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The main goal of this project is to better understand barrier options and try to propose some
methods to price them. We start with a review of the financial concepts necessary to develop our
methods, where we explain what are derivates, options and the core of our work, barrier options.
We also review the classical methods to price options which are the base for the methodologies
that we propose. The two methods that we suggest to price barrier options and observe some
of their properties are: a quantum mechanical approach using the path integral technique and a
modification of the Monte Carlo simulation. For the first one we have considered the stock price as
a free particle moving in a space bounded by two barriers and performing trajectories starting at the
initial stock price and finishing at maturity time. We have developed the path integral formulation
to find the probability of a certain trajectory and we have found that it depends on the inverse of
the exponential of a quantity that we call action, in analogy to the path integral, which depends on
the followed path by the stock price. The procedure proposed is to start from a completely random
path and evolve it in order to reduce the action, thus increasing the probability of such path. We
have founded that starting from a random path arising from a Gaussian distribution gives better
results than starting from a uniform distribution when we compare with the classical methods. The
reason is that the classical methods make the hypothesis that the dynamics of the stock price is
based on the Brownian motion, which is Gaussian distributed. We call probabilistic Monte Carlo
the other method because we let the stock price penetrate the barriers with some probability, with
this methodology we try to observe the role of the barriers in options and the role of the drift in
the Brownian motion governing the stock price. We have found that relaxing a bit the barriers is
enough to recover an option without them. The reason is that, how far the stock price arrive is
limited by the variance of the Brownian motion, then, if the barriers are far enough, is the same as
not having them. Finally, we observe that the drift makes the stock price prone to rise, this makes
the upper barrier more sensitive to changes than the lower one.

I. INTRODUCTION: DERIVATIVES AND
OPTIONS

A derivative is a financial instrument which establishes
a contract between two parties and its value depends
on an underlying asset. In the last years derivatives
have taken more and more relevance in financial mar-
kets, everyday a lot of derivatives are traded both on
exchanges and over-the-counter (OTC). In OTC market
the derivatives are traded directly between two parties,
outside of organized markets (exchanges) . The main use
of derivatives is to manage risk, for example, as we will
see in this work, they are useful to hedge our portfolios.
We understand hedge as an investment to cover our
position in another investment, to offset potential losses,
in this way we reduce the risk of the operations we are
performing. A very important topic in quantitative fi-
nance is the problem of value these financial instruments,
a very common way to proceed is to price derivatives
in a way that we cannot make profit trading them
without taking some risk. To understand how we can
do this we need two key concepts that we will explain
later, arbitrage-free and risk neutral valuation. There

are a lot of different types of derivative such futures,
forwards or options, we are going to focus on the last one.

Options are contracts that give the holder the right
to exercise or not the contract, the issuer has to accept
the decision of the holder. There are options for any
type of underlying, we find options for stocks, bonds,
commodities, currencies... There are two types of
options, calls and puts. Call options gives the holder the
right to buy the underlying asset at a fixed price while
put options gives the right to sell it. This fixed price of
buying or selling is known as the strike price K. The
contracts are available for a certain time, they expire
at a date known as maturity T . Depending on when
we can exercise an option, there exist different style
options, the most common are European and American.
European options can only be exercised at maturity
while American can be exercised at any time up to
maturity. When an option expires we may essentially
receive an amount of money or not, depending on what
is stipulated on the contract, this is known as the payoff.
The payoff can be so complicated as we want and this is
the reason of the huge variety of existent options.
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The most basic options are what we call vanilla, the
payoff of these contracts is based only on the value of the
underlying at maturity ST , for call c and put p options
we have,

gc = max(ST −K, 0) ≡ (S −K)+,

gp = max(K − ST , 0) ≡ (K − S)+. (1)

As we said, we can complicate options as we want,
options that are not vanilla are called exotic. A kind of
exotic options are path-dependent, for these type the
payoff depends on the history of the underlying asset.
One of the most known path dependent options are
barrier options, the most common are knock-out barrier
options. For these kind of options, there is one or two
barriers and when the price of the asset goes through
the barrier the contract becomes worthless. Depending
on the position of the barrier we can have:

- Up and out: the price of the asset starts below
the barrier level Bu, if it rises enough to overcome the
barrier the payoff becomes zero.

- Down and out: the price of the asset starts over
the barrier level Bl, if it drops enough to overcome the
barrier the payoff becomes zero.

- Double knock-out: there are two barrier levels, Bl

and Bu, the asset price starts between them, once it
overcomes any barrier the payoff becomes zero.

There also exists knock-in options, the idea is the
same as for knock-out but instead, the option has a
payoff different from zero when the asset price goes
through the barriers.

In our work we will focus on pricing double knock-
out options when the underlying is a stock. We do not
have an analytic expression for double barrier and we
need numerical methods to price them. First we will
review the classical and most famous methods to price
options: the Black-Scholes model, the binomial tree and
the Monte Carlo simulation. For these we will have to do
some hypothesis on the dynamics of the asset price and
the behaviour of the market. Then we will propose two
methods to price these options, one based on the Monte
Carlo simulation and the other based on a quantum me-
chanical approach using the path integral technique.

II. CLASSICAL METHODS FOR OPTION
PRICING

Three of the most important methods for option
pricing are the Black-Scholes (BS) model, the binomial
tree and the Monte Carlo simulation (MC). These

models make some assumptions on the market to derive
a unique and fair price. There are two key concepts that
are very related, the absence of arbitrage in the market
and the risk neutral valuation:

- We say that there are arbitrage opportunities in the
market when we can earn money without taking risks,
when an inversion has no risk of losses.

- The risk neutral valuation assumes that investors
do not take more risk in their investments with the
expectation of obtaining a higher return. Therefore,
the expected return for any investment is the risk-free
interest rate r. We assume that the world is risk-neutral.

Mixing both assumptions, the absence of arbitrage op-
portunities guarantees that a risk-less investment earn
the risk-free interest rate.

A. The Black-Scholes model

The most famous method for pricing options is the
BS model which provides a partial differential equation
(PDE) for the evolution of the price of an option V (S, t).
The derivation of the BS equation is based on the idea of
hedging a portfolio composed by a risky and a risk-less
assets, a stock and a bond. Before deriving the equation
we have to made some important hypothesis:

- The stock price S follows a geometric Brownian mo-
tion (GBM). A GBM is defined by the following stochas-
tic differential equation (SDE),

dS(t) = µS(t)dt+ σS(t)dW (t), (2)

where µ is the drift coefficient, σ the diffusion coef-
ficient and W (t) the Wiener process or the standard
Brownian motion. We assume that the drift and the
volatility are constant. The GBM describes the dynam-
ics of S(t) in a way that the logarithm of this quantity
follows a Brownian motion with drift.

- The return is given by the risk-free interest rate, in
this way the drift in (2) becomes µ = r, then we are
assuming that the world is risk-neutral.

We derive the BS equation starting from a portfolio
Π(S, t) which contains δ(S, t) shares of the stock S(t)
and ϕ(S, t) shares of the bond B(t),

Π(S, t) = δ(S, t)S(t) + ϕ(S, t)B(t). (3)

The evolution of the bond is deterministic, its value
grows according to the risk-free interest rate,

B(t) = B(0)ert. (4)
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We replicate the portfolio setting Π(S, t) = V (S, t),
that is, the value of the portfolio is equal to the value of
the option at any time. Therefore, its evolution has to be
the same dΠ(S, t) = dV (S, t). If we define delta hedging
as the variation of the option price with respect to the
variation of the underlying asset, δ = ∂V

∂S , we obtain the
following PDE,

∂V

∂t
+ rS

∂V

∂S
+

σ2

2
S2 ∂

2V

∂S2
= rV. (5)

This is the BS equation. What we have done is
to make our portfolio risk-less using the option and
because we have established a market without arbitrage
opportunities, the return of the portfolio will be the
risk-free interest rate.

The solution of equation (5) depends on the boundary
and terminal conditions that we establish, corresponding
to the particularities of the option. For vanilla European
options the terminal conditions are the payoffs given by
(1). With these final conditions we obtain the BS formula
for the price of an European call and put vanilla options,

C(S, t) = SN(d1)−Ke−r(T−t)N(d2),

P (S, t) = Ke−r(T−t)N(−d2)− SN(−d1), (6)

where N(x) is the standard normal cumulative distri-
bution function with arguments,

d1 =
ln(S/K) + (r + σ2/2)(T − t)

σ
√
T − t

,

d2 = d1 − σ
√
T − t. (7)

Here we can see that the price of an option depends on
the following parameters: the stock price S, the strike
price K, the risk-free interest rate r, the maturity T and
the volatility σ.

Pricing exotic options solving the BS equation is
harder than for vanilla ones, for barrier options we have
to specify the boundary conditions, that is, a knock-out
option becomes worthless if the stock price touches the
barriers. We can specify this in the following way,

gup = (S −K)+θ(Bu − S),

gdown = (K − S)+θ(S −Bl), (8)

where θ is the step function, equal to one when the
argument is positive. There is an analytic expression for
single barrier options, for double barrier we need compu-
tational methods.

B. The binomial tree

One effective numerical method to price options is the
binomial tree, the idea consists in constructing a tree
which represents all the possible values the stock price
can take starting at S0 and finishing at maturity time T .
Then, because we know the price of the option at T we
work backwards the tree in order to find the price of the
option at any time for each possible value St until t = 0.

The binomial tree method is based on the same idea
of the BS model, we have to hedge the same portfo-
lio but in the discrete case. First we explain the one-
step replicating portfolio. Consider that in one time step
the stock price can either go up or down, S0 −→ S1 ∈
{S+, S−} , S− ≤ K < S+. Consider also that we have
the portfolio defined in (3). To set a risk-less portfolio
we have to find δ0 and ϕ0 in a way that the final value of
the portfolio is equal to the value of the option at that
moment, either the stock price has raised or dropped,
Π1 = max(S1 − K, 0) for a call option. If we consider
both cases, the stock price going up or down, we finally
obtain,

δ0 =
S+ −K

S+ − S−
, ϕ0 = − δ0S−

B0(1 + r)
. (9)

Inserting the corresponding amount of shares in (3) we
finally obtain the price of the option at the initial time
imposing C0 = Π0,

C =
1

1 + r

[
p̃(S+ −K)+ + q̃(S− −K)+

]
, (10)

where we have defined the risk-neutral probabilities,

p̃ =
S0(1 + r)− S−

S+ − S−
, q̃ = 1− p̃. (11)

Under the risk-neutral probabilities the expected
return of the portfolio is given by the risk-free interest
rate. Equation (10) can be interpreted as the price of
the option being the expected value of the payoff in a
risk neutral world discounted at the risk free interest rate.

We can extend the idea of the one-step replicating
portfolio to construct the binomial tree for many steps.
We divide the life of an option in N steps of length
∆t = T/N , at each time step the price can rise or drop
proportionally to the factors u and d respectively, such
that d = 1/u, is what we observe in FIG. 1. Once the
tree has been constructed we start to go backwards on
it computing the price of the option for each stock price
using an expression based on (10). The price of the op-
tion at a given time-step Vn is the expected value of the
option on the next step in a risk neutral world discounted
at the risk-free interest rate,
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Vn =
1

1 + r

[
p̃V +

n+1 + q̃V −
n+1

]
. (12)

We can introduce the volatility in the rise/drop factors

in the following way, we establish u = eσ
√
∆t, we recall

r −→ r∆t and approximate 1 + r∆t ≃ er∆t. In the
continuum limit N → ∞, the binomial model converges
to the Black-Scholes model. It is reasonable because we
have made the same assumptions on the market and the
stock price. Here S follows a random walk (at each time
step it moves up or down), the discrete version of the
Brownian motion.

The binomial tree method is useful for pricing bar-
rier options, either we have only a barrier or two. For a
knock-out option we proceed in the same way as if it was
a vanilla, but when we are in a node located above the
barrier in the case of up and out or below in the case of
down and out, the corresponding option value is equal to
zero.

FIG. 1. The binomial tree, each node represents a possi-
ble value of the stock price in the corresponding time step.
Starting at S0, from each node, the stock price can rise pro-
portional to u or drop proportional to d. For each node we
can calculate the price of the option at that moment based
on the possible option prices at the next time step, either S
has risen or dropped. The value of the option at the last time
step corresponds to the payoff. In the picture we can also
observe an up and out barrier, for all the nodes above it we
have Vn = 0.

C. The Monte Carlo simulation

The Monte Carlo simulation is based on the idea that
we have developed for the binomial tree, that is, the price
of an option is given by the expected value of the payoff
in a risk-neutral world discounted at the risk-free interest
rate, for European vanilla we have,

c = e−rT E[gc] = e−rTE [max (ST −K)] ,

p = e−rT E[gp] = e−rTE [max (K − ST )] . (13)

We basically have to simulate many different trajec-
tories for the stock price, collect their final value ST

and calculate the corresponding payoff. We compute
the mean of the obtained payoffs and we multiply it by
e−rT , this gives us the price of the option.

The simulation of the paths uses the fact that the dy-
namics of S is governed by (2), for simplicity we are going
to work out this equation in order to simulate X ≡ lnS
rather than S. First we use the Itô’s lemma to differen-
tiate X,

dX =
∂ lnS

∂S
dS +

1

2

∂2 lnS

∂S2
dS2. (14)

The differential dS is given by (2), and because ∆t →
0, we can approximate dS2 ≃ σ2S2dt, because dW ∼
dt1/2. We finally obtain,

dX = mdt+ σdW, m =

(
µ− σ2

2

)
. (15)

Here we can see clearly that the logarithm of the stock
price follows a Brownian motion with drift m. We can
also view it as a Langevin equation expressed as,

ẋ =

(
µ− σ2

2

)
+ ση, (16)

where η is a white noise with the following properties,

⟨η(t)⟩ = 0, ⟨η(t)η(t′)⟩ = δ(t− t′). (17)

Now we define the log-return X as the logarithm of the
relative price change,

X = ln

(
St

S0

)
. (18)

Using the return, the equation that we will use for the
simulation of the paths is given by,

Si+1 = Si exp

[(
µ− σ2

2

)
∆t+ σ

√
∆tξ

]
, (19)

where ξ ∼ N (0, 1) is a random number taken from a
Gaussian distribution to account for the Wiener process.
We divide the time until maturity in N steps of length ∆t
and at each time step a new price is generated according
to (19). To price barrier options we only have to take
into account that the trajectories for which in some time
step S has gone through the barrier, the payoff becomes
zero, as the option automatically becomes worthless.
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III. PATH INTEGRAL FORMULATION FOR
PRICING OPTIONS

A. Theoretical framework

In the last years the problem of option pricing has
been given a quantum mechanical interpretation and
specially the path integral technique has become popular
to address this kind of problems. Due to the randomness
of the prices in the market, stock prices has been
interpreted as quantum particles and the valuation of
options as common quantum mechanical problems. The
Black-Scholes model has been adapted to a quantum
mechanical version where the option price satisfies
an Schrödinger like equation, with the Hamiltonian
governing its dynamics.

To develop the quantum mechanical version of the BS
model we start doing a change of variables,

S = ex, −∞ ≤ x ≤ +∞. (20)

This redefinition is commonly known as the return of
the stock price as we have seen in (18), but here x rep-
resents a degree of freedom of the system, a quantum
particle in one dimension describing the evolution of the
stock price. From the BS equation (5) we can write an
Schrödinger like equation in the following way,

∂V

∂t
= HBSV, (21)

with the Hamiltonian given by,

HBS = −σ2

2

∂2

∂x2
+

(
σ2

2
− r

)
∂

∂x
+ r. (22)

It is the same BS equation but the derivatives are taken
with respect to x instead of S. Equation (21) is known
as the Black-Scholes-Schrödinger (BSS) equation. Com-
paring with the original Schrödinger equation, the price
of the option V represents the state of the system and
the Hamiltonian HBS drives the price of the option. To
find the explicit form of V we can use the Feynman-Kac
theorem which relates SDEs with PDEs. From (15) we
know that x follows a Brownian motion with drift. The
Feynman-Kac theorem applied to our case states that
given a function,

V (t, x) = E
[
e−r(T−t)g(T, x)

]
, (23)

which represents the price of the option, being g(T, x)
the payoff with dependence on the stochastic process fol-
lowed by the return. Then V (t, x) satisfies the PDE (21)
and the terminal condition,

V (T, x) = g(T, x). (24)

So, by equation (21), the explicit form of the price of
the option is given by,

V (t, x) =

∫ ∞

−∞
dx′p(x, t|x′, T )g(T, x′). (25)

This expression gives us the price of the option in
terms of the transition probability and the payoff. All
we have developed can be seen from the point of view
of the backward Kolmogorov equation, where we have
a final condition (the payoff) and we need to evolve
backward in time in order to calculate the price of the
option. For the SDE (15) its backward Kolmogorov
equation is given by the BSS equation (21).

Now, to determine the price of the option we need to
calculate the transition probability, one way to proceed
is to use the path integral formulation. In quantum me-
chanics is considered that the degree of freedom, when
makes the transition from x to x′, takes all the possible
paths between the initial and the final state, in this way
the path taken is indeterminate, we will assume the same
for the stock price. The idea of the path integral is to
consider the transition probability to be composed of the
contribution of the probabilities of all the possible paths
the particle can take, which can be expressed like,

p(x, t|x′, T ) =
∑
i

P (Γi), (26)

where P (Γi) is the probability that the particle takes a
given path Γi. To develop the path integral formulation
of the BS model we start from its assumptions, explained
in section II.A. The stock price follows a GBM and the
rate of return is equal to the risk-free interest rate.

We start from equation (15), we discretize the time in
N steps until maturity T , the length of the intervals is
∆ = T/N . The discretization of (15) leads to,

xk+1 − xk =

(
r − σ2

2

)
∆t+ σ∆Wk, (27)

where k represents the time step where we are.

Now we calculate the probability of a given trajectory
P (Γ) conditioned to start at x0, where a trajectory is
defined as the collection of points defining a path Γ =
{x0, x1, ..., xN}. Then the probability,

P (Γ) = P (x0, ..., xN |x0)

= P (∆W0, ...,∆WN−1|x0)

∣∣∣∣∂∆Wi

∂xj

∣∣∣∣ . (28)
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We express the probability in terms of the Wiener
process Wk because we know its statistical properties
and due to this change of variables we have to add the
jacobian determinant. Two properties are important for
our development:

- Wk has independent increments ∆Wk.
- The increments ∆Wk are Gaussian, they follow a

normal distribution ∆Wk ∼ N (0,∆t).

With this properties we can express the probability
of the path as the product of the probabilities of the
increments ∆Wk,

P (Γ) =

N−1∏
k=0

1√
2π∆t

exp

(
− (∆Wk)

2

2∆t

)∣∣∣∣∂∆Wi

∂xj

∣∣∣∣ . (29)

From equation (27) we can calculate the determinant
of the jacobian,

[
∂∆Wi

∂xj

∣∣∣∣ = σ−N . (30)

Using this result in (29) we finally obtain the expres-
sion,

P (Γ) =

(
1

2π∆tσ2

)N/2

e−S[path]. (31)

Where we have defined the action S[path] in the fol-
lowing way,

S[path] =
N−1∑
k=0

∆t

2σ2

[
xk+1 − xk

∆t
− r +

σ2

2

]2
. (32)

This is the discrete version of the path integral, in the
continuum limit ∆t → 0 the action is given by,

S[path] =
∫ T

0

1

2σ2

[
ẋ− r +

σ2

2

]2
dt. (33)

Up to this moment we only have the probability of a
given path. Our goal is to calculate the transition prob-
ability so we need to consider all the possible paths be-
tween the initial and final conditions. In the discrete we
can use equation (26), for the continuous case we can use
the following transformation,

∑
i

−→
T∏

t=0

∫ ∞

−∞
dx(t) ≡

∫
DX. (34)

This can be seen that for each infinitesimal time step
we integrate over all the space, it is a functional integral.

Therefore, the transition probability in the continuous
reads as follows,

p(x, t|x′, T ) =

∫
DXeS[path]. (35)

All we have developed is valid for vanilla options but
we can adapt this model to exotic options such as barrier
ones. As we have explained, barrier options restrict the
space where the price can move, when S go through the
barrier the option becomes worthless. It is easy to see
that we only have to change the domain of integration in
(34) to price this kind of options, restricting the move-
ment of the particle according to the constraints imposed
by the contract. At each time step we integrate over all
the possible values that the stock price can take. For a
double barrier we have,

T∏
t=0

∫ Bu

Bl

dx(t). (36)

B. Computational implementation of the path
integral

The path integral formulation considers all the pos-
sible paths starting at the initial stock price x0 = lnS0

and finishing at maturity T . The possible paths have
different probabilities determined by the action S[path]
as we can see in (31), which contains the information
of the trajectory of the stock, then the paths with
the highest probability will determine the price of
the option while the contribution of the others can
be neglected. Following this argument we propose
a Metropolis-Hastings-like algorithm to price barrier
options. The idea is to create completely random paths
and evolve them in order to decrease the action and
consequently increase the probability. In this way we
will find the most likely trajectories followed by the stock.

First we create a completely random path starting at
x0, we discretize the time in N steps of length ∆t and
at each one we assign a random number from a uniform
distribution with the constraints imposed by the option
we are dealing with. For example, for a double knock
out option with Bl the lower barrier and Bu the upper
barrier, the distribution used will be,

x ∼ U(xmin = lnBl, xmax = lnBu). (37)

Then, the algorithm to find the most likely paths
consists in, for each time step:

- Calculate the action of the given path Si.
- Propose a change x → x′ at one time step.
- Calculate the new action of the trajectory Sf .



7

- If Sf − Si < 0 accept the change, otherwise reject it.

Repeat this algorithm until the number of changes
stabilizes at a very low value. The action is calculated
using the discrete equation (32).

The change we propose is to choose a number from a
uniform distribution centered in x in an interval which
will be reduced at each iteration n of the algorithm to
increase the precision and find the best value for x′. If
we define the parameters,

L0 =
xmax − xmin

2
, Ln = L0

(
N − n

N

)
. (38)

The value of x′ will be taken from a uniform distribu-
tion in the following way,

x′ ∼ U(max (x− Ln, xmin) ,min (x+ Ln, xmax)). (39)

If the interval crosses the lower barrier, the lower limit
of the distribution will be xmin. If the interval crosses
the upper barrier, the upper limit of the distribution
will be xmax.

FIG. 2. Situation of how the uniform distribution changes as
more iterations have been performed. The dot represents the
value of the return x at some iteration, the arrows represent
the range where we can propose a change of the price. We
start covering all the space allowed 2L0, then we reduce a
bit after each iteration. The limits of the distribution cannot
surpass the barriers. The last iteration covers a tiny interval.

If we repeat this process we will obtain different paths
and we can use their payoffs to calculate the value of the
option using (13).

Once we have established the algorithm we have
to test its behavior comparing with another method
which we know that performs correctly. From the well
known methods explained in section II, we think that
the most natural way to proceed is to use the Monte
Carlo simulation as a reference model. The reason is

that it is based in the creation of different random paths
and obtains the value of the option using the equation
(13). The main difference with our model is that the
Monte Carlo method uses the discretization of the SDE
which governs the dynamics of the underlying asset to
create directly the most likely paths, while our method
tries to search these paths correcting completely random
trajectories. The study will consist in fixing all the
parameters except one that we will vary. The parameter
that we are going to vary is the strike price K. Each
option price is calculated over 200 paths and each path
iterated 500 times, enough for the number of changes to
stabilize near zero.

What we can observe firstly is that the path integral
method gives a logic result, the price of the option
decreases as the strike approaches the initial stock price,
so the proposed method makes sense without going to
details. Comparing with the Monte Carlo simulation
we observe that the difference between prices increase
as the distance between the barriers increase, we can
observe it in FIG. 3.

FIG. 3. Price of a double knock-out barrier call option for
different strike pricesK and barriers separation using the path
integral algorithm starting from a uniform distributed path
(blue) and the MC simulation (orange). The parameters of
the option are: S0 = 100, T = 0.5, r = 0.1, N = 50, σ =
0.25.

To explain this fact we can take a look at the paths
created by both methods, in FIG. 4 we can see how they
look. First we can observe that the paths created by
our algorithm are smoother than those computed with
the Monte Carlo method (MC), which points out that
our trajectories are not following a geometric Brownian
motion. If we look at what really affects the price of
the option, the value of the stock at maturity ST , we
observe that for a geometric Brownian motion its values
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cover a range centered in S0. This happens for the path
integral but only when the barriers are close enough,
if not the paths deviate downwards and cover a range
centered in a value below S0.

FIG. 4. Paths created by the path integral algorithm (left)
and the Monte Carlo simulation (right) for two different bar-
rier separation. The parameters are: S0 = 100, T = 0.5, r =
0.1, N = 50, σ = 0.25.

First we try to understand why our method gives
smoother trajectories. Remember that the goal of
the algorithm is to minimize the action to increase
the probability of the path. If we take a look at the
expression of the action (32), we see that its dependency
on the path is given by the difference of the returns
at each time step, then the only way to decrease the
action is reducing these differences and therefore make
the trajectory smoother.

Now we want to understand why as we increase the
distance between barriers the price computed moves
away from which calculated with MC. Because the
action depends on the sum of the differences between
returns at each time step and not on their actual values
we think that the problem is not in the algorithm, maybe
the issue is related with the initial uniform distribution
of the path, which is a very rough approximation. We
know that the return follows a Brownian motion with
drift which is characterized by a Gaussian distribution,
N (X0 , σ2t) if it starts at X0, and is what we observe
in the MC simulation in FIG. 4 , take a look at how
the variance grows in time. Let’s try this distribution
for the initial path, for each time step we assign a
random number taken from X ∼ N (X0 , σ2k∆t) with
k = 1, ..., N to the return. We expect that if the initial
random path approaches the trajectories created by the
MC simulation, with the variance growing in time and
centered in S0, the results will be better. In FIG. 5 we

can see the prices computed by the path integral method
but now starting from a Gaussian distributed path.

FIG. 5. Price of a double knock-out barrier call option for
different strike pricesK and barriers separation using the path
integral algorithm starting from a Gaussian distributed path
(blue) and the MC simulation (orange). The parameters of
the option are: S0 = 100, T = 0.5, r = 0.1, N = 50, σ =
0.25.

FIG. 6. Initial random paths for the path integral algorithm
taken from a uniform distribution (left) and from a Gaussian
distribution (right). The parameters of the option are: S0 =
100, T = 0.5, r = 0.1, N = 50, σ = 0.25.

If we compare FIG. 5 with FIG. 3 we can see how
the results have improved, in particular for the situation
where the barriers are far away from each other. When
the strike is far from S0 the price computed is really
close to the MC method but when K approaches it the
difference increases. However we have seen how a little
change in the initial path is enough for improve our
algorithm.

Now we are going to take a look at how fast we reach
the stabilization of the path for different barrier separa-
tions. What we first observe in FIG. 7 is that for all cases
the number of changes necessary to stabilize the path is
lower starting from a random Gaussian distributed path
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FIG. 7. Number of changes done with respect the total pos-
sible changes (N) in percentage as a function of the number
of iterations performed. In blue starting from a random uni-
form distributed path and in orange starting from a random
Gaussian distributed path. The parameters of the option are:
S0 = 100, T = 0.5, r = 0.1, N = 50, σ = 0.25.

than departing from a uniform one. This is something
that we could expect as the Gaussian resembles more the
paths that the stock price follows, compare FIG. 6 with
the right panel of FIG. 4. Is easier to go from the right
panel of FIG. 6 to the right panel of FIG. 4 than from
the left panel of FIG. 6. Another thing that we notice
is, when the difference between barriers is big, almost no
changes are needed, that is, the random path created is
really close to those the stock price follows. Otherwise,
when the distance between barriers decrease we need to
perform some changes. We can observe this comparing
another time FIG. 4 and FIG. 6, the initial random Gaus-
sian path approaches more the MC simulated path when
the distance between barriers is big rather than when it
is small, where the growing variance of S is cut by the
barriers.

IV. PROBABILISTIC MONTE CARLO

Now we want to see how the price of the option
varies as we relax the barrier constraints. To do it we
take the Monte Carlo method and we modify it. In
the original method, at each time step the stock price
evolves according to the expression (2), if the proposed
price have not gone through the barrier we accept it,
otherwise we reject it, in this way only the paths that
fulfills the constraints are used to price the option. To
see the effect of the barriers in the option price we can
relax this condition and allow the possibility to penetrate
the barrier. In this modified MC the acceptation of
the price is probabilistic and we fix a percentage of

allowed penetration that tells us until which value the
price can arrive. When we are away from the barrier we
always accept the price, as we approach the threshold
value the probability of acceptation starts to decrease
until 0 at the limit. The probability that we will use
for the acceptation is the survival probability. Before
developing the algorithm that we will use we take a look
at the theoretical concepts we need.

Consider the log-return of the stock price as a particle
following a Brownian motion in one dimension with two
absorbing barriers representing the constraints of the op-
tion. To find the probability distribution function (PDF)
for the particle we have to solve the Fokker-Planck (FP)
equation with the corresponding initial and boundary
conditions,

∂p(x, t|x0)

∂t
=

(
σ2

2
− r

)
∂p(x, t|x0)

∂x
+

σ2

2

∂2p(x, t|x0)

∂x2
,

(40)

p(x, t = 0|x0) = δ(x− x0), (41)

p(x = xmin, t|x0) = 0 p(x = xmax, t|x0) = 0. (42)

We are interested in the survival probability S(t|x0),
which tells us the probability that the particle (the re-
turn of S) has not penetrated the barriers up to time t.
We have to treat both barriers separately, for the upper
barrier we will consider a case in which a particle can
move in one dimensional space with an absorbing barrier
located at xmax and starting below it x0 < xmax. For the
lower barrier the same but the barrier is located at xmin

and the particle starts moving above it at x0 > xmin.
For each case we define the survival probability as,

Sup(t|x0) =

∫ xmax

−∞
p(x, t|x0)dx

Sdown(t|x0) =

∫ ∞

xmin

p(x, t|x0)dx (43)

The analytic expression for these quantities for an ab-
sorbing barrier located at x = 0 and initial condition
δ(x− x0) is given by,

S(t|x0) = N

(
mt+ x0

σ
√
t

)
− exp

(
2x0m

σ2

)
N

(
mt− x0

σ
√
t

)
.

(44)

We can find this expression and its development in Ref.
[1] , we have adapted it to our boundary conditions and
we obtained,
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Sup(t|x0) = N

(
xmax − x0 −mt

σ
√
t

)
− exp

(
2(xmax − x0)m

σ2

)
N

(
x0 −mt− xmax

σ
√
t

)
.(45)

For the upper barrier we have made a translation and
changed the sign of the drift because in our case the bar-
rier is located above the initial level. For the lower barrier
only a translation is necessary,

Sdown(t|x0) = N

(
mt+ x0 − xmin

σ
√
t

)
− exp

(
2(x0 − xmin)m

σ2

)
N

(
mt− x0 + xmin

σ
√
t

)
.(46)

In a rough approximation, we can consider that both
events are independent and take their product as the
probability of remaining between the barriers up to time
t,

S(t|x0) = Sup(t|x0) · Sdown(t|x0). (47)

With this theoretical framework we can develop an al-
gorithm to test the effect of the barrier as we have com-
mented. For simplicity we will neglect the drift term, we
can justify it taking a look at the equation that governs
the dynamics of the return,

∆x = m∆t+ σ∆W, m = r − σ2

2
, (48)

where ∆W ∼ (0,∆t) is the standard Brownian motion.
For the typical values that we will use for the simulations
we have µ∆t

σ|∆W | << 1. Then we can use the standard

Brownian motion (diffusion) for our simulations. The
survival probability that we will use comes from solving
the FP equation (40) without the drift term and integrat-
ing the corresponding PDF for each case. This results in,

Sup(t|x0) = erf

(
xmax − x0

σ
√
2t

)
,

Sdown(t|x0) = erf

(
x0 − xmin

σ
√
2t

)
, (49)

being erf(x) the error function. Now we can develop
the algorithm that we are going to use, we modify the
MC method in the following way:

- Start a path from S0.
- Propose a new stock price according to the equation

(19) at each time step.
- Accept the new price with probability: p = pup ·pdown

- Collect where the path finishes and compute the
payoff.

We generate 10000 sample paths and calculate the
mean of the payoff, using equation (13) we obtain the
price of the option. The probabilities that we will use
are the following,

pup = erf

(
ln [Bu · (1 + α)]− lnSk

σ
√
2∆t

)
,

pdown = erf

(
lnSk − ln [Bl · (1− α)]

σ
√
2∆t

)
. (50)

The parameter α accounts for the quantity that we let
the price to penetrate into the barrier, in this way, if the
upper barrier is located at Bu = 110 and the lower at
Bl = 90 and we let penetrate the barrier a 10%, that
is α = 0.1, then the absorbing barriers are located at
B∗

u = 121 and the lower at B∗
l = 81. In FIG. 8 we can

see how the probability of remaining between the barriers
given by the product of the expressions in (50) evolve as
the allowed penetration increases. For no penetration
the probability decays to zero just at the given barriers
Bl = 90 and Bu = 110, as we let penetrate more we see
that the probability of acceptation broadens away from
the original barriers.

FIG. 8. Survival probabilities calculated as the product of the
expressions in (15) for different Sk and for different allowed
penetration values α into the barriers. The parameters used
are: Bl = 90, Bu = 110, T = 0.5, N = 50, σ = 0.25.

We calculate the option’s price for different strike
values and for different allowed penetrations in the
barrier, we can see the obtained results in FIG. 9. As we
could expect, the computed prices differ more from the
original MC as we allow the return to penetrate more in
the barrier. Obviously, as we relax the constraints more
and more, the paths created by the algorithm will differ
more from the original, there is more space to explore
despite as we approach barriers the probability of being
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there decreases.

Another observation is that the deviation is upwards,
as we let the return penetrate more in the barrier the
price of the option increases. Because we are treating
a call, this implies that the paths are reaching higher
values each time. We can observe this in FIG. 10, for the
original MC most of the paths finish at a value centered
between the barriers, but as we allow more penetration,
the paths tend to move upwards and most of them finish
at a higher value than ST = 100. When it is allowed,
the return is prone to explore the space over the upper
barrier, this is caused by having a positive drift in the
Brownian motion. The drift parameter gives an idea of
the growth of the stock price, we can see it better taking
a look at the expected value of the stock price at a given
time t,

E[St] = S0e
µt. (51)

In this equation we can see that for a µ > 0, St will
grow in time and this effect is what we observe in FIG.
9 and FIG. 10.

We also observe saturation from 30-40% on, this is be-
cause the paths can explore a limited space until matu-
rity defined by their drift and volatility. In the saturation
limit we expect to recover the price for an option without
barriers, a vanilla option, we will explore this now.

FIG. 9. Call option prices for different strikes and penetra-
tions α calculated using the modified MC algorithm. The
parameters of the option are: Bl = 90, Bu = 110, S0 =
100, T = 0.5, r = 0.1, N = 50, σ = 0.25.

We ask ourselves at which point the effect of the
barriers disappear and recover the result for a vanilla
option given by the BS formula (6). To do it we compare
the results of FIG. 9 with the results obtained for an
option without barriers, we can see the comparison
in FIG. 11. As we could expect the relaxation of the
constraints lead to the BS result for a vanilla option.

FIG. 10. Histograms for the frequency of different stock prices
at maturity ST for different α values. The parameters of the
option are: Bl = 90, Bu = 110, S0 = 100, T = 0.5, r =
0.1, N = 50, σ = 0.25.

Allowing the price to penetrate a 40 % in the barriers
is enough to suppress their effect. If we look at FIG. 8
we observe that for 40 % the price is allowed to explore
approximately a space limited by 60 < S < 140 with
100 % probability and if we look at the top right panel
of FIG. 4 we see that starting at S0 = 100 the price
explore more or less the space limited by 80 < S < 140,
so it seems reasonable that for 40 % the price converges
to the vanilla one.

FIG. 11. Call option prices for different strikes and penetra-
tions α calculated using the modified MC algorithm compared
with the prices given by the Black-Shcoles formula (blue).
The parameters of the option are: Bl = 90, Bu = 110, S0 =
100, T = 0.5, r = 0.1, N = 50, σ = 0.25.

Now we are going to test what happens when we
relax only a barrier and let the other fixed, that is
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breaking the symmetry between barriers. Because we
know that the price tends to increase due to what we
have commented about the role of the drift (51), we
expect that the effect of relaxing the lower barrier is less
important than affecting the upper barrier. Take a look
at the results in FIG. 12 and FIG. 13.

FIG. 12. Call option prices for different strikes and penetra-
tions α calculated using the modified MC algorithm. This
picture shows the results when the upper barrier is fixed at
110 and the lower is relaxed. The parameters of the option
are: Bl = 90, Bu = 110, S0 = 100, T = 0.5, r = 0.1, N =
50, σ = 0.25.

FIG. 13. Call option prices for different strikes and penetra-
tions α calculated using the modified MC algorithm. This
picture shows the results when the lower barrier is fixed at
90 and the upper is relaxed. The parameters of the option
are: Bl = 90, Bu = 110, S0 = 100, T = 0.5, r = 0.1, N =
50, σ = 0.25.

When we let penetrate the lower barrier but not the
upper, what we first observe is that, opposite to what
we have seen in FIG. 9 the prices obtained deviate down-
wards with respect to the original MC. This is reasonable

as we break the symmetry between the barriers and de-
spite the effect of the drift, the price can explore more
space downwards than moving upwards because there is
a rigid boundary that we cannot penetrate. However,
we see that this phenomenon saturates at 20 %, we can
increase more the allowed penetration but the price will
not explore more space downwards, this effect is due to
the drift which tends to push the price upwards. On the
other hand, when we fix the lower barrier and we let pen-
etrate the upper, the pattern obtained is similar to what
we had obtained at FIG. 6. The main difference is that
the upwards deviation with respect the original MC is
bigger, here the effect of the drift is enhanced by the ef-
fect of having the lower barrier fixed, the price can reach
higher values. Despite, there is saturation approximately
at 30 %, because the stock price cannot grow indefinitely,
remember that it grows proportionally to volatility and
time.

V. CONCLUSIONS

Now we are going to review the main conclusions
extracted from the proposed numerical methods. In
the path integral implementation we have treated the
return of the stock price as a quantum particle and
modelled the problem of option pricing assuming that
this particle performs a transition from a known initial
state to a final unknown state. The key quantity to
compute was the transition probability and we have used
the path integral technique to obtain the probabilities
of the paths. We have implemented a numerical method
in which we depart from a random path based on a
given distribution and let it evolve in order to find
the most probable paths. From the computational
implementation proposed we conclude:

- Starting from a path based on a uniform distribution,
the calculation of the option price becomes worse as
we increase the distance between barriers, the price
calculated is always below the real one. The reason
is that the paths created using the path integral do
not recreate the properties exhibited by the GBM,
fundamentally, we do not observe the variance of the
path growing proportionally to σt, the paths created
with our algorithm cannot reach such high values of S.
For this reason, when the separation between barriers is
little the result is correct, because our paths are closer
to those created with the MC.

- When we modify the initial distribution of the
path, using a Gaussian instead of a uniform, the path
from which we start approaches more the reality, the
Brownian motion followed by the return, consequently
the results improve. The number of changes is negligible
when starting from a Gaussian random path, meaning
that the random initial path is very close to those
created with the SDE (2).
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The probabilistic MC has been used mainly to observe
two things, the role of the drift in the Brownian motion
followed by the stock price and the effect of the barriers
in the option price. The extracted conclusions are:

- When we relax the barriers and the stock price can
penetrate them, the calculated option price is higher
than if there were fixed barriers. The reason is that
the stock price has more space to explore, it is not
constrained by the fixed barriers, and due to the drift
term, S tends to grow, reaching higher prices.

- A 30/40% relaxation of the barriers is enough
to recover a vanilla option. This is related with the
variance of the Brownian motion, which limits the

growth/decrease of the stock price. In this way, having
a barrier far away is the same of not having it.

- The price of the option is more affected by changes
in the upper barrier than in the lower one. Another time
this is consequence of the drift term. Because the ten-
dency of the stock is to rise, upper barriers are more
affected.
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