001,p0=1.5, andk=1. The waves propagate from the
upper-left to the lower-right corner of the figure. See also video
(Ref. [26], video Fig7.mgp).
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lets, with the local direction of flow determined by the azi-
muthal orientation of the elongated molecules in the mono-
layer. Such dropletlike structures of largec and small a
emerge and move following the local molecular orientation
path. Occasionally, rupture of the droplets, when they happen
to approach divergent points of the molecular orientation
field, is observed. Some of the droplets are pinned by the
orientational defects and exhibit only rotation, but not a
translational motion. Remarkably, the pattern of azimuthal
orientation remains frozen under weak splay coupling, as it
was the case in its absence.

In agreement with the linear stability analysis, the veloc-
ity of the emerging droplet structures is an increasing func-
tion of the splay coupling constantL and the reaction rate
constantk. Moreover, we have found that the size of such
traveling structures is affected by the strength of elastic in-
teractions: the largerK the bigger are the droplets. For large
K, however, the uniform state becomes stable, and no spatial
organization is observed.

Figure 9 and Ref.[26], video Fig9.mpg, show traveling
waves for a larger value of the reaction rate constantsk=1d,
such that we are now inside the old region I in Fig. 6(a). The
morphology of the pattern is now different and it resembles
the pattern of traveling waves in absence of splay coupling
(Fig. 7). The pattern is formed by stripes that move along the
direction determined by local azimuthal orientation of the

elongated molecules. Two orientational defects are seen in
the upper right corner in Fig. 9, and they also correspond to
defects of the traveling stripe pattern of the composition
field. The waves are rotating around these orientational de-
fects. Again, the pattern of azimuthal orientation becomes
frozen after a rapid initial transient and it is not significantly
affected by the traveling waves. Note from the simulation
videos that the stripes move much faster than the droplets in
Fig. 8.

Next, we examine more closely the profiles of the com-
positionc and the tilta in different traveling patterns. Figure
10(a) shows such profiles for a single traveling droplet from
Fig. 8, also displayed in the inset in the left upper corner of
this figure. The profiles in the cross sections which are par-
allel and perpendicular to the motion direction are presented
here. The droplet corresponds to a local increase in the con-
centration of elongated moleculesA and a local decrease in
the tilt of such molecules. It can be noticed that the tilt is also
slightly increased along a ring surrounding the droplet, and
that the droplet is not axially symmetric. Comparing the pro-
files for the perpendicular and parallel cross sections in Fig.
10(a), we find that the droplet is slightly elongated in the
direction parallel to the azimuth molecular orientation and,
moreover, the tilt peak in the rear part of the moving droplet
is higher than that at the front. This asymmetry determines
the propagation direction of the droplet. Furthermore, we

FIG. 9. A snapshot of concentration and orientation fields in a
pattern of traveling stripes;L=K=0.01, p0=1.25, andk=1. See
also Ref.[26], video Fig9.mpg.

FIG. 8. A snapshot of concentration and orientation fields in a
pattern of flowing droplets;L=K=0.01,p0=1.25, andk=0.5. See
also Ref.[26], video Fig8.mpg.

FIG. 10. Concentration and tilt profiles in the cross sections of(a) flowing droplets and(b) traveling stripes, shown in Figs. 8 and 9. The
respective patterns and the orientations of lines used to make the cross sections are displayed in the insets. For the droplet, both the profiles
along the lines parallel(“para”) and perpendicular(“perp”) to the motion direction are presented. The patterns move from left to right.
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have checked that the asymmetry gets stronger when the
splay coupling coefficientL is increased.

The profiles of a traveling stripe from Fig. 9 are displayed
in Fig. 10(b). We see that the profiles exhibit more smooth
variation in this case, and the variation ofc anda is closer to
harmonic. Note that the spatial profile of the tilta is retarded
with respect to that of the local compositionc and this again
determines the motion direction.

In the simulations described above, random initial condi-
tions were chosen. We have also studied some special initial
conditions for the orientation distribution that give rise to
domain sinks or sources. In the simulation shown in Fig. 11
and Ref.[26], video Fig11.mpg, the initial condition with
two orientational domains(w=0 for x,L /2 and w=p for
x.L /2) has been chosen. The boundary between the do-
mains plays here a role of source emitting waves. For other
initial conditions, corresponding to outward vortices of mo-
lecular orientation, we have observed droplets that are gen-
erated in the center of a vortex and travel in the radial direc-
tion out of it. Generally, linear and point defects with

positive(negative) splays¹W ·aWd act as sources(sinks) for the
traveling structures that involve tilt and composition varia-
tions.

C. Strong splay coupling

When the coefficientL, specifying the intensity of splay
coupling, is further increased, the azimuthal orientation of
molecules becomes influenced by the traveling or stationary
patterns. For strong splay coupling, stationary nonequilib-
rium patterns are usually observed. An example of such a
pattern is shown in Fig. 12. Starting from random initial
conditions, the system first develops a pattern of traveling
stripes. Subsequently, the stripes undergo breakdown and a
frozen array of orientation defects is produced. Inside each
defect, the concentration of the elongated molecules is in-
creased, and in general, these molecules are oriented towards
the center of a defect. This stationary pattern is favored in the
case of strong coupling, since it minimizes the splay contri-
bution towards the free energy of the system.

To avoid the formation of immobile splay defects, a re-
gion in the parameter space, characterized by the wave insta-
bility but lying closer to the boundary of a transition to the
nontilted state, can be considered. Because the elongated
molecules are only slightly tilted in this region, their reori-
entation is energetically easier than far from the boundary
ā=0. If a relatively large value of the reaction rate constantk
is additionally chosen, so that the system is driven further
away from thermal equilibrium, traveling waves that are ac-
companied by azimuthal reorientation of molecules are
formed.

An example of the developing wave pattern is shown in
Fig. 13 and Ref.[26], video Fig13.mpg. The temporal evo-
lution of this pattern along the central vertical cross section
is additionally displayed in Fig. 14. After a short transient
starting from random initial conditions, the system soon de-
velops a regular pattern of stripes traveling at a constant
velocity.

The profiles of the compositionc, the tilt a, and the azi-
muth anglew along the line orthogonal to the propagation
direction are shown in Fig. 15. An important difference with
the profiles of equilibrium stationary stripes is that, for trav-
eling stripes, the azimuth angle does not undergo 2p rota-
tions from one stripe to another(seen in Fig. 4). Instead, a
periodic angular modulation within the interval from zero to
p is observed here. Moreover, it can be noticed that the
compositionc and the tilt a vary completely in phase for
such traveling stripes, i.e., the maximum of the concentration

FIG. 11. A snapshot of concentration and orientation fields in a
pattern representing a linear wave source;l=0.01,K=0.01,k=1,
and p0=1.25. To obtain this pattern special initial conditions(w
=p for x,L /2 andw=0 for x.L /2) were taken. The wave struc-
tures are generated at the central vertical line and propagate to the
side. See also Ref.[26], video Fig11.mpg.

FIG. 12. A snapshot of concentration and orientation fields in a
stationary array of splay defects;L=1, K=0.1, k=1, and p0

=1.25.

FIG. 13. A snapshot of concentration and orientation fields in
the patterns of traveling stripes that involves azimuth reorientation;
L=1.5, K=0.1, k=3.5, andp0=3.7. See also Ref.[26], video
Fig13.mpg.
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field coincides with a minimum of the tilt distribution. This
differs from the behavior of such variables in traveling
stripes at weak splay coupling[cf. Fig. 10(b)]. The propaga-
tion direction is now fixed by a small shift observed in the
azimuth angle variation with respect to the profiles of vari-
ablesc anda.

Analyzing the origin of traveling waves in the considered
system, the importance of the direct influence of the reaction
on orientational ordering should be emphasized. This effect
is described by the last term in Eq.(4) which takes into
account that the reaction(i.e., in this case the transitions
from the elongated to the crumpled conformations) tends to
destroy orientational ordering of the elongated molecules. If
this term(which was first proposed in our previous publica-
tion [17]) is neglected, the system may possess only station-
ary patterns, but not traveling waves.

Generally, in systems with the wave bifurcation(that is, a
Hopf bifurcation with a finite wave number) either traveling
or standing waves can be observed[29]. The standing waves
essentially represent a superposition of two waves running in
the opposite directions. When the wave bifurcation is super-
critical, the behavior of spatiotemporal patterns in its vicinity
can be further investigated by applying the weakly nonlinear
analysis and deriving the amplitude equations[29]. In one
dimension, such equations would describe interaction be-
tween two modes, representing traveling waves with the op-
posite propagation directions. The sign and the magnitude of
the coefficient, specifying this interaction, would determine

whether one of the two modes eventually wins(and a single
traveling wave sets in) or both modes stably coexist(and a
standing wave is thus established). Only the explicit calcula-
tion and evaluation of this coefficient in the amplitude equa-
tions allows to determine which situation would be realized
in a particular system in a certain parameter range. Even
then, the analytical predictions would only hold in a narrow
neighborhood of the bifurcation line and only if the bifurca-
tion is supercritical. We have not performed the amplitude
analysis in our study. Though our numerical simulations
show only traveling waves in the considered system, we can-
not therefore exclude a possibility that standing waves are
also possible at some other parameter values. It should how-
ever be noted that the absence of standing waves seems to be
a characteristic property of such systems, since it was also
numerically found for models of surface chemical reactions
[8–11].

VI. CONCLUSIONS

We have formulated a theoretical model to describe pat-
tern formation in illuminated two-component Langmuir
monolayers. In this model, nonequilibrium pattern formation
results from an interplay between phase separation, optically
induced transitions between the two immiscible conforma-
tions, and coupling of phase separation to orientational or-
dering of molecules in the monolayer. In comparison with
the previous model[17], the current description is more
complete because azimuthal variations of the elongated mol-
ecules in the monolayer are allowed. We have also incorpo-
rated into the model the splay coupling between azimuthal
orientation and variations of local concentration. The situa-
tion corresponding to illumination with nonpolarized light
has been considered.

In contrast to the earlier simple model[17], the investi-
gated system is characterized, in absence of illumination, by
the formation of equilibrium stationary patterns representing
arrays of orientational defects(vortices), stripes, or soliton-
like structures with sharp domain walls. All these patterns
are caused by splay interactions and have a purely energetic
origin, so that they can be also interpreted by considering
minima of free energy(cf. Refs.[14,15,25]).

Linear stability investigation of the uniform state of the
model under illumination conditions has been performed. It
reveals that, generally, splay interaction favors the appear-
ance of traveling patterns. Such patterns are observed even in
the parameter regions occupied by stationary structures in
the earlier model[17].

Numerical simulations of the proposed model have been
undertaken. They show a rich spectrum of spatiotemporal
structures. For weak splay coupling and relatively low reac-
tion rates, a pattern of droplets slowly flowing along the local
directions determined by azimuthal orientation of molecules
has been observed. If the reaction is stronger, the droplets are
replaced by a pattern of traveling stripes following the local
azimuthal orientation. Interactions between droplets and
stripes and the orientational defects have been seen. It is
found that linear and point orientational defects play a role of
sources or sinks of traveling structures in this system.

FIG. 14. Space-time diagram showing the temporal variation of
the azimuth angle along the central vertical cross section in Fig. 13.
Here, the gray-scale coding is such thatw=0 is shown as white and
w=p is shown as black. The azimuth angle is defined in such a way
that w=0 corresponds to the propagation direction of the stripes.

FIG. 15. Composition, tilt, and azimuth profiles for a cross sec-
tion perpendicular to the traveling stripes in Fig. 13. The arrow
indicates the direction of motion of the traveling structures.
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When splay coupling is weak, the spatial pattern of azi-
muthal orientation is not affected by local concentration
variations. The temporal evolution of the orientation pattern
in this case is governed by the elastic interactions between
molecules. Starting from a random initial distribution, they
produce after a short transient a stationary pattern of azi-
muthal orientation that remains frozen afterwards. In contrast
to this, strong splay coupling with the concentration field
leads to the appearance of stationary and spatiotemporal pat-
terns where variations of azimuthal orientation are correlated
with the changes in the local composition of the monolayer.
Often, stationary arrays of splay defects are observed in this
case. However, when the system is close to the orientational
phase transition(from the tilted to the nontilted phase), pat-
terns of traveling waves accompanied by strong variation of
azimuthal orientation are found in the model.

This investigation, as well as the earlier paper[17], are
motivated by the experimental discovery of traveling struc-
tures in illuminated Langmuir monolayers by Tabe and
Yokoyama[13,16]. The extended model, which we have now
explored, is able to reproduce some essential features of the
experiments. In absence of illumination, equilibrium orienta-
tion patterns are yielded by the model. Under illumination
for sufficiently strong splay coupling, traveling waves ac-
companied by changes in azimuthal orientation of molecules
are also found. The experiments[13] were performed by
using polarized light, and light polarization significantly in-
fluenced the properties of the observed patterns. In contrast

to this, our model does not include the effects of light polar-
ization and thus corresponds to illumination with nonpolar-
ized light. Though the inclusion of anisotropy effects due to
light polarization is straightforward, the resulting model is
more complicated and not yet discussed in the present paper.

Langmuir monolayers represent a classical example of
soft matter and are closely related to biomembranes, playing
a fundamental role in cell biology. Therefore, investigations
of nonequilibrium pattern formation in such monolayers un-
der reactive conditions can help in the understanding of gen-
eral mechanisms of nonequilibrium self-organization in soft
matter. Our study provides evidence that traveling orienta-
tional wave patterns may represent a generic property of
Langmuir monolayers that are subjected to chemical reaction
and composition changes. We have found that various pat-
terns, representing traveling droplets or stripes, wave sources
and sinks, and orientational defects interacting with the trav-
eling structures, are possible in such systems.

ACKNOWLEDGMENTS

This work was supported by the Dirección General de
Investigación(Spain) through Project No. BXX2000-0638,
and by the Comissionat per Universitats i Recerca(Generali-
tat de Catalunya) through Project No. 1999SGR00041. The
study was also supported through the ESF REACTOR net-
work programme.

[1] M. Seul and D. Andelman, Science267, 476 (1995).
[2] A. S. Mikhailov and G. Ertl, Science272, 1596(1996).
[3] S. C. Glotzer, E. A. Di Marzio, and M. Muthukumar, Phys.

Rev. Lett. 74, 2034(1995).
[4] M. Motoyama and T. Ohta, J. Phys. Soc. Jpn.66, 2715(1997).
[5] Q. Tran-Cong and A. Harada, Phys. Rev. Lett.76, 1162

(1996).
[6] J. Verdasca, P. Borckmans, and G. Dewel, Phys. Rev. E52,

R4616(1995).
[7] M. Hildebrand, A. S. Mikhailov, and G. Ertl, Phys. Rev. E58,

5483 (1998).
[8] M. Hildebrand, A. S. Mikhailov, and G. Ertl, Phys. Rev. Lett.

81, 2602(1998).
[9] M. Hildebrand and A. S. Mikhailov, J. Stat. Phys.101, 599

(2000).
[10] T. Okuzono and T. Ohta, Phys. Rev. E64, 045201(R) (2001).
[11] T. Okuzono and T. Ohta, Phys. Rev. E64, 056211(2003).
[12] V. M. Kaganer, H. Möhwald, and P. Dutta, Rev. Mod. Phys.

71, 779 (1999).
[13] Y. Tabe and H. Yokoyama, Langmuir11, 4609(1995).
[14] Y. Tabe and H. Yokoyama, J. Phys. Soc. Jpn.63, 2472(1994).
[15] Y. Tabe, N. Shen, E. Mazur, and H. Yokoyama, Phys. Rev.

Lett. 82, 759 (1999).
[16] Y. Tabe, T. Yamamoto, and H. Yokoyama, New J. Phys.5, 65

(2003).
[17] R. Reigada, F. Sagués, and A. S. Mikhailov, Phys. Rev. Lett.

89, 038301(2002).

[18] K. J. Laidler,Chemical Kinetics, 3rd ed.(HarperCollins, New
York, 1987).

[19] S. Malkin and E. Fischer, J. Phys. Chem.66, 2482(1962).
[20] J. Maack, R. C. Ahuja, and H. Tachibana, J. Phys. Chem.99,

9210 (1995).
[21] M. Hildebrand and A. S. Mikhailov, J. Chem. Phys.100,

19089(1996).
[22] R. Meyer and P. Pershan, Solid State Commun.13, 989

(1973).
[23] G. A. Hinshaw, Jr., and R. G. Petschek, Phys. Rev. A39, 5914

(1989).
[24] R. Najjar and Y. Galerne, Europhys. Lett.55, 355 (2001).
[25] J. V. Selinger, Z. G. Wang, R. F. Bruinsma, and C. M. Knobler,

Phys. Rev. Lett.70, 1139(1993).
[26] See EPAPS Document No.[E-PLEEE8-69–130404] for the

mpg format video files corresponding to some simulations re-
ferred to in this paper. A direct link to this document may be
found in the online article’s HTML reference section. This
document may also be reached via the EPAPS homepage
(http://www.aip.org/pubservs/epaps.html) or from ftp.aip.org
in the directory /epaps/. See the EPAPS homepage for more
information.

[27] R. B. Meyer, Philos. Mag.27, 405 (1973).
[28] J. Ignés-Mullolet al. (unpublished).
[29] D. Walgraef, Spatio-Temporal Pattern Formation(Springer-

Verlag, New York, 1997).

REIGADA, MIKHAILOV, AND SAGUÉS PHYSICAL REVIEW E 69, 041103(2004)

041103-10


