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Idiopathic pulmonary fibrosis (IPF) is a progressive disease with significant

mortality and morbidity. Approval of antifibrotic therapy has ameliorated

disease progression, but therapy response is heterogeneous and to date,

adequate biomarkers predicting therapy response are lacking. In recent

years metabolomic technology has improved and is broadly applied in

cancer research thus enabling its use in other fields. Recently both aberrant

metabolic and lipidomic pathways have been described to influence profibrotic

responses. We thus aimed to characterize the metabolomic and lipidomic

changes between IPF and healthy volunteers (HV) and analyze metabolomic

changes following treatment with nintedanib and pirfenidone. We collected

serial serum samples from two IPF cohorts from Germany (n = 122) and Spain

(n = 21) and additionally age-matched healthy volunteers (n = 16). Metabolomic

analysis of 630 metabolites covering 14 small molecule and 12 different lipid

classes was carried out using flow injection analysis tandemmass spectrometry

for lipids and liquid chromatography tandem mass spectrometry for small

molecules. Levels were correlated with survival and disease severity. We

identified 109 deregulated analytes in IPF compared to HV in cohort 1 and

112 deregulated analytes in cohort 2. Metabolites which were up-regulated in

both cohorts were mainly triglycerides while the main class of down-regulated

metabolites were phosphatidylcholines. Only a minority of de-regulated

analytes were small molecules. Triglyceride subclasses were inversely

correlated with baseline disease severity (GAP-score) and a clinical

compound endpoint of lung function decline or death. No changes in the

metabolic profiles were observed following treatment with pirfenidone.

Nintedanib treatment induced up-regulation of triglycerides and

phosphatidylcholines. Patients in whom an increase in these metabolites was

observed showed a trend towards better survival using the 2-years composite

endpoint (HR 2.46, p = 0.06). In conclusion, we report major changes in
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metabolites in two independent cohorts testing a large number of patients.

Specific lipidic metabolite signatures may serve as biomarkers for disease

progression or favorable treatment response to nintedanib.
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fibrosis, IPF, antifibrotic, metabolome, lipidome

1 Introduction

Idiopathic pulmonary fibrosis (IPF) is a fatal disease with amean

survival time of 3–5 years (Lederer andMartinez, 2018). Twomedical

compounds have been approved for treatment of IPF. Pirfenidone

and nintedanib attenuate the mean decline in forced vital capacity

significantly to a similar extent (King et al., 2014; Richeldi et al., 2014;

Raghu et al., 2015). However, effect of treatment is not equal across

patients. Some patients appear to benefit more, while others rapidly

decline despite receiving adequate antifibrotic therapy. While

nintedanib acts by inhibition of platelet-derived growth factor

(PDGF), fibroblast growth factor (FDG) and vascular endothelial

growth factor (VEGF), synergistically leading to downregulation of

fibrosis associated pathways (Hostettler et al., 2014; Roach et al.,

2021), the distinct mode of action for pirfenidone for inhibition of

fibrosis is still insufficiently understood (Conte et al., 2014; Epstein

Shochet et al., 2018; Jin et al., 2019; Ruwanpura et al., 2020). There is

currently no set of biomarkers available capable of gauging the

therapeutic efficacy of nintedanib or pirfenidone (Jee et al., 2019).

The technique ofmass spectrometry basedmetabolome profiling

has significantly improved during the last decade with metabolome

measurements becoming increasingly robust and reproducible (Yang

et al., 2019). The technique was frequently used in cancer research

since various cancers induce vast metabolic dysregulation (Schmidt

et al., 2021). In contrast to regular cells, proliferating cancer cells have

a high demand for energy supply and use glycolysis even in normoxic

conditions (Madama et al., 2021). Many therapeutics used in

oncology alter cellular metabolism and thereby interfere with

cancer cell proliferation. In future, changes in metabolome

induced by drugs may serve as biomarker to monitor treatment

efficacy (Chung and Griffiths, 2007).

Recently the involvement of aberrant metabolic and lipid

pathways have been implicated to affect IPF pathophysiology.

Altered metabolism of the amino acids glycine, glutamine and

arginine and dysregulated glycolysis was shown to promote

profibrotic phenotypes via TGF-ß dependent pathways (Zhao

et al., 2017; Gaugg et al., 2019; Roque and Romero, 2021). For

lipids, increased levels of long-chain and medium chain fatty acids

have been reported in IPF lungs and macrophage reprogramming

with increased fatty acid beta oxidation have been described.

(Mamazhakypov et al., 2019; Tedesco et al., 2019; Roque and

Romero, 2021). Sphingolipids and lysophsphatidic acid (LPA) as

other lipids play a part in many pathophysiological processes and

were particularly associated with fibrotic processes (Shea and Tager,

2012; Pyne et al., 2013). With most evidence derived from animal

studies, smaller analysis involving broad circulating metabolomic

and lipidomic profiles from IPF patients showed deregulated profiles

(Zhao et al., 2017; Nambiar et al., 2021a; Nambiar et al., 2021b). The

impact and correlation of serum metabolomic profiles remains

insufficiently investigated.

In the context of these recent findings, we got interested in

the metabolome of IPF patients and whether treatment with

approved antifibrotic medication is capable of reversing

metabolic changes or predicting therapy response. In order to

address these questions, we performed serial serum metabolomic

assays in IPF patients and healthy volunteers as comparators and

correlated disease progression and severity.

2 Patients and methods

2.1 Patient and sample selection and study
design

For this study we retrospectively selected patients who had a

confident diagnosis of IPF in accordance with the practice guidelines

issued by the American Thoracic Society (ATS) and the European

Respiratory Society (ERS) (Raghu et al., 2018) and were started on

antifibrotic therapy with either nintedanib or pirfenidone at

Hannover Medical School (Germany) as an exploration cohort.

A further validation cohort of IPF patients was derived from the

Hospital Universitari Bellvitge (Spain). Additionally, age-matched

healthy volunteers were screened for pulmonary abnormalities by

interview, physical examination and routine laboratory. For IPF

patients, we collected baseline and follow-up data regarding

demographics, pulmonary function tests and diffusion-capacity

using a body plethysmograph as per ATS/ERS guidelines

(Graham et al., 2019) and the gender-age-physiology (GAP)

score and index (taking into account forced vital capacity (FVC),

single breath diffusing capacity for the lung for carbon monoxide

(SB-DLCO), age and gender (Ley et al., 2012). The GAP index has

been validated as a prediction tool formortality in IPF patients but is

often used as a surrogate for disease severity (Robbie et al., 2017).

The study was conducted in accordance with the

1964 Declaration of Helsinki and its later amendments. All

patients provided written informed consent, and collection of bio-

samples was registered at the German Clinical Trials Register

(DRKS00000017 and DRKS00000620). The respective institutional

review boards approved of the bio-sampling (Freiburg 47/06 10March

2006, Hannover, #2923–2015 and #2516–2014, 2 Nov 2015).
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Based on a smaller pilot study (data not shown) we estimated a

significantly regulated proportion of metabolites at about 15%.

Using the maximum number of targeted metabolites of the

MetSizeR package (Nyamundanda et al., 2013; Billoir et al.,

2015), an false discovery rate (FDR) of 0.05 and a minimum

sample size of at least n = 10 and PPCA model, we calculated a

necessary minimum group size of n = 16 per group

(Supplementary Figure S1). Groups were considered as

nintedanib and pirfenidone treated IPF patients (with a pre-

antifibrotic and post-antifibrotic sub-group) and healthy

volunteers (HV). We increased the discovery group size (IPF

and HV patients) to increase statistical power to detect pathway

regulation while keeping the confirmation cohort around the

minimal needed sample size with n = 21 patients.

2.2 Sample preparation for metabolic/
lipidomic analysis

Serum samples were collected prior to initiation of

antifibrotic therapy and at follow-up between 2 and 6 months

after treatment start (Figure 1A). Blood samples were rested for

20 min with subsequent centrifugation. The samples were

aliquoted and stored at -80°C until performance of the

metabolomic studies as recommended by published protocols

(Beckonert et al., 2007).

Serum metabolites were analyzed using an SCIEX

5500 QTrap mass spectrometer (SCIEX, Darmstadt, Germany)

with use of the MxP Quant 500 kit (Biocrates Life Sciences AG,

Innsbruck, Austria) as per manufacturer’s protocol (https://

biocrates.com/mxp-quant-500-kit, accessed 14 Dec 2021)

using 10 µl of the sample as previously described (Ringseis

et al., 2021) with details in the supplementary material. An

overview of the study flow is shown in Figure 1B.

2.3 Data analysis

Following metabolite measurements, metabolites with a

measurement of >30% below the lower limit of detection were

excluded from further analysis since high missingness limits

the validity of data imputation (Faquih et al., 2020). For the

FIGURE 1
Flowchart for sample and clinical data acquisition (A) and metabolome measurement, data processing and statistical analysis (B).
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remaining metabolites, values below the lower limit of

detection were imputed using a k-nearest neighbor with

k = 10 imputation steps on observations with variable pre-

selection method (Faquih et al., 2020) using the provided R

function by Faquih et al. (Faquih, 2020) assuming data to be

missing completely at random. Homogeneity after imputation

was visually ascertained.

For patient characteristics, categorical data was expressed as

number (percentage) and compared via Chi2 test and continuous

data was expressed as median with interquartile range (IQR) and

compared via rank-sum-test. A two-tailed p-value of <0.05 was

considered statistically significant.

Deregulation of metabolites between HV and IPF patients

(at baseline) and changes following antifibrotic therapy (post

vs. pre) were calculated using the R limma package (Ritchie

et al., 2015) with pair-wise comparison and adjustment for

multiple comparison using the FDR with an

FDR <0.05 considered to be statistically significant.

Heatmaps of deregulated metabolite sets were produced

using the R pheatmap package with scaling and centering (to

a mean of 0 with a variance of 1). Hierarchical clustering using

Euclidean distances were applied to rows and columns (ward.D

method). To conduct an enrichment and overrepresentation

pathway analysis of the deregulated analytes, KEGG IDs were

retrieved from the annotation tables provided by Biocrates Life

Sciences AG and analyzed via MetaboAnalyst 5.0 (Pang et al.,

2021). Principal component analysis was performed using the

deregulated analytes between IPF and healthy volunteers using

the R prcomp package and were visualized using the pca3d

package.

Baseline metabolite concentrations were correlated with

baseline GAP index and annualized FVC decline during

follow-up calculating the Pearson correlation coefficient. To

analyze impact on outcome, a composite endpoint including

death, FVC decline of ≥10% from baseline or DLCO decline

of ≥15% was calculated. Baseline metabolite concentrations in

IPF patients were dichotomized by median and hazard ratios

(HR) for the composite endpoint were calculated via cox-

regression modeling using the metabolite median and GAP

index. Identified hierarchical clusters from deregulated analytes

following antifibrotic therapy were also analyzed with respect

to the composite endpoint using the same cox-regression

model.

3 Results

3.1 Patient cohorts

In the first cohort from Germany, 122 patients with IPF and

16 healthy volunteers of similar age (median age 65 years; 38%

female) were included in the study (Table 1). Median age was

72 years in IPF vs. 65 years (HV) with a median FVC of 68% of

predicted at time of initiation of antifibrotic therapy (55%

nintedanib, 45% pirfenidone).

In the second cohort from Spain, 21 patients with IPF were

included (median age 65 years, median baseline FVC 83% of

predicted). The majority was started on nintedanib (71%) and

29% on pirfenidone. Notably, the overall disease severity

measured by GAP score/index was higher in the first cohort

(p < 0.001) while the comorbidity profile was similar.

3.2 Metabolite/lipid detection

In the first cohort, a total of 262 samples were measured.

After discarding samples with >30% values below the lower

limit of detection, a total of 466 analytes (393 lipids; 73 small

molecules) were considered for further analysis, consisting of

12 lipid and 13 small molecule classes. In the second cohort, a

total of 42 samples were measured with a total of

451 considered analytes (377 lipids; 74 small molecules).

The dataset of cohort 1 and 2 is available online (Seeliger

et al., 2022).

3.3 Deregulated analytes between healthy
volunteers and idiopathic fibrosis patients

In a first step, samples from IPF patients in the first cohort

before initiation of antifibrotic therapy were compared to healthy

volunteers. For small molecules, a total of 12 analytes were

significantly down-regulated in IPF (defined as FDR <0.05)
and 4 were up-regulated (Supplementary Table S1;

Figure 2A). For lipids, there were 32 analytes down-regulated

and 61 up-regulated (Supplementary Table S1, Figure 2B).

On the basis of the de-regulated analytes, clear

discrimination between HV and IPF patients was possible by

principal component analysis (Figure 2C). The differential

regulation of lipid and small molecule subclasses is shown in

the heatmap (Figure 2D). Foremost, triglycerides were

upregulated in IPF while lysophosphatidylcholines and

phosphatidylcholines were down-regulated. The enriched

lipid subclasses are shown in Figure 2E. Enrichment analysis

of small molecules using KEGG IDs showed regulation of

Aminoacyl-tRNA biosynthesis, Valin-leucine and isoleucine

biosynthesis and D-Glutamine and D-Glutamate metabolism

(Figure 2F).

To validate these findings, we compared the IPF patients

from cohort 2 with the HVs and found similar results (51 down-

regulated; 61 up-regulated) with significant overlap

(Supplementary Table S2, in particular for the above-

mentioned regulated lipid classes (Figures 2G,H). Notably,

only three of these regulated analytes were significantly

regulated by gender (Leucine, Betaine and Sphingomyelin

C18:0).
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3.4 Correlation of analytes with clinical
features and survival (IPF cohort 1)

We calculated the Pearson correlation coefficients between

the baseline GAP points (which are used to calculate the GAP

index) and found an FDR corrected significant correlation in

94 metabolites (Supplementary Table S3). Nintety-one of

97 correlated analytes were lipids (97%) of which the majority

were triglycerides (79/94, 87%), Lysophosphatidylcholines and

Diglycerides. For lipids, the correlation was always negative,

meaning a higher baseline lipid concentration was associated

with fewer GAP points (indicating overall better performance

status and prognosis).

Of note, no significant correlation between annualized

decline of forced vital capacity was found for any of the analytes.

We then dichotomized the baseline analyte concentration by the

median of the IPF cohort 1 and fitted a cox-regressionmodel for the

median cut-off for each analyte adjusting for age and baseline FVC

and gender. There were 16 significant analytes on cox-regression,

again with the majority being lipids (Table 2). Seven analytes were

both significantly correlated with survival (Figure 3A) and baseline

GAP points (Figure 3B), of which 5 were triglycerides,

1 diacylglyceride (Diacylglyceride (16:0/16:1) and one small

molecule (Dehydroepiandrosterone sulfate [DHEAS]). For all

analytes, below-median analyte concentrations were associated

with worse survival in IPF patients.

3.5 Metabolite/lipid changes following
antifibrotic therapy

Following antifibrotic therapy of median 8 (5–16)

weeks, another set of serum samples were collected and

remeasured. Interestingly, we did not observe any

deregulated analytes following treatment with pirfenidone

in both cohorts.

Following treatment with nintedanib in the first IPF cohort,

there were 38 up-regulated analytes and 1 down-regulated analyte,

all of which were lipids (33 triglycerides, 5 phosphatidylcholines and

1 acylcarnitine (Supplementary Table S4, Figure 4A). In the second

cohort there were 13 up-regulated analytes and 1 down-regulated

analyte (Supplementary Table S4, Figure 4B), but there was no

overlap between the deregulated analytes between the cohorts

(Figure 4C). Also, only one of the deregulated analytes following

nintedanib treatment was mutually deregulated between IPF at

baseline and HV (Phosphatidylcholine ae C34:3).

We then calculated the changes in metabolite concentrations

between baseline and the follow-up samples on the subset of

analytes which were deregulated. Using hierarchical clustering,

we found that the subgroup of patients who had an increase in

deregulated analyte concentrations after nintedanib (mostly

triglycerides) had a trend towards better survival, albeit

missing statistical significance (HR 2.46 [CI 0.93–6.48]; p =

0.06) (Figures 4D,E).

TABLE 1 Demographics of study cohorts at start of antifibrotic therapy.

Characteristics Healthy
volunteers
(n = 16)

IPF cohort 1
(n = 122)

IPF Cohort 2
(n = 21)

p-value (Cohort
1 vs.
Cohort 2)

Antifibrotic treatment, n (% of IPF) - 122 (100) 21 (100)

Nintedanib - 67 (55) 15 (71)

Pirfenidone - 55 (45) 6 (29)

Age (years), median (IQR) 65 (61–73)a 72 (65–76) 65 (62–73) 0.042

Female gender, n (%) 6 (38) 27 (22) 2 (10) 0.193

Forced vital capacity at baseline (% predicted),
median (IQR)

118 (105–132) 68 (57–80) 83 (72–94) <0.001

GAP Index - 0.001

I 34 (28) 12 (67)

II 65 (53) 6 (33)

III 23 (19) -

Comorbidities, n (%) -

Coronary artery disease 38 (31) 9 (42) 0.400

Diabetes mellitus 26 (21) 7 (33) 0.302

Arterial Hypertension 47 (38.5) 13 (62) 0.080

Chronic kidney disease 5 (4) 0 0.328

Chronic pulmonary obstructive disease 2 (10) 12 (10) 0.890

Previous smoking history 73 (60) 15 (71) 0.513

GAP, Gender; Age, and Physiology index; IQR, interquartile range; IPF, idiopathic pulmonary fibrosis.
aKruskal Wallis test between healthy volunteers and IPF, cohorts p = 0.023.
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FIGURE 2
Comparison of metabolite differential abundance between patients with idiopathic pulmonary fibrosis and healthy volunteers. Log2-Fold
changes were plotted against -log10 (p-value) of cohort 1 vs. IPF for small molecules (A) and lipids (B) as volcano-plots with numbers of significantly
(FDR<0.05) up or down-regulated analytes indicated. Deregulated analytes were scaled and plotted as a 3 days principal component analysis with
high lighting of IPF vs. healthy volunteers (HV) clusters (C). De-regulated analytes are plotted as a heatmap with hierarchical clustering of
analytes (row-wise) and visualization of abundance by Z-score (D). KEGG IDs (small molecules) or compound names (lipids) were analyzed for
pathway enrichment with resulting enrichment ratios and p-values plotted for small molecule pathways (E) and lipid pathways (F). The overlap
between de-regulated analytes from the IPF cohort 1 and cohort 2 are shown as Venn diagram in (G) and (H) with a list of common de-regulated
analytes.
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TABLE 2 List of analytes significantly associated with the 2 years composite endpoint of FVC decline >10%, DLCO decline >15% or death.

Analyte Adj. Hazard Ratio Adj. p-Value Class

Diacylglyceride (16:0_16:1) 0.51 0.010 Diglycerides

Diacylglyceride (18:1_18:3) 1.73 0.041 Diglycerides

Octadecenoic acid 0.54 0.018 Fatty acids

Dehydroepiandrosterone sulfate 0.57 0.031 Hormones and related

Lysophosphatidylcholine a C18:0 0.48 0.006 Lysophosphatidylcholines

Lysophosphatidylcholine a C16:1 0.52 0.013 Lysophosphatidylcholines

Hypoxanthine 0.60 0.044 Nucleobases and related

Phosphatidylcholine ae C42:5 1.74 0.036 Phosphatidylcholines

Phosphatidylcholine ae C44:6 1.70 0.039 Phosphatidylcholines

Triacylglyceride (16:1_34:1) 0.50 0.007 Triglycerides

Triacylglyceride (16:1_32:0) 0.52 0.013 Triglycerides

Triacylglyceride (16:1_34:0) 0.57 0.028 Triglycerides

Triacylglyceride (16:1_34:3) 0.58 0.038 Triglycerides

Triacylglyceride (16:1_32:2) 0.59 0.038 Triglycerides

Triacylglyceride (17:1_34:1) 0.60 0.043 Triglycerides

Choline 0.51 0.010 Vitamins and cofactors

FIGURE 3
Metabolites and lipids both associated with survival/composite endpoint and baseline GAP score. Kaplan-Meier curves with adjusted hazard
ratios and p-values for the 7 analytes which were significantly associated with both the 2-years composite endpoint when dichotomized by median
and also with Gender, Age, and Physiology (GAP) score at baseline (A). Log10 transformed analyte abundance was plotted against the resulting GAP
indices at baseline as box-jitter-plots with associated Person correlation coefficients (between abundance and GAP score) and false discovery
rate (B). All IPF patients of cohort 1 were included in the analysis (n = 122).
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3.6 Quality control

To account for compatibility, 30 samples from cohort 1 were

re-measured alongside with cohort 2, with good correlation

between the re-measured samples and a median ratio between

analytes of 1.03 (IQR 0.9–1.18) (Supplementary Figure S2).

4 Discussion

Recent data from the cancer field and pulmonary fibrosis

suggest a major role of metabolomic changes in both disease

pathogenesis and treatment. On this background we got

interested in the metabolome of IPF patients and whether

pirfenidone or nintedanib induce any metabolic changes. We

comprehensively studied the metabolome and lipidome of two

IPF cohorts comprising 143 patients and age-matched healthy

volunteers.

The serum metabolome of healthy volunteers differed

considerably from IPF patients in both studied cohorts. One-

hundred-nine of the 466 (23.4%) included analytes were

differentially abundant in IPF in the first cohort. Compared to

healthy volunteers we found 44 analytes downregulated and

65 analytes upregulated. Most impressively were the changes in

the lipidome. Among the 44 downregulated metabolites in serum of

IPF patients were 8 amino acids or amino acid related metabolites,

4 biogenic amines or hormones, but the majority of the significantly

downregulated metabolites were lipids including 9 (20.5%)

lysophosphatidylcholines, and 23 (52%) phosphatidylcholines. On

the other hand, 65 metabolites were significantly upregulated and

these were again mostly composed of lipids (94%) but with different

subclasses. The majority of the up-regulated lipids were triglyceride

FIGURE 4
Changes in longitudinal analysis before vs. after initiation of antifibrotic treatment with nintedanib. Log2-Fold changes were plotted against
-log10 (p-value) of cohort 1 (A) and cohort 2 (B) as volcano-plots with numbers of significantly (FDR<0.05) up or down-regulated analytes indicated
(sample after treatment vs. baseline). The deregulated analytes in both cohorts are shown in (C), with no overlap between the cohorts. Delta-values
(sample after treatment vs. baseline) of cohort 1 were calculated per patient and changes between the de-regulated analytes were plotted via
heat-mapwith hierarchical clustering (ward.Dmethod) (D). The resulting patient clusters were then compared via Kaplan-Meier curves and adjusted
cox-regression modelling (for GAP-index) (E).
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(75%) and some were ceramides (8%), sphingomyelins or

cholesteryl esters. A similar metabolome profile in IPF patients

was also described by Yan et al., although the study cohort was

substantially smaller and consisted only of 22 IPF patients (Yan et al.,

2017). In addition, other studies reported also on changes in the

metabolome of IPF patients but included only small cohorts

consisting of less than 30 patients or no healthy controls and

without serial measurements (Rindlisbacher et al., 2018; Nambiar

et al., 2021a; Nambiar et al., 2021b). In line with other reports, we did

not find major changes in metabolome associated with age or

gender. Thus, we observed vast changes in the metabolome and

lipidome of IPF patients.

Changes in metabolome are highly disease specific and were

reported to serve as robust biomarkers (Trezzi et al., 2015). The

finding of multiple different triglycerides upregulated in IPF

attracted our attention. Tryglycerides are abundant circulating

lipids and are stored in droplets formed in the endoplasmic

reticulum (ER) (Nambiar et al., 2021b) where they may induce

the expression of ER stress markers (Kim et al., 2007). ER stress has

been linked to misfolded gene production in type II alveolar

epithelial cells leading to pulmonary fibrosis via multiple

mechanisms, including M2 macrophage polarization and alveolar

epithelial cell apoptosis (Burman et al., 2018). High-fat diets were

also shown to exacerbate pulmonary fibrosis in mice via modulation

of ER stress (Chu et al., 2019). An upregulation of certain

triglycerides has been described in progressing compared to

stable IPF patients (Nambiar et al., 2021b) whilst we found

elevated levels in IPF vs. HV. Contrarily to Nambiar et al., we

found within IPF patients that lower baseline triglyceride levels were

associated with poor prognosis. The association found in our data

may also be due to effects of pulmonary cachexia in patients with

more advanced disease (Luppi et al., 2021). The mechanistic

involvement of the individual triglycerides found is not clear and

more research focusing on triglyceride effects in pulmonary fibrosis

models is needed.

Interestingly also in other types of organ fibrosis an increase

in triglycerides was noted such as chronic kidney disease and

fibrotic liver diseases (Chen et al., 2017; Monteillet et al., 2018;

Harzandi et al., 2021). In addition, an increase in triglycerides

was also observed in several murine models of organ fibrosis

(Harzandi et al., 2021; Weckerle et al., 2021). In contrast, patients

with cancer including lung malignancies show a down-regulation

of triglycerides, which is associated with poor outcome

(Siemianowicz et al., 2000). It was speculated that an increase

in triglycerides may derive from increased cell death and injury,

while in cancer cells proliferation consumes triglycerides, a major

constituent of cells and energy provider. We also found

ceramides up-regulated in IPF. Ceramides are important in

epithelial barrier integrity and were also reported to be up-

regulated in airway diseases such as COPD (Teichgräber et al.,

2008; Bowler et al., 2015; Cruickshank-Quinn et al., 2018). Thus,

increase in multiple types of triglycerides and ceramide is a

hallmark of IPF and may be related to epithelial pathology.

Lysophosphatidylcholines and phosphatidylcholines were on the

other hand down-regulated in serum of IPF patients. A major

constituent of surfactant are phosphatidylcholines and it is

thought that decrease of these lipoproteins in IPF and COPD is

caused by decreased surfactant protein production by reduced

numbers of alveolar epithelial type II cells (Cruickshank-Quinn

et al., 2018). Interestingly, different lysophosphatidylcholines were

found to be upregulated (as opposed to the downregulation in both

our IPF cohorts) in two other publications. Rindlisbacher and

coworkers found one unspecified Lysopgopshatidylcholine which

was upregulated in 10 stable IPF compared to HV. In another cohort

of IPF patients andHVpublished in abstract form, LysoPC(20:3) was

reportedly upregulated while it was downregulated in our cohort.

Given only minimal patient information being available for the

second study (especially antifibrotic medication) and several

LysoPCs were upregulated following nintedanib treatment (Table

S4) thismay potentially explain the discrepancy. Either way, LysoPCs

seem to be involved in IPF pathogenesis. LysoPCs serve as precursor

molecules in the production of lysophosphatidic acid (LPA) via

ectonucleotide pyrophosphatase-phosphodiesterase 2 (ENPP2), or

Autotaxin (ATX) (Ninou et al., 2018). LPA mediates its effects via a

range of receptors, most importantly LPAR1, contributing to

profibrotic fibroblast activation (Tager et al., 2008), TGF-ß

activation (Xu et al., 2009; Huang et al., 2013) and endothelial

permeability promoting inflammation (Ninou et al., 2018). ATX

was shown to be upregulated in bronchoalveolar lavage fluid in

bleomycin models (Oikonomou et al., 2012) and its inhibition

ameliorated LPA levels and pulmonary fibrosis in bleomycin

models (Oikonomou et al., 2012; Kato et al., 2016; Desroy et al.,

2017). These findings served as rationale for clinical trials with

autotaxin inhibitors in IPF (Maher et al., 2019). Despite these

effects of LPA and other known effects of LysoPC as their

precursors, correlation with circulating LysoPC levels are unclear

and in some diseases even inverse correlations have been described

(Law et al., 2019), rendering direct measurements of LPA or

autotaxin activity more suitable for correlations in IPF.

Changes in amino acids are also of high interest. We and

others found L-glutamine highly upregulated (Log2 fold-change

105) in IPF. TGF-β, upregulated in fibrosis, was shown to induce

glutaminolysis in lung fibroblasts and consecutively leads to

increased collagen production (Bernard et al., 2018;

Hamanaka et al., 2019).

Our cohort was large enough to allow for survival and

outcome analyses. Using cox-regression modeling we found

16 metabolites associated with a composite endpoint of time

to disease progression or death. Among the disease progression

associated metabolites were lyso-phosphatidylcholine, choline

and triacylglyceride (16:1_34:1). None of these metabolites

were differentially expressed in the comparison of healthy

volunteers and IPF.

Our study included also serial measurements of patients in

whom treatment with either pirfenidone or nintedanib was initiated.

A second serum sample was obtained 8 weeks after therapy start.
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While we did not find any significant metabolite changes with

pirfenidone treatment, significant changes were induced by

nintedanib. Unexpectedly most of the differentially expressed

metabolites were up-regulated and were not related to the above

described changes in serum metabolome of IPF patients versus

healthy volunteers. Of interest, multiple studies reported metabolic

changes with tyrosine kinase inhibitor (TKI) treatment. Growing

evidence indicates major changes in metabolome with imatinib, a

TKI targeting platelet-derived growth factor (PDGF) receptors, used

for treatment in chronic myeloid leukemia (Póvoa et al., 2021).

Likewise, in-vitro experiments with a macrophage cell line indicated

that SU1498, a TKI blocking VEGF-R signaling, induced

upregulation of triglycerides and a decrease in

glycerophosphocholine (Mesti et al., 2014). These data suggest

that the metabolic changes observed with nintedanib are rather a

direct drug-effect and not related tomodulation of disease associated

metabolic changes. Nevertheless, we observed that the described

upregulation of triglycerides by nintedanib treatment was only

present in a subset of the patients, while others did not show

this finding when serum samples prior and during nintedanib

treatment were compared. Also, the deregulated analytes were

different between the two IPF cohorts, potentially owing to the

milder disease extent in the second cohort. Interestingly the group of

patients with nintedanib induced changes in their metabolome had

the best outcome results and showed a significantly longer time to

disease progression or death compared to patients with no treatment

induced metabolic changes. These data suggest that treatment

efficacy may differ between patient subsets and metabolic

changes and especially an increase in triglycerides may serve as a

biomarker for treatment response.

Our study has significant limitations. Since we foundmetabolites

that correlated with disease severity, the milder disease extent in the

second cohort may partially explain incongruent findings between

the IPF cohorts and may hamper comparability. Further, the overall

milder disease in cohort 2 and smaller group size prevented us from

running correlations with clinical features and analyte concentrations

in this cohort. The analytes identified to correlate with both survival

and baseline GAP score showed a rather low correlation, rendering

their biological relevance subject to further studies. Metabolomic

measurements are subject to a variety of confounders, including

environmental factors (Lu et al., 2017). The cohort 1 and 2 were not

measured on the same day, although a number of samples from

cohort 1was repeatedlymeasured on the same batch as cohort 2, with

only moderate variances in metabolite levels. Dietary differences

between patients were not assessed but may have influenced the

results. Likewise, due to frequent adverse events, the overall

adherence to antifibrotic therapy may vary broadly and some

patients in these cohorts may not have taken their medication at

the time of sampling (B103, 2019). Importantly, the high throughput

lipidomic technology used herein does not allow for reliable

identification of exact lipid structures (i.e. TG (16:0_34:2) allows

for 6 potential isomers). Follow-up investigations for candidate lipids

thorough to classify these lipids in detail are needed (Liebisch et al.,

2013).We acknowledge our results at this stage aremerely hypothesis

generating, but given the lack of treatment response biomarkers in

IPF, exploratory analyses seem warranted.

In conclusion, we report major changes in metabolites in two

independent cohorts testing a large number of patients. Several

metabolites are associated with poor outcome. In summary, specific

lipidic metabolite signatures may serve as biomarkers for disease

progression or favorable treatment response to nintedanib.
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