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Abstract: A huge effort has been made along the last 20 years to map the detailed structural
organisation of neural networks. The main reason behind this effort is to understand the relation-
ship between the structure of the network and its dynamics or functional traits. To advance in
this quest, numerical simulations have emerged to help exploring the relation between structure
and function. Here we used the Izhikevich model to simulate neuronal networks with spatial con-
straints. We launched numerical simulations of 1000 neurons in two different modular networks, and
mimicking designs reported in experiments. We observed that some information about structure
can be glimpsed when the spatial constraints are very strong. In general, however, the properties
of the underlying structural network differ greatly from those obtained from the simulations, indi-
cating that the assessment of structural connectivity from just dynamics is not possible. We also
applied damage to the networks, and observed that targeted attacks strongly affects the activity
and functional traits of the networks under study.

I. INTRODUCTION

The brain is arguably one of the ultimate elements of
complexity and, although it has been the subject of study
since the dawn of civilisation, it was not until the sec-
ond half of the 20th century that the term ‘neuroscience’
was introduced into scientific fields. Although this disci-
pline has been approached from very different points of
view, such as the social or biological sciences, the ulti-
mate study of the brain involves treating it as a complex
system. Neurons, together with glia cells, are the funda-
mental units of the nervous system and therefore of the
brain. The first mathematical model, introduced in 1952
by Hodgkin and Huxley (HH) [1] and subsequent mod-
ifications of this model revealed that neurons must be
treated as non–linear units that interact to one another,
leading to non–trivial emergent behaviour that extends
along different spatiotemporal scales.

The large size of the human brain makes it very
difficult to study at the structural level of micro–
connectomics, i.e. connectivity at the level of synapses
between neurons. This is why the study of neural net-
works through in vitro cultures has become one of the
most widely used tools in neuroscience. These cultures,
usually build at mesoscopic scales (from micrometres to
several millimetres), allow a wide variety of complex phe-
nomena to be explored. In turn, cultures can be consid-
ered as the circuits that make up the different areas of
the human brain on a macroscopic scale.

In neuronal cultures, and just as in real neural net-
works, neurons are not necessarily arranged in an organ-
ised crystal–like structure. Indeed, using modern neuro-
engineering technologies, neurons can be placed in pre-
defined locations and connections accurately dictated to
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shape complex networks that mimic the topological traits
of the brain or its complex dynamics.

A simple way to place neurons or connections in spe-
cific places is by implementing strong spatial constraints,
that is, by placing the neurons in physical traps (valleys
or crevices in a substrate) that typically favour a strong
local connectivity while reducing the capacity of neurons
to connect with far away neighbours. This topology al-
lows for the occurrence of balanced local–global dynam-
ics, in which synchronisation periods (network bursts)
at the system scale combine with activations in groups
at a local level. Altogether, this balance enables infor-
mation transfer at the global level in combination with
specialised information processing at the local level [2].

Although neuronal cultures are an excellent tool for
experimental neuroscience, the design of adequate spa-
tial constraints is difficult. To help experimentalists to
observe a variety of dynamic phenomena as rich as possi-
ble, computational neuroscience has brought to light sim-
ple yet powerful resources in which the impact of spatial
constraints can be explored at will.

Indeed, the dynamics between neurons can be eas-
ily simulated on complex network using the Izhikevich’s
model [3]. Conceptually, one can establish a complex net-
work of synaptic connections among neurons (structural
connectivity) and then incorporate dynamics. Next, one
can extract the functional connectivity between neurons
from the analysis of the dynamics, and explore whether
the functional connectivity approaches the structural
connectivity and under which conditions their similarity
is the closest. Actually, the relationship between func-
tional and structural connectivity is one of the big open
questions in neuroscience, and simulations help explor-
ing it. For instance, that two neurons fire together does
not imply that they are directly connected, and possibly
their synchronous dynamics is mediated by a third neu-
ron. What simulations offer is to explore small changes in
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the structure of networks to investigate changes in their
functionality.

In this Thesis we explored suing numerical simulations
the impact of spatial constraints. Inspired by recent ex-
periments [4],[5],[6], we placed neurons in small islands or
along parallel stripes. We investigated the resulting dy-
namics in the studied networks and explored the emer-
gence of complex dynamics as well as the relationship
between structural and functional connectivity. We ob-
served that structural and functional networks were sim-
ilar only when the spatial constraints were very strong,
i.e. when the physical connectivity strongly dictated the
dynamics of the emerging network.

II. METHODS

In this work, neurons are placed in two types of ge-
ometries:

• Aggregated construction: Neurons are ar-
ranged in small isolated islands (called ‘modules’)
embedded in a two–dimensional Euclidean space,
FIG. 1. Progressively, a percentage of the inter-
nal connections of the modules is rewired to form
long–distance connections between neurons in dif-
ferent modules. Thus, a percentage of rewiring is
found that leads to a balance between local and
global behaviour in the system.

• Regular patterning construction: Neurons are
arranged in a striped pattern embedded in a quasi
two-dimensional Euclidean space. In this pattern
the neurons can be on two levels of different heights,
FIG. 2. These heights introduce a bias, as neurons
in the top stripes connect more easily with neurons
in the bottom stripes than vice versa. The number
of stripes a neuron in a given stripe is allowed to
access can be progressively changed, as well as the
height difference between stripes.

FIG. 1. Positions of neurons in the aggregated network. Each
colour refers to a different community.

FIG. 2. Positions of neurons in the striped network. Each
colour refers to a different community.

Both in in vitro cultures and in the brain itself neu-
rons and connections die, either in reduced fractions due
to ageing or in large fractions, due to neurodegenerative
diseases such as Parkinson’s or Alzheimer’s disease. For
this reason, we also explored in the present Thesis the
deletion of nodes and their impact in collective dynam-
ics. In the simulations, damaging a neuron means elim-
inating all interactions between it and those with which
it had a structural connection.

A. Spatial network

For the two geometries introduced above, the in-silico
networks have a total of N = 1000 cortical neurons, of
which 80% corresponds to excitatory neurons (Ne) and
20% to inhibitory neurons (Ni). These are the typical
fractions in the brain and proportionate a good ratio of
positive and negative inputs so as to reach quorum for
the neurons to fire.
The aggregated neurons shape highly compact mod-

ules that are laid on a 3 × 3 mm2 grid. The aggregates
have a radius of r = 0.15 mm but act as hard disks with
exclusion radius r∗ = 2r. In each of the 10 modules there
are 80% Ne and 20% Ni.
The neurons on the striped pattern lay on a 6×6 mm2

grid, but are located only in the inscribed circle of radius
r = 3 mm. To model the effective height of the two–
level pattern of the bands we introduce two variables,
h↑ and h↓ which are the probabilities that have neurons
from lower (higher) bands to connect to others at higher
(lower) bands.
Once that the neurons have been placed uniformly in-

side the circles in both geometries, we store the connec-
tions of the structural network in the matrix S = {sij}.
As the network is directed, this matrix will be asymmet-
ric. The in–going connections, that is, connections from
neuron j to neuron i are stored in columns and out–going
connections are stored in rows. We construct S as fol-
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lows:
First, we compute all the Euclidean distances between

pairs of neurons and we store them in the symmetric ma-
trix D = {dij}. We then calculate the interaction prob-
ability, which decays linearly with the distance between
neurons,

P (dij) ≡ pij = −
dij
dmax

+ 1, (1)

such that P (dij = 0) = 1 and P (dij = dmax) = 0, where
dmax is the maximum allowed length of an axon. In the
case of discs, dmax = 2r and in the case of the striped
pattern dmax = 1 mm. Next, a matrix X = {xij} is
generated, the elements of which are random numbers
U(0, 1), which is compared with the probabilities of the
elements in the matrix D by constructing the binary ma-
trix S with ones in the elements for xij < pij and ze-
ros in the elements for xij > pij . Finally, the columns
corresponding to inhibitory neurons are given a negative
weight.

In practice, there are also long-distance connections
between neurons. To create them, a rewiring is done be-
tween neurons, randomly choosing a fixed percentage of
connections that are eliminated to be formed with oth-
ers, always avoiding self and multiple connections. In the
case of the aggregated network where we have a strong
intra-connection, the rewiring results in the formation of
long-distance connections, linking the different modules.

We note that, for correctly implementing neuronal dy-
namics, neurons require a certain strength in the con-
nections. Thus, S is used as a weighted network dur-
ing the simulations. However, S is considered as un-
weighted (binnarized) for calculating the various network
properties described in II C. Thus, it can be ensured that
these properties reflect network key structure rather than
weights.

B. Dynamical model

As mentioned above, neurons are, together with glia,
the fundamental units of the nervous system. Through
them we are able to perceive and process information
from the world around us. Although not all neurons are
by no means the same, nor do they all have the same
functions, a model neuron can be considered to receive
input from other neurons via the dendrites, integrate it
and conduct it through the axon to other neurons. The
main element that mediates the transmission of pulses
between the sending (presynaptic) and receiving (post-
synaptic) neuron is the membrane of the latter. The
membrane potential is at rest at about −65 mV. When
the postsynaptic neuron receives an input from an ex-
citatory (inhibitory) neuron there is a net flow of ions
such that the potential gets increased (decreased). These
potentials are called excitatory (inhibitory) postsynaptic
potentials, EPSP and IPSP, respectively. If the sum of

the positive and negative contributions surpass a thresh-
old (typically of about −55 mV) in a short period of time
(of the order of some milliseconds) there is quorum. This
results in a huge fast depolarization of the membrane,
reaching 30 mV, followed by a fast repolarization, what
is called an action potential (AP) and it is said that the
neuron has fired and there is a spike, sending the input
to further neurons.
As introduced above, Hodgkin and Huxley provided

the first formal mathematical description of the AP by
studying the electrical properties of the giant axon of
the squid. The resulting model involved several nonlin-
ear coupled differential equations not solvable at the mo-
ment. Several years later, FitzHugh and Nagumo (FHN)
simplified the model, showing that only two dynamical
variables are required, one for the membrane potential,
v, and one for the recovery of the membrane, u. This
model can be analysed with the tools provided in dy-
namical systems theory (nullclines, equilibrium points,...)
and provided a good description of excitable systems. It
was not until 2003 that Izhikevich presented a highly fast
and efficient computational model and at the same time
very plausible from a biological point of view. One of
the most remarkable differences between this model with
respect to the previous HH and FHN models is that a
quadratic dependence on v is sufficient to account for its
non–linear behaviour. As already stated, this model is
the one used in this project under some modifications,
and is described as follows.
The main equations read

dv

dt
= C1v

2 + C2v + C3 − u+ I + η, (2)

du

dt
= a (bv − u) , (3)

such that variables u and v recover after an occurrence
of an spike:

if v ≥ 30 mV,

{
v ← c,

u← u+ d.
(4)

To solve this differential equations in simulations we
use the Euler method with a time step of 1 ms.
In addition to the already mentioned variables u and v,

C1, C2 and C3 are constants, I accounts for the received
synaptic currents, η correspond to the random thalamic
inputs i.e. noise, and a, b, c and d are parameters that
can be tuned to get different modes and characteristics
of neurons. The parameters a and b describe the time
scale and the sensitivity of of recovery of the variable u,
respectively, and the parameters c and d account for the
after–spike reset values of variables v and u.
By varying some of the parameters used in Izhikevich’s

original paper [3] we can obtain different dynamics.
On the one hand, the time–scale obtained with Izhike-

vich’s default code does not match with the one observed
in typical experiments, in which neurons coactivate to-
gether in a quasi–synchronous manner (network bursts
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every few seconds. Thus, in our simulations, we seek to
get inter–burst intervals (IBIs) between 5 and 10 seconds
instead of getting of the order of 5 spikes per second.
This adjustment in time scales is obtained by adding an
extra variable to the model, the short–term postsynaptic
depression. In real systems, neurons need neurotransmit-
ters for the signal to pass from one neuron to another. If
there is the case that one neuron gets too many inputs
in a short period of time, neurotransmitters get depleted
from presynaptic vesicles and some characteristic time
τD is needed to recover part of them.

On the other hand, by tuning parameters a − d we
can change the shape and frequency of the AP trains.
Originally, values were chosen to have an heterogeneity
of neurons, biased towards a regular spiking (RS) and
towards fast spiking (FS) excitatory and inhibitory neu-
rons, respectively. The problem with having FS–type
inhibitory neurons is that once we have introduced the
long timescale of depression they get sort of decoupled of
the rest of the dynamics and they fire at a very high fre-
quency. This introduces an artefact when analysing the
obtained spikes. Introduced in [7], one way to deal with
this is to use the same values of a, b, c and d for both
excitatory and inhibitory neurons, so that the latter acts
more like the excitatory ones but still having negative
weights in the adjacency matrix S.

The synaptic current of neuron j at time t, Ij(t) is the
contribution of currents induced from all the neurons i
that connect to j and fire at the same time t = tm:

Ij(t) =

kj
in∑

i=1

gij
∑
tm<t

Dj(t)δ(t− tm). (5)

Neurons are said to be pulse–coupled, as a substantial
amount of them has to fire at the same instant to reach
quorum. Other models relax this condition, allowing the
postsynaptic membrane potential to decay exponentially
with a characteristic time τA, facilitating synchronisa-
tion.

In Eq. (5) gij ≡ gA is the strength of the synapses,
i.e. the values in the weighted adjacency matrix S.
Di(t) ≡ D is the variable that accounts for the synaptic
depression. This variable has a rest value of 1 until neu-
ron i fires and its value is reduced to βD, with β < 1. As
stated before, τD is the characteristic time that needs D
to decay towards 1. The governing equation of synaptic
depression reads

dDj(t)

dt
=

1

τD
(1−D)− (1− β)Dδ (t− tm) . (6)

The values of the parameters of the model are pre-
sented in TABLE. I.

C. Network properties

As stated above, the neurons in cultures form connec-
tions leading to a directed network. From graph theory

TABLE I. Values of the parameters in the simulations.

Model parameters
Recovery scale of u a = 0.02 ms−1

Sensitivity of v b = 0.2
After-spike reset value of v c = (−65,−50) mV
After-spike reset value of u d = (2, 8) mV

Constants
C1 = 0.04 mV−1ms−1

C2 = 5 ms−1

C3 = 140 mV ms−1

Thalamic input η ∈ N(0, 2.6) mVs−1

Synapse strength (modules) gA = 6.5 mV ms−1

Synapse strength (stripes) gA=9 mV ms−1

Synaptic depression recovery time τD = 3000 ms
Synaptic depression decay β = 0.7

many measures can be computed to extract properties
and features of the resulting network. Since we only
use excitatory neurons for the calculation of functional
connectivity, the various quantities described below are
calculated from neurons of this type.

• Correlation length, δ. This is computed as the
relative ratio between the average axonal length,
aL, and the characteristic system size, L,

δ = aL/L, (7)

where L = 2
√

A/π such that A is the characteris-
tic area of the network. aL is computed by taking
average values of the non–zero elements of the ma-
trix resulting from the element–wise multiplication
(Hadamard product) of the matrix of the positions
and the matrix of connections, ⟨S ◦D⟩.
In the case of the aggregated network the area of
the grid is A = 9 mm2 and aL depends in both
the connections inside the modules and the ones
between modules as a result of the rewiring. In the
case of the striped network A = πr2 = 9π mm2

is equal to the area of the inscribed circle and aL
depends on the maximum number of stripes that
can explore a neuron from a given band and on
the effective height of the stripes, that is, on the
parameters h↑ and h↓. These are used to regulate
the probability of connection between neurons in
contiguous bands. The probability is decreased by
a factor h↑ when a neuron in a lower band wants
to connect to a neuron in a higher band, and the
probability is decreased by a factor h↓ in the op-
posite case. These parameters take values in the
interval [0, 1] such that a value of 0 is equivalent to
an infinite effective height and a value of 1 to a zero
effective height.

• Gini coefficient, Λ ∈ [0, 1]. This coefficient is a
measure of the aggregation of the physical under-
lying network. To compute this number we first
overlay the network on a grid with unit cells of size
s = 10−2 mm2 and we count the neurons in each of
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these cells. Then we order the counts from the low-
est to the highest value and we plot the cumulative
fraction of neurons with respect to the cumulative
fraction of area occupied by them. Λ/2 is the area
under the (Lorenz) curve that deviates from the to-
tally homogeneous case. Thus, Λ = 0 corresponds
to a grid–like network and Λ ≃ 1 to the case we
had all the neurons in one of the cells (spatial ho-
mogeneous distribution of neurons).

In the case of the modular network the grid spans
the 3×3 mm2 area whereas in the case of the striped
network we discount a number of cells proportional
to the area between the circle and the 6 × 6 mm2

square.

• Node degree, k, and degree distribution. As
the network is directed the degree of the node
j is computed as the sum of the number of in–
going and out–going connections with other neu-
rons, kj = kjin + kjout. The degree distribution,
P (k) is the probability density function (PDF) of
having a node with degree k. Similarly, the number
of times we have a node of degree k is calculated
by means of a histogram.

The following magnitudes are computed using the
Brain Connectivity Toolbox in MATLAB.

• Modularity, Q ∈ [0, 1]. This magnitude quantifies
how likely is that a neuron belongs to a community,
that is, that the number of neuronal connections
within the community is higher than between com-
munities. A high value of Q is expected for very
modular networks.

The directed version of the modularity proposed by
Newman [8] reads

Q =
∑
i,j

[
Sij

m
− kioutk

j
in

m2

]
δ (ci, cj) , (8)

where m is the number of edges and kioutk
j
in is the

probability of having a link that goes from neuron
i to neuron j. The value of Q is maximised using
the iterative Louvain Method. The result also gives
the number of communities NC. Each of them is
a sharp sub-network of the original one, as every
neuron can belong to only one community.

• Global efficiency, Geff ∈ [0, 1]. It quantifies how
complete is a network, by making an average of the
inverse of the shortest (topological) path length,
σij between pairs of nodes i and j. Geff is a direct
measure of how easily is to exchange information
across the network, i.e., the global integration in
the network. For binary unweighted graphs this
magnitude reads

Geff =
1

N(N − 1)

∑
0≤i,j≤N

1

σij
. (9)

We expect to find a value close to 0 for networks in
which almost all the nodes are unconnected and a
value near 1 for almost fully–connected graphs.

• Local efficiency, Leff ∈ [0, 1]. It quantifies how
ease is to exchange information at a local level. Leff

is computed as the average of the global efficiencies
computed in each of the nodes, only between their
nearest neighbours,

Leff =
1

N

∑
i

Geff(nni). (10)

Here nni indicates the nearest neighbours of node
i.

• Betweenness centrality, BC. Quantifies the im-
portance of a node. BC(i) is the sum of the
fractions of (topological) shortest paths that go
through node i linking pairs of nodes j − k, σjk(i),
with respect to the total number of (topological)
shortest paths between nodes j and k, σjk.

BC(i) =
∑
j,k

σjk(i)

σjk
. (11)

D. Calcium dynamics

One of the most used techniques in the laboratory to
record activity of firing neurons is calcium imaging. The
processes related to vesicle release in neurotransmitter
transport are mediated by Ca2+, such that the concen-
tration of calcium in the intracellular medium increases
by a factor of 103 in each firing. This increase can be cap-
tured by a calcium fluorescence indicator by means of the
green fluorescence protein (GFP). This is a protein that
in the presence of calcium alters its conformation and
becomes fluorescent. When this happens, if the culture
is irradiated with blue light, the GFP is excited and re–
emits the light in green, making possible to observe which
neurons fire and which do not. The major drawback is
that the time it takes for the calcium ions to bind to the
GFP mask the action potential structure.
Although the calcium signal is usually used to infer the

firing trains here we do the reverse conversion to obtain
the calcium signal that would allow us to compare with
the one obtained in the experiments. This conversion is
done using the model proposed by Vogelstein et al. [9],
described as follows.
Each action potential caused by a neuron at time t

results in a calcium concentration of[
Ca2+

]
t
=

[
Ca2+

]
t−1

(
1− δt

τCa

)
+ACant, (12)

where δt = 1 ms is the time-step of the simulations, τCa

is the characteristic decaying time of the calcium con-
centration, ACa = 50 µM is the instantaneously jump
in concentration after each spike and nt the number of
action potentials at time t.
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E. Simulating damage in the networks

By introducing some substances to the real biological
networks it is possible to block neurotransmitters, re-
ceptors or even the voltage–gated channels, what clearly
affect the dynamics of the system. Here we are interested
in considering the deletion of some neurons to check how
this affects to both structural and functional results, in
a similar way as in [10].

Complex networks have the small–world property,
which means that networks are very compact so that each
node is very close (topologically) to any other, resulting
in a structure robust to random attacks. Thus, what we
do here is to do targeted attacks at the most important
nodes in the network. In particular, we look for the nodes
with highest degree (hubs) and for those with highest be-
tweenness coefficient to delete the top 5% nodes in each
of the last two classes.

F. Functional connectivity analysis

The simulations of the designed structural networks
in the context of the Izhikevich model provides trains of
activity for each neuron. These data (raster plot) can
be analyzed to extract the functional connectivity of the
network, which concpetually captures the exchange of
information among active neurons.

Different approaches can be used to analyse the data
obtained from the raster plots and draw the functional
networks. The simplest method is to use cross-correlation
(XC), i.e., to calculate Pearson’s coefficients, which mea-
sure the linear correlation of two signals to quantify their
similarity. Although good for inferring the level of syn-
chronisation, XC does not give us information on direc-
tionality, i.e., causality. In addition, data in neuroscience
tends to correlate easily, making XC susceptible to arte-
facts.

A more robust approach is to calculate the Mutual In-
formation (MI) between signals. This estimates the mu-
tual dependence between two signals using information
theory concepts. Although it is a non–linear measure it
also does not provide causality between signals.

A generalisation of the concept of information trans-
fer is Transfer Entropy (TE). It measures the amount
of information directed from a signal Y to a signal X
by calculating the decrease in uncertainty in X knowing
the past values of signals Y and X. Even knowing the
amount of bits exchanged, it does not provide a value
for the strength of the interactions and the results ob-
tained are usually difficult to interpret. However, those
neurons that transfer more information are more likely
to have causal interactions. The data procured by TE is
standardised, such that

z =
TEY→X − ⟨TE⟩

σTE
, (13)

where ⟨TE⟩ and σ are the mean value and standard devi-
ation of the data, respectively. z is known as the z-score
and indicates the threshold in standard deviation units
from where one can accept the data as significant. With
z = 0.5 almost all the data is taken while z = 3 the
largest transfers of entropy are taken, allowing to iden-
tify the neurons that influence the others the most.

III. RESULTS

A. Overview of typical simulations and impact of
aggregation

To start with, we provide in FIG. 3 typical simulations,
where we can see the strong spatial embedding of the
aggregated network and the more relaxed one for the
stripes one. The raster plot shows that activity is rich
and neurons in the aggregates or stripes tend to activate
together very strongly, indicating they are quite isolated,
unlike what we would expect from a uniform network
where all the neurons tend to synchronise.

FIG. 3. Representation of the aggregated and striped net-
works and activity of the neurons shown in the raster plot.

As presented in Methods, the Gini coefficient measures
the aggregation of neurons in the network based on their
positions. As these are fixed for all simulations, Λ will be
constant. In the case of the disc–like aggregates we obtain
a value Λ = 0.92, while we obtain Λ = 0.74 for the striped
pattern. These results reflect what could have been an-
ticipated just by looking at FIGs. 1 and 2. Aggregation is
substantial in the case of the aggregated network, where
Λ is close to 1, and weaker in the case of the striped net-
work. The Lorenz curve obtained for both geometries is
presented in FIG. 4.
To be sure that we had strong spatial constraints in

the networks, we calculated the correlation length δ, also
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FIG. 4. Representation of the aggregation via the Lorenz
curve for the aggregated network (left) and for the striped
network (right).

defined in the methods section. δ depends on the con-
nections between neurons and will therefore vary when
changing the parameters that regulate the connectivity.
A value δ ≪ 1 indicates that the axon length is negligi-
ble compared to the characteristic length of the network
and the spatial restrictions are relevant. Conversely, for
δ ≫ 1 the constraints on the space in which the lattice
is located are negligible. The values for δ are shown, as
well as the rest of the computed magnitudes computed
in the structural networks, in Tables. II and III.

TABLE II. For each of the simulations done in the aggregated
network, for different rewiring values and damage to nodes
with a centrality coefficient and with a higher degree, the
following magnitudes are shown: average axon length, corre-
lation length, average network degree, modularity, global and
local efficiencies. Values calculated for the structural connec-
tivity network.

# Simulation 1 2 3 4 5 6

Rewiring (%) 0 4 6.5 13 20 6.5
Damage BC (%) - - - - - 5
Damage k (%) - - - - - 5

aL (mm) 0.11 0.17 0.21 0.32 0.42 0.21
δ 0.03 0.05 0.06 0.09 0.12 0.06
⟨k⟩ 86 86 86 86 86 79
Q 0.90 0.86 0.84 0.77 0.71 0.84
Geff 0.08 0.40 0.42 0.45 0.46 0.41
Leff 0.91 0.85 0.82 0.77 0.74 0.81

B. Impact of spatial embedding and rewiring on
aggregated networks

In the case of aggregates, we tune the percentage of
applied rewiring with respect to the case in which the
modules are isolated (this being 0% of rewiring) up to a
maximum of 20%.

For all simulations, and by looking at Table II, we see
that the value of aL is small. Comparing with the charac-
teristic length of the system, we see that we get δ ≃ 0.07

on average, which implies a strong spatial constraint. For
the case of the fully isolated aggregates (simulation #1)
we observe a large modularity (Q = 0.90), which was to
be expected given the highly–compact spatial arrange-
ment of the neurons. This indicates that the information
can be processed very well at the local level, obtaining a
value of Leff very close to 1, but impossible to transmit
at the global level, being Geff almost zero. This reflects
that many of the pairs of nodes to be chosen have an
infinite topological distance between them.
It is observed that, as the rewiring percentage in-

creases, so does aL. This is consistent, since the rewiring
is of long distance, i.e., that for a fixed rewiring ratio a
number of connections within the same aggregate will be
chosen randomly to connect neurons that most likely are
in different aggregates. Thus, δ also increases, although
even for 20% rewiring a very small correlation length is
obtained.
As the different aggregates become more connected,

the value of modularity decreases, although for the cases
studied Q remains very large. This reflects the impor-
tance of the large number of connections between the
neurons inside the different aggregates, which supports
the inherent modular structure. This is also reflected
in the local efficiency, since the minimum value, corre-
sponding to the simulation with 20% rewiring, is still high
(Leff = 0.74). On the other hand, the global efficiency
increases. Let us note that this magnitude increases very
fast when the first long distance connections are formed;
Geff increases by a factor of 5 when going from indepen-
dent modules to 4% rewiring, to then increasing steadily.
The maximum value Geff = 0.46 is sufficient to observe
synchronous system behaviour. Therefore, if we are look-
ing for a balance between local and global behaviour we
have to stay with a percentage of rewiring between 0%
and 20%. A percentage higher than 20% would destroy
the inherent aggregate structure. The same would hap-
pen for a complete randomisation of the network. Thus,
this indicates that a rewiring of 20% is a good reference
for a non–spatial network. As seen in the raster plot in
FIG. 8h, 6.5% rewiring is sufficient to achieve the balance
of local–global behaviour.

C. Impact of spatial embedding and rewiring on
the stripes’ networks

In the case of the striped network we can regulate two
parameters to study their implications for the network.
Firstly, we quantify the effective height of the stripes

through the parameters h↑ and h↓ described earlier. Note
that we speak of effective heights experienced by neurons
in both low and high stripes, because although it is eas-
ier to connect from high to low stripes, neurons in high
stripes prefer to connect with others at the same stripe
than to form an axon towards a lower level. For this rea-
son in the present study h↑ = 0.1 and h↓ = 0.5 are set,
strongly disfavouring the formation of axons from low to

Master’s Final Thesis 7 Barcelona, July 2022



In-silico networks with spatial constraints Guillem Güell Paule

high stripes. We compare this condition with the homo-
geneous case (absence of stripes, h↑ = h↓ = 1) and with
the case where h↑ = h↓ = 0.35, in which no distinction
is made between low or high stripes as they all see the
same effective height.

And, secondly, we can modify the number of adjacent
stripes, nadj. This regulates the number of stripes on
the right and left to which a neuron in a given stripe can
form connections. For such a construction, the maximum
axonal length in absence of rewiring is dmax = 1 mm.
This parameter can be viewed of as introducing a bias,
further favouring connection in the longitudinal direction
(along stripes) over the transverse (across stripes).

TABLE III. For each of the simulations done in the striped
network, for different rewiring values, number of adjacency
stripes, effective heights and damage to nodes with a central-
ity coefficient and with a higher degree, the following magni-
tudes are shown: average axon length, correlation length, av-
erage network degree, modularity, global and local efficiencies.
Values calculated for the structural connectivity network.

# Simulation 1 2 3 4 5 6 7

Rewiring (%) 0 0 0 0 0 0 10
nadj 2 0 1 2 2 2 2
h↑ 1 - 0.1 0.1 0.35 0.1 0.1
h↓ 1 - 0.5 0.5 0.35 0.5 0.5

Damage BC (%) - - - - - 5 -
Damage k (%) - - - - - 5 -

aL (mm) 0.49 0.37 0.41 0.42 0.43 0.41 0.60
δ 0.08 0.06 0.07 0.07 0.07 0.07 0.10
⟨k⟩ 53.3 19.2 27.1 27.4 29.2 23.8 27.4
Q 0.66 0.93 0.75 0.74 0.72 0.75 0.66
Geff 0.30 0.03 0.21 0.22 0.24 0.21 0.32
Leff 0.86 0.89 0.77 0.76 0.80 0.74 0.60

Given the arrangement of the neurons, we consider the
homogeneous case (simulation #1) as the control model,
since it is equivalent to the network obtained in the ab-
sence of stripes.

The most spatially constrained case is simulation #2
in which neurons only connect to their neighbours in the
same stripe. This condition is equivalent to h↑ = h↓ = 0.
Although aL takes the smallest value in this simulation,
this magnitude is small for all the other networks given
the different parameters. Only in the case where we allow
10% rewiring we get a slightly larger value. However,
aL ≪ L and therefore δ ≪ 1.
The comparison of values for simulations with different

numbers of adjacent stripes (#1 to #4) reveals that the
substantial change in magnitudes is between nadj = 0 and
nadj = 1, where Q and Leff decrease but Geff increases by
a factor 7. From #2 to #4 more and more connections
are formed and therefore ⟨k⟩ increases. aL also increases
but in this network, this magnitude has more dependence
on the axonal length of the newly formed connections.

The comparison between the simulations for different
values of h↑ and h↓ (#4 to #5) does not reveal major
changes in the structural properties of both networks,

although Geff and Leff are slightly larger in the case of
simulation #5. What does change is the dynamics, as
discussed later.
Note that for the case where we leave 10% rewiring

(#7) we obtain, among all the simulations, the most ef-
ficient network globally but at the same time the least
efficient network locally.

D. Comparison of structural and functional
connectivity on aggregated and striped networks

As described in Methods, one has to carefully choose
how to analyse the dynamic information obtained from
the simulations, in this case the raster plots, to compute
the effective or functional connectivity. Figure FIG. 5
and FIG. 6 show the comparison of XC and MI ap-
proaches for simulation #3 of aggregated network and
#5 of the striped network, respectively. These simula-
tions have been chosen as they correspond to the cases
where the rewiring and the height of the stripes allow a
balanced behaviour between local and global connectiv-
ity. As we can see in the figures, XC and MI are similar,
but XC has many weak connections outside the diago-
nal that are not present in MI. Thus, the latter approach
provides cleaner networks.
By using these MI results, we then adjusted the z–

score in the TE approach to get matrices as similar as
possible to MI. The idea is to get finally adjacency ma-
trices that are directed but that are overall consistent
with MI. During TE analysis, we considered z–score val-
ues of z = {0.5, 1, 2, 3}, and observed that the adjacency
matrix most similar to MI was the one corresponding to
z = 1. Thus, from here onwards, we took TE adjacency
matrices with z = 1.

FIG. 5. XC (left) and MI (right) adjacency matrices from
simulation #3 of the aggregated network.

With the TE effective connectivity in mind as the best
connectivity inference approach, we proceeded to com-
pare the structural and effective matrices. These matri-
ces are shown in detail later in FIGs. 8 and 9. The
idea here, however, was just to calculate the percentages
of coincidence and error with respect to the structural
matrix. The results, for different z–scores, are displayed
in TABLE. IV.
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FIG. 6. XC (left) and MI (right) adjacency matrices from
simulation #5 of the striped network.

TABLE IV. Values of the percentages of coincidence and error
for different values of the z-score, for the simulations #3 of
the aggregated network and #5 of the striped network.

Simulation #3 (aggregates) #5 (stripes)

z-score 0.5 1 2 3 0.5 1 2 3
% coincidence 86.3 77.2 55.0 26.0 79.2 64.0 37.2 18.8

% error 9.9 5.4 3.0 1.3 21.1 11.4 3.4 1.0

We see how the error percentages are very low for z =
3, indicating that strong effective connections are also
present in the structure. However, these are only 26%
of all connections in the aggregated configuration and
about 19% in the stripes configuration. We note that
in simulation #3 the choice z = 1 implies more success
and at the same time less error than for simulation #5,
but for simplicity z = 1 is chosen systematically for all
simulations.

The network properties calculated for the structural
network can also be calculated for the effective networks.
Results are presented in TABLE. V and TABLE. VI for
each of the two networks studied.

TABLE V. Network properties computed from the effective
connectivity obtained in the different simulations performed
in the aggregated network.

# Simulation 1 2 3 4 5 6

Rewiring (%) 0 4 6.5 13 20 6.5
Damage BC (%) - - - - - 5
Damage k (%) - - - - - 5

aL (mm) 0.21 0.47 0.35 0.85 1.08 0.49
δ 0.06 0.14 0.10 0.25 0.32 0.14
⟨k⟩ 152 159 148 215 221 154
Q 0.85 0.77 0.77 0.49 0.49 0.70
Geff 0.44 0.47 0.47 0.54 0.53 0.50
Leff 0.96 0.94 0.93 0.89 0.89 0.92

TABLE VI. Network properties computed from the effective
connectivity obtained in the different simulations performed
in the striped network.

# Simulation 1 2 3 4 5 6 7

Rewiring (%) 0 0 0 0 0 0 10
nadj 2 0 1 2 2 2 2
h↑ 1 - 0.1 0.1 0.35 0.1 0.1
h↓ 1 - 0.5 0.5 0.35 0.5 0.5

Damage BC (%) - - - - - 5 -
Damage k (%) - - - - - 5 -

aL (mm) 1.45 1.68 1.44 1.52 1.51 1.43 1.63
δ 0.24 0.28 0.24 0.25 0.25 0.24 0.27
⟨k⟩ 236 70 199 205 198 137 162
Q 0.48 0.57 0.51 0.50 0.45 0.55 0.38
Geff 0.55 0.43 0.54 0.53 0.53 0.51 0.53
Leff 0.89 0.75 0.87 0.86 0.86 0.85 0.85

E. Impact of simulations’ parameters on effective
connectivity properties

The first aspect to note when studying the properties
of the effective networks, i.e., those obtained purely from
the dynamics of the network, is that they vary greatly
depending on the z–score chosen. For consistency with
the rest of the results, we take z = 1 and study how the
network properties vary for the different values of the
parameters.
If we try to compare function to structure we see that

very different values are obtained in the magnitudes for
the same parameters, even in the case of maximum ag-
gregation corresponding to the simulation #1 of the ag-
gregated network, for which we obtain an effective adja-
cency matrix that almost equals the structural one, see
FIG. 8(c,e,f). For all cases the average number of links
⟨k⟩ is much larger in the functional network and conse-
quently aL is also much larger in this case. By calculating
the correlation lengths we observed that the average ax-
onal length is much smaller than the characteristic length
of the networks, indicating that strong spatial constraints
somehow translated in perturbations in the communi-
cation between neurons. Thus, one could say that for
strong spatial embedding, structure dictates functional
behaviour.
If we look at the aggregated network we can clearly

see that even the difference of values with the structural
magnitudes, with 0% rewiring we obtain the most modu-
lar network, with smaller global efficiency and larger local
efficiency. We also observe that, by increasing rewiring
without damage, (#1-#5) Q and Leff decrease, just as
they did in the structural network. On the contrary, we
obtain that the network with 20% rewiring has less global
efficiency than the network with 13% rewiring.
In the case of the striped network it can also be identi-

fied that simulation #2 describes the most modular net-
work, although it has the highest value of local efficiency
instead of the lowest.
To see if the effective network captures structural prop-
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erties, the distribution of angles formed by a connection
with respect to the positive x–axis is calculated. The dis-
tribution is presented in FIG. 7. It is observed in the top
two distributions that there is no privileged direction nei-
ther for the case of isolated modules (#1) nor after 6.5%
rewiring (#3).

FIG. 7. Distribution of connectivity angles among pairs of
effectively connected neurons. The top row correspond to the
aggregated network, simulations #1 and #3. The two bottom
rows correspond to the stripes network, simulations #1 to #4.

For stripes, we see that in the absence of stripes (#1)
there is no privileged direction, although the distribu-
tion is not as smooth as in the case of aggregates. For
the next three simulations (#2,#3,#4), two peaks at−90
and +90 degrees are clearly observed, indicating that the
anisotropy imposed on the structural network imprints
features on the effective network, with neuronal commu-
nication in the longitudinal direction (along stripes) be-
ing easier than in the transverse direction.

F. Detailed comparison of network behaviour —
Aggregated network

Here we focus on studying some of the representative
cases among the simulations done.

For the aggregated network we compare a simula-
tion with isolated modules with a simulation with 6.5%
rewiring, FIG. 8.

For 0% rewiring (FIG. 8a–f), as expected, the adja-
cency matrix is formed by a diagonal of boxes corre-
sponding to the connections between the excitatory neu-
rons of the different aggregates, with no other connec-
tions outside the diagonal (FIG. 8c). This is reflected
in the raster plot, where the different modules fire inde-
pendently about once every 10 seconds. The conversion
of the raster plot to calcium concentration (FIG. 8d) al-
lows comparison with experiments. In this case it is quite
clean, being able to resolve the number of times any ag-
gregate fires synchronously and at what time. Usually
this is not possible in experiments, making it difficult to
convert these data to raster plots. In any case, both in
these simulations and in the experiments, it is practically
impossible to resolve every single action potential.

The effective matrix calculated with TE reflects these
results (FIG. 8e), as the inferred connectivity between
modules due to noise and independent firing of neurons
is minimal. To quantify these results, the structural
and effective connectivity matrices are added together
(FIG. 8f). The latter is previously multiplied by 4 such
that the resulting matrix, S+E, contains a 0 for each el-
ement corresponding to connection absence in both the
structural and the effective matrix, a 1 for each element
present in the structural but not in the functional matrix,
a 4 for each element present in the functional but not in
the structural matrix and a 5 for each element present in
both. The percentage of coincidence and the percentage
of error (as presented in TABLE. IV) are calculated by
comparing the results of the previous sum with the struc-
tural matrix. The first percentage is calculated from the
ratio of the number of 5’s in the S+E matrix to the total
number of 1’s in the structural matrix and the second
percentage from the ratio of the number of 4’s in the
S+E matrix to the number of 0’s in the structural ma-
trix. In this case we obtain a coincidence percentage of
92.1% and an error percentage of 4.8%.

For the case where there is a 6.5% rewiring (FIG. 8g–l)
we see that many connections have been formed just by
looking at the network representation (FIG. 8g). These
are far fewer than those present within the aggregates, as
we can clearly observe in the structural connectivity ma-
trix (FIG. 8i). In the raster plot, we observe a behaviour
that combines local firing at module level with collective
firing at the level of the whole network. In this case the
conversion to a calcium signal is still very illustrative,
but we can no longer discern when each module is fir-
ing. This is also seen in the effective connectivity matrix
(FIG. 8k) where there are more off-diagonal connections
than actually exist in the structural matrix . From the
S+E matrix we obtain a coincidence percentage of 77.2%
and an error percentage of 5.4%.
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FIG. 8. a-f : 0% rewiring, g-l: 6.5% rewiring. Structural network representation from Gephi (a,g), structural connectivity
matrix (c,i), effective connectivity matrix (e,k), raster plot (b,h), calcium concentration (d,j) and structural to effective
comparison (f,l). The colours in the raster plots correspond to the different communities in FIG. 1.

G. Detailed comparison of network behaviour —
Striped network

For the striped network we compare the homogeneous
case (FIG. 9a-f) with the simulations with h↑ = 0.1, h↓ =
0.5 (FIG. 9g-l) and with h↑ = h↓ = 0.35 (FIG. 10). In
all cases nadj = 2.

For the homogeneous case, a highly connected matrix
is obtained (FIG. 9a), as reflected by the average degree
(TABLE. III) and bursting raster plot, with markedly
synchronous activations (FIG. 9b,d). Still, the short
length of the axons results in the formation of 9 clearly
distinguishable communities in the structural connectiv-
ity matrix (FIG. 9c). These, however, are quite con-
nected to each other. Still, as the axons are short, a
large number of neurons are needed to pass information
over long distances, resulting in low overall efficiency val-
ues (Geff = 0.66 for the structural and Geff = 0.55 for the
effective). Although the effective matrix (FIG. 9e) cap-
tures quite well the different communities observed in
the structural matrix, there are many connections that
it does not infer correctly. Here the coincidence percent-
age is 75.2% and the error percentage amounts to 12.7%.

Both for the case with h↑ = 0.1 and h↓ = 0.5 and
for the case with h↑ = h↓ = 0.35, we can observe that
the stripes cause a strong restriction in the transverse
direction. We can also observe that h↑ = 0.1 and h↓ =
0.5 lead to overall activity with weak bursting (FIG. 9h–
j) whereas h↑ = h↓ = 0.35 lead to stronger bursting
(FIG. 10b-d).

Thus, for this strongly connectivity–dictated network,
there is a good balance between firing locally and glob-
ally, even though the axonal length is small. Of the com-
munities detected in the structural connectivity matrix
(FIG. 10c) there is one that is not recovered in the effec-
tive matrix (FIG. 10e). This is the simulation in which
there is the least overlap between structure and function,
with a 64.0% of coincidence percentage and an error per-
centage of 11.4%.

H. Impact of damage — Connectivity

We now study how the system changes when the sys-
tem is damaged. As introduced in Methods, the 5% of
nodes with the highest degree and the 5% of nodes with
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FIG. 9. a-f : 0% rewiring, nadj = 2, h↑ = h↓ = 1; g-l: 0% rewiring, nadj = 2, h↑ = 0.1,h↓ = 0.5. Structural network
representation from Gephi (a,g), structural connectivity matrix (c,i), effective connectivity matrix (e,k), raster plot (b,h),
calcium concentration (d,j) and structural to effective comparison (f,l).

the highest BC are eliminated for both the aggregated
and the striped networks.

By comparing the network properties measured for
both aggregated and striped networks without and with
damage i.e., simulations #3 and #6, TABLE. II, and
simulations #4 and #6, TABLE. III, we do not see much
difference. To make comparisons possible, we keep the
same amount of rewiring constant and we keep the same
parameters h↑, ↓ and number of adjacency stripes.

The most noticeable changes before and after the dam-
age are the decrease in the average number of neighbours,
⟨k⟩, since multiple connections have been eliminated, and
the slight reduction in local efficiency, more remarkable
in the stripe network.

The comparison between undamaged and damaged
effective networks show a greater difference than the
comparison of structural networks just discussed. The
changes in the calculated magnitudes can be due to both
the removal of the neurons and respective connections
and the specific dynamics of the simulations themselves.

To begin with, we study how the degree distributions
and centrality coefficients change, as these are the ele-
ments that we change directly to damage the networks.

Figure FIG. 11 shows how the degree distribution of

the structural and functional connectivity varies for both
networks when they are damaged.

We see that, although in practice the number of con-
nections is reduced, the average number of structural con-
nections does not always decrease. An example is the
case of the aggregated network whose network properties
are extracted from the effective connectivity, (FIG. 11,
top–right), as we have seen in TABLE. V. In the other
three cases, we do observe a shift towards lower val-
ues of the mean value of connections, while maintaining
the shape of the distribution. We observe that although
the change is not very noticeable in the striped network
computed from the structural connectivity, (FIG. 11,
bottom–left), the effective connectivity network gets de-
teriorated a lot (FIG. 11, bottom–right), as many nodes
are isolated or have very few connections. In this net-
work there are a total of 99 neurons with a number of
connections between 0 − 10. In the striped network ob-
tained from the effective connectivity there were 63 neu-
rons with the same range of connections.

In FIG. 12 we study how varies the distribution in the
betweenness centrality coefficients. We note that the cen-
trality coefficients are normalised by the maximum value
and, therefore, the distribution always refers to a neuron
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FIG. 10. a-f : 0% rewiring, nadj = 2, h↑ = h↓ = 0.35. Struc-
tural network representation from Gephi (a), structural con-
nectivity matrix (c), effective connectivity matrix (e), raster
plot (b), calcium concentration (d) and structural to effective
comparison (f).

with respect to that with the highest BC. Therefore, this
makes it difficult to compare between different networks.

We limit ourselves to comment that qualitatively they
all follow the same distribution before and after the dam-
age. The one that looks most different from the others
is the corresponding to the aggregated network obtained
from structural connectivity, (FIG. 12, top–left). In this
one, 75% of neurons have a normalised BC between 0.3
and 0.6 and quite a few above 0.6, while in the other
distributions almost all neurons have a normalised BC
below 0.2.

I. Impact of damage — Dynamics

We now focus on analysing how the dynamics change
after the targeted attack. Since not much variation has
been observed for the damage in the dynamics of the ag-
gregated network, we only include below the comparison
in the case of the striped network, FIG. 13, corresponding
to simulations #4 (undamaged) and #6 (damaged).

At first glance (FIG. 13a–d), it can be seen that most of
the eliminated connections belonged to the central region

FIG. 11. Comparison of the degree distributions before and
after damage. Representations on top correspond to the
aggregated network and representations on bottom to the
striped network. On the left computed from the structural
connectivity on the right from the effective connectivity.

FIG. 12. Comparison of the BC coefficients before and after
damage. Representations on top correspond to the aggre-
gated network and representations on bottom to the striped
network. On the left computed from the structural connec-
tivity on the right from the effective connectivity.

of the network. This is probably the reason why a lot of
collective behaviour is observed to be lost (FIG. 13b–e).
This can be quantified by means of the calcium concen-
tration, because for the undamaged network the collec-
tive activation always exceeded calcium concentrations of
10 mM and for the damaged network this happens only
twice (FIG. 13c–f), apart from the large collective firings
due to the initial conditions. Note the change of scale on
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FIG. 13. Structural connectivity representation from Gephi (a,d), raster plot (b,e) and calcium concentration (c,f) for the
network before damage (simulation #4, top) and after damage (simulation #6, bottom).

the ordinate axis between the two comparison plots.

The next step is to determine whether the deleted neu-
rons —which a priori were among the most important at
the level of degree and centrality— played an important
role in the onset of the observed collective firings, that
is, when more than 5% of the neurons fire. For this pur-
pose, long simulations of 500 s were launched for both
networks.

FIG. 14. Initiation points of activity before damage, damaged
neurons and initiation points of activity after damage, for the
aggregated network (top) and the striped network (bottom).

Figure FIG. 14 shows the activity initiation points of
the collective firing before the damage, the deleted neu-
rons (in black) and the initiation points after the damage.
It is observed that in the case of damage to the aggre-
gates, they continue firing in a similar way as they did
before the damage, although the location of the initia-
tion points varies when damage is received. Before the
damage, 250 collective firings are recorded and after the
damage, 248.

In the case of damage to the striped network, the ac-
tivity decreases from 192 collective firings to 113, as can
be seen in the lower representations of FIG. 13.

J. Comparison with experimental results with the
stripes network

Finally, the results obtained from the striped net-
work are compared with experimental results in FIG. 15.
Specifically, the network fraction of neurons participating
in the different collective firings is measured.

As in the experiment, we take as a control the network
in stripe height absence, i.e., the homogeneous case, sim-
ulation #1. To compare with this, 500 s simulations are
simulated, first with h↑ = 0.1 and h↓ = 0.5 and then
with h↑ = h↓ = 0.35. We find more similarity with the
experiments for the latter case, having the same effective
height h↑ = h↓ = 0.35 for both the high and low stripes.
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FIG. 15. Fraction of neurons firing in each collective firing.
Comparison of the experimental results with the results ob-
tained through numerical simulations. Outliers have been re-
moved for clarity.

IV. DISCUSSION AND CONCLUSIONS

The numerical simulations presented here provide dy-
namics consistent with the experimental results reported
in [6]. Specifically, for the aggregated network, 6.5%
rewiring is sufficient to observe a balance between seg-
regation and integration, i.e., information processing at
both local and global levels. In the striped network, this
occurs for effective heights h↑ = h↓ = 0.35. Although
in the experiments it is easier to connect from ridges to
valleys than vice versa, here we see that these parameters
are more optimal than h↑ = 0.1 and h↓ = 0.5. In the lat-
ter case the constraint may be too strong, so future work
may include to study the variation of effective heights
to exactly reproduce the experiments. The definition of
how axons interact in the presence of level changes, as in
[11], could also be improved.

It is worth noting the strong dependence both on the
parameters we vary and on the model parameters them-
selves, such as the strength of the synapse connections or
the characteristic decay time of the synaptic depression.
Given the two imposed geometries, most of the param-
eters are fixed in order to observe how some others are
varied.

Although the network properties calculated from struc-

tural connectivity reflect the network’s inherent struc-
ture, it is complicated to compare these with the ones
obtained from the effective network. This is because the
choice of z-score is crucial as different thresholds lead to
networks with a different number of effective connections.
While an interesting alternative would be to stick with
the strongest connections, corresponding to z = 3, z = 1
is set to have both weak and strong connections. This
choice also corresponds to the case where the connectiv-
ity calculated by TE approaches with XC and MI.
As expected, the case in which we find the best match

between the structural and effective matrices is, with a
percentage of 92.1%, the aggregated network with inde-
pendent modules. Even so, for the other cases we also
manage to recover the communities and the connections
between them, keeping a low percentage of error.
We have analysed the distribution in the angles formed

by the axons from the effective connectivity, to see
that while for the aggregated network the distribution
is very homogeneous, the striped network preserves the
strong spatial restriction in the transverse direction of
the stripes.
We found the aggregated network to be very robust

under a targeted attack. It is probably the high con-
nectivity within the modules that makes the network re-
silient to attack on the hubs. An attack on nodes with
more BC can be expected to disconnect the long distance
connections created by rewiring, but as long as the per-
centage of damaged nodes is sufficiently lower than the
number of connections between aggregates, global infor-
mation exchange is possible. Let us note that with only
4% rewiring the network already reached a global effi-
ciency Geff = 0.4. On the contrary, the striped network
becomes much weaker, losing many central connections
and leads to a the decrease of activity.
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