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Network theory has demonstrated to be an invaluable tool for studying complex systems, and
it has been widely used in many disciplines. Archaeology is no exception. Ancient transportation
infrastructures (TIs) are often represented as networks of interacting settlements. However, these
various TIs are different in nature, and the network they form requires a different approach. Here
we show that ancient TIs as a whole can be characterized by a multiplex. After an analysis of the
dynamic performance and structural properties of the individual road and river networks of Southern
Etruria and Latium Vetus in the Iron Age (950− 580 BC), we overlap both TIs by regarding them
as layers in a multiplex. We then study the multiplex with the aim to assess how good the interplay
between layers is. Our work thus serves as a case study of an empirical multiplex network. We
prove that the tools we use are good to characterize ancient TIs as one multiplex and could become
very powerful if further studied and refined.

I. INTRODUCTION

It is common nowadays that scholars from different
disciplines, regardless of the specificities of their research
domains, find in network science a valuable ally when
tackling complexity. This is the case for archaeology,
too, though a special case: due to the incompleteness
of the data, the large time spans and the complexity of
human interactions, network science in archaeology is a
tool that needs to be handled carefully [1]. Nonetheless,
it has proven to be effective if used correctly [2], [3]. But
the more uncommon tools that network science provides
are still not broadly used in archaeological problems [4].
Thus, in this work, following the work of [2] and [3], we
explore the transportation infrastructures (TIs) of South-
ern Etruria and Latium Vetus in terms of a multiplex, a
multi-layer network in which inter-layer connections exist
only between nodes that represent the same entity, set-
tlements in our case. However, before tackling the multi-
plex, a better understanding of the individual layers and
the metrics we apply is needed.

First, we will introduce the global efficiency and the
algebraic connectivity, which we then use to study the
dynamic performance and structural properties of both
road (see Figure 1) and river transportation networks.
With a good understanding of the properties of the indi-
vidual layers, we then tackle the multiplex. Since we do
not know for certain the properties of the two transporta-
tion infrastructures, we need two parameters to account
for their different nature. Depending on the metric we
are dealing with, the parameters will come with a differ-
ent interpretation. After this interpretation is clear, we
apply the results of [5] and [6] on the algebraic connec-
tivity of a multiplex to our case study, and are able to
get an idea on the structural properties of the multiplex
and the interplay between layers. As for global efficiency,
since it is not well defined for a multiplex, we provide an
alternate, provisional definition that, although imperfect,
allows us to extract information from the network.

FIG. 1: Road networks of Southern Etruria (upper
region) and Latium Vetus (lower region), EIA1E.

II. ON THE DATA

Road networks were not static. They continuously
evolved through time, both because roads were built or
neglected, because new settlements were formed or aban-
doned or because of many other eventualities. River net-
works posed a similar problem: rivers did not change in
time so much —although they could, be it by drying up
or by becoming no longer navigable—, but settlements
did, and thus the network. However, precise information
on this process is incredibly difficult to obtain. In [2], five
large periods are determined in which a set of settlements
coexisted without any major changes:

1. Early Iron Age 1 Early (EIA1E): Latial Period IIA
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(950/925–900 BC)

2. Early Iron Age 1 Late (EIA1L): Latial Period IIB
(900–850/825 BC)

3. Early Iron Age 2 (EIA2): Latial Period III
(850/825–730/720 BC)

4. Orientalizing Age (OA): Latial Period IVA and IVB
(730/720–580 BC)

5. Archaic Age (AA): 580–509 BC.

Within each one of these periods, the set of settlements
can be regarded as unchanging, that is, all the centers ex-
isted during most of the corresponding time interval and
did not suffer any major change. It is also assumed that
the same applies to the routes between them. In this
way, the analysis of the continuous evolution of settle-
ments and routes is reduced to the study of five static
time stamps [2]. For the road networks of Latium Vetus
we used the data utilized in [3]. For the road networks
of Southern Etruria, we started using the data of [2], but
realized it was not correct while working on it. The co-
ordinates of the settlements were off, not in a random
manner, but in a systematic way, displaced by some fac-
tor in the conversion from GIS to longitude and latitude.
We trained a polynomial regression algorithm with a set
of settlements for which we had the correct coordinates
and applied it then to the rest of the settlements to cor-
rect their coordinates. In Sec. IV we will quantify the
effect of this correction and assess its relevance. As for
the river networks, the data has not been yet published
and all the results provided here are new. We were also
provided with the links between regions, so, in addition
to the networks of the individual regions, we are able to
create a single network of the combined regions.

The process for translating roads and river maps into
networks is stated in [2]. The set of settlements is repre-
sented as geo-localized nodes. As for the links, for mod-
elling purposes it is not practical to assigning a weight
only to the links that are present in the empirical net-
works. A mathematical function able to assign a cost to
any potential links, i.e, to any connection between any
pair of settlements, is needed. For simplicity, it was de-
cided in [2] to assign weights to the links according to the
geodesic distance between the nodes they connect.

It is important to note that the road networks are as
accurate as archaeological data allow. A node is present
when a settlement existed and was connected to other
settlements through roads. This is not the case, how-
ever, for the river network. Here a node is taken when a
settlement is close to a river, even if there is no strict ev-
idence that it used the river for transportation purposes.
In other words, the empirical river network is an upper
bound to the real network.

III. ON THE METRICS

After creating the networks —one for every age of the
road and river networks of both regions and, since we
were provided with the links between regions, also for
the set of settlements of the combined regions, so thirty
in total—, we need to be able to extract information out
of them. There are two quantities that we will use to
characterize the networks, and each of them will come
with a different interpretation of the network distances
and parameters:

1. The global efficiency measures how close the nodes
are to each other in the network Lij , i.e., the short-
est path length, compared to their geographical dis-
tance —in the case of geographical networks— dij :

Eglob =
1

N(N − 1)

∑
i ̸=j

dij
Lij

(1)

The more distant nodes are in the network, the
smaller the quotient in the sum and the less effi-
cient their communication will be. When the graph
is complete, i.e., every node is connected to all other
nodes, the global efficiency will be equal to unity.
The global efficiency was used among other quan-
tities in [2] and [3] with these very same networks
to determine how good some models were in re-
producing the empirical networks, by comparing
the modeled networks with their empirical coun-
terparts. However, it does not provide complete
information on its own [7]. Furthermore, even if it
is well defined for a single layered network, that is
not the case for a multiplex.

2. The algebraic connectivity is the second-smallest
eigenvalue of the Laplacian of a connected graph,
which we can construct from the adjacency matrix
AG —a matrix with elements aij = 1 if there is a
link between i and j and aij = 0 otherwise— of
the graph as LG = D − AG , with D the diagonal
matrix of the node degrees, i.e., the number of links
of the node [8]. If the network is weighted, like in
our case, AG has the weight of the links wij , and
D is the diagonal matrix of the node strength, the
sum of the weights of the links connected to the
node. The algebraic connectivity is a lower bound
for both the edge connectivity and node connectiv-
ity of a graph, i.e. the minimal number of edges
and nodes that have to be removed to disconnect
the graph. It also sets the time scale for diffusion
processes in the network, as well as the time needed
to synchronize a network of oscillators. Thus, in
this sense, the algebraic connectivity represents the
connection between the structural and the dynam-
ical robustness of a network [6]. In this work, we
focus on the structural nature of the algebraic con-
nectivity.
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Because the global efficiency is not well defined in
the multiplex formalism, we initially planned on using
only the algebraic connectivity, but the new definition
of global efficiency for a two-layered multiplex proposed
in Sec. V encouraged us to use it for the entire work.
This way, even if the aim of the work is completely dif-
ferent, the metrics are not that far from the ones used
in [2] and [3], where they used, along with other quan-
tities, the global and local efficiencies in parallel. The
local efficiency is also in a way a measure of the struc-
tural resilience of the network. However, like the global
efficiency, it is not defined for a multiplex, so using the
algebraic connectivity was the obvious choice.

On the other hand, the global efficiency helps deter-
mine the network dynamic performance. It accounts for
how fast the network can get information from point to
point. If distances in the network are close to the em-
pirical distances, the effectiveness of communications will
approach the optimal value one. Because of this, when
calculating the global efficiency we weight the links with
the distances between nodes. We can view the distance as
approximately the cost of travelling from one settlement
to another. Then, the calculation of the global efficiency
is straightforward.

FIG. 2: Simple example network. The weight of the
links have been assigned arbitrarily for illustrative
purposes. Discontinuous lines account for potential

links that do not exist.

Let us consider a toy graph like the one in Figure 2.
There are six possible links. Four of them are present and
will add one to the sum. The other two are not. Thus,
they will add a fraction of one to the sum, according to
Eq. 1. Because each link is considered twice in the sum,
we have that:

Eglob =
2

12

(
4 +

6

7
+

4

8

)
= 0.89 (2)

The algebraic connectivity, however, requires a differ-
ent approach. In the formalism of networks, the weight
of the network is proportional to the strength of the con-
nection. The algebraic connectivity, which is a measure
of the resilience of the network, of how hard it is to sepa-
rate it into two similar components, benefits from strong
connections. That is, a link with a large weight will be

harder to remove, or equivalently, easier to add. It does
not make sense, though, that longer roads are easier to
build than shorter ones, but this is what would happen
if we weighted the networks with distance. Thus, when
dealing with algebraic connectivity we take the weight
of the links as the inverse of the distance. This way the
strongest links are the shortest ones, which are the easier
to place and to maintain. In this sense, distances in the
network can be regarded as maintenance costs: a link be-
tween far settlements will be more prone to failure, thus
more expensive to maintain. Then, the Laplacian matrix
of Figure 2 becomes

LG =

8/15 −1/5 0 −1/3
−1/5 2/5 −1/5 0
0 −1/5 9/20 −1/4

−1/3 0 −1/4 7/12

 (3)

The resulting eigenvalues from the eigenvalue equation

LGv = λv are λ1 = 0, λ2 = 1/2, λ3 = −
√
19+11
15 and

λ4 =
√
19+11
15 . The algebraic connectivity of the graph in

Figure 2 is the second smallest eigenvalue. i.e. λ2. The
smallest eigenvalue of the Laplacian matrix being zero is
a consequence of its definition: every row sum and col-
umn sum of LG is zero, so the vector v0 = (1, 1, . . . , 1)
always satisfies LGv0 = 0. In fact, there will be a zero
eigenvalue of the Laplacian matrix for every separated
component in the network, because their Laplacian ma-
trix is ordered in blocks. Then, if the network is discon-
nected, i.e., it does not form one giant component, the al-
gebraic connectivity will be zero. We will encounter such
cases in our networks. Fortunately, most of the cases it
will be a matter of isolated settlements or small clusters,
which we will disregard in favor of the giant component.
Furthermore, when implementing the multiplex this is-
sue solves itself, because the new layer usually connects
isolated clusters.
The global efficiency and the algebraic connectivity,

although overlapping in some aspects, make us take on
very different interpretations of the networks. But, in the
end, the different interpretations do not forbid us from
using them simultaneously. They provide complementary
information, and by using both of them we are able to
get additional information by comparing the results and
not jump to conclusions.

IV. SINGLE LAYER APPROACH

During ancient times, roads were the primary way
of transportation over short regional distances. A well
connected road network allowed travellers, merchants or
armies to swiftly get from one place to another. It
also tied settlements together, improving communica-
tions and the spreading of news. This increase in social
interaction could then result in the emergence of more
complex behaviours such as collaboration. Indeed, a new
road was not only beneficial to the settlements on its
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Empirical Road Networks

(a)

EE Model

(b)

EE Model PA

(c)

(d) (e) (f)

FIG. 3: Road network properties of Southern Etruria and Latium vetus. The first row shows global efficiency and
the second row shows algebraic connectivity. Figures (a) and (d) show the empirical networks, along with a modified
version of the empirical network of SE, developed with the EE Model until the distance ratio coincides with that of
LV as shown in table I. Figures (b) and (e) show both regions developed with EE Model from scratch until the

distance ratio reaches that in table I. Same for figures (c) and (f), but developed with the EE Model modified with
preferential attachment. The preferential attachment parameter used is the same as in [3]. The * on (d) accounts for

taking only the giant component of SE, not the complete network.

ends, but enhanced the overall network, proving to be
useful for every settlement on the network. Since it is
common practice to assume that roads were the output
of a collective effort, it is straightforward to notice the cir-
cular property of cooperation in road building: a higher
cooperation yields a better output of the resources in the
form of more roads, which allows the settlements to co-
operate further. A highly connected region enjoyed more
efficient exchanges, which means maintaining a good road
network was a global —read, the whole network— prior-
ity.

By calculating the algebraic connectivity and the
global efficiency we can measure the effectiveness of
the road networks and their evolution in both regions
through the ages, as well as compare them to see which
region had the better connected network and the most
resilient one. Although the proposed cornerstone of this
work was the multiplex approach, I decided to study the
single layer case in more detail. The algebraic connec-
tivity had not been yet calculated for the individual net-
works, so I thought a deeper single layer analysis of both
this quantity and the global efficiency of the networks
would be helpful when tackling the multiplex. Some of
the results in this section, like Figures 3a, 3b and 3c al-
ready are presented in [2] and [3], but the rest are still
unpublished.

A. Empirical Networks

Let us begin with Table I. The road networks of
Latium and Etruria are different through the ages. In
the later ages, for example, more roads were built and
the total length of the networks Ltot, the sum of the
length of all edges, is larger. But just referring to the
total length can be misdirecting. Since Southern Etruria
is bigger than Latium Vetus, we would not be able to
compare them if we used Ltot. Instead, we use the rel-
ative spanning ratio Lrsr, which is just Ltot/Lmst, Lmst

being the distance of the minimum spanning tree of the
network. If N is the number of nodes in a network, the
minimum spanning tree of the network is formed with the
N −1 edges with the lowest possible weight that connect
all nodes. This way, we are able to compare how devel-
oped the networks were for the different ages and regions.
The road networks of LV and SE are similar enough in
form so that the decision of using the Lrsr is justified.
In fact, [2] and [3] demonstrate that the the minimum
spanning tree was mostly present in the empirical road
networks.

Let us look now into Figure 3. Southern Etruria does
not undergo major changes to its algebraic connectivity
during the first three periods, but goes to zero in the later
Orientalizing Age (OA) and Archaic Age (AA) because
the network becomes disconnected. Even if we remove
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Region EIA1E EIA1L EIA2 OA AA

SE 3.17 3.35 3.17 3.19 3.61
LV 4.67 4.51 5.02 5.62 5.26

TABLE I: Relative spanning ratio Lrsr of the road
networks.

the isolated components, the algebraic connectivity of
the giant component suffers a large drop, as shown in
Figure 3d. This means that its not a matter of part of
the region becoming isolated, but of a larger issue in the
structure of the regional network. It is an interesting
result, considering the increase in road density of the
Etruscan network in the AA (Table I), which does not
seem to increase the algebraic connectivity of the region.
It does increase, however, the global efficiency (see Figure
3a). This could mean that the region is optimizing the
efficiency but disregarding possible failures, and it is an
example of why it is important to use both metrics.

On the contrary, the algebraic connectivity of Latium
Vetus increases considerably through the ages, as a re-
sult of a more robust, better connected network (Figure
3d). This behaviour is mirrored by the global efficiency
in the later ages. In the earlier ages, however, the global
efficiency gives us different insight than the algebraic con-
nectivity, for, according to Figure 3a, SE was more effi-
ciently communicated.

The road network of Latium Vetus was actually more
developed: the relative spanning ratio Lrsr of the net-
work is higher throughout the ages (see Table I). This
is interpreted in [9] as Latium having access to a larger
pool of resources that allowed the region to develop its
infrastructure further, so the larger algebraic connectiv-
ity is expected. Because LV wasted the excess resources
in a rich-get-richer bias, i.e., the settlements with greater
node strength were favoured when building roads, the
global efficiency is not as large. The fact that SE was
able to keep up in efficiency with a lower Lrsr shows a
better management of the available resources. We would
expect a very different result if SE had access to a simi-
lar amount of resources. In that case, the road network
could have been developed up to the same Lrsr as Latium
in Table I. We will provide Etruria with this surplus of
resources in order to compare the performance with LV.
But for that, we need to build roads.

Roads were expensive. Building them required a huge
amount of resources and manpower, which would be un-
likely for one settlement to take on alone unless it had a
lot to gain. Instead, there is evidence that for Etruria the
road network was a result of a collective regional effort
[2]. This gave insight on the type of behaviour that could
have directed the road building in southern Etruria dur-
ing this time, labelled in [2] as the Equitable Efficiency
(EE) model. In this model, we calculate at each step the

routing factor Ri(j) =
dij

Lij
of every pair of nodes. We

then add the link with the minimum value of all the R

EIA1E EIA1L EIA2 OA AA

a 0.09 0.11 0.10 0.08 0.06

TABLE II: Preferential attachment exponent of
modified EE model.

values. In this way, the whole network cooperates in the
decision of where to allocate the resources.
Since [2] suggests this model best reproduces the Etr-

uscan empirical network, it is reasonable to assume that,
had Etruria more resources available, the region would
have been further developed following the same process.
Thus, we use the EE model to develop the Etruscan net-
work until the relative spanning ratio Lrsr is the same of
that of Latium Vetus (Table I). From this results it would
seem that the Etruscan network is better designed: with
the same amount of resources the global efficiency of SE
greatly surpasses that of LV, while the algebraic connec-
tivity remains similar until later ages (see Figures 3a and
3d). The fact that Latium Vetus remains mostly with the
larger algebraic connectivity even with significant differ-
ence in the global efficiency highlights the importance of
using both quantities. Still, the later advantage of LV
in algebraic connectivity cannot be explained with a dif-
ference in resources since we have already developed SE.
The network of Latium must have some other source for
this structural advantage.

B. EE Networks

In this approach, however, we have given Southern
Etruria an advantage in terms of global efficiency, be-
cause the EE model favors efficiency in the creation of
new edges. Meanwhile, Latium Vetus remained strictly
empirical. We can remedy this by developing both net-
works from their minimum spanning tree following the
same model. This also allows us to compare both net-
works with other networks developed using the same al-
gorithm. In addition to the EE model, we also used
the model proposed in [3], which did a better job at re-
producing the empirical network of Latium Vetus from
scratch, the EE PA. This model is a modification of
the EE model with preferential attachment (PA), ac-
complished by weighting the normalized distance with
a negative power of the weighted degree of the node

Ri(j) =
dij

Lij
kw(i)

−a. The exponents used (Table II) are

the same as in [3], which are the ones that best repro-
duced the empirical network of LV. Building the networks
using this models gives a couple of remarkable results.
After developing the networks following these two

models, both regions are better connected than their em-
pirical counterpart. This was expected, especially for the
global efficiency. As stated before, in [9] it is suggested
that, although Latium had a resource advantage, some
of this advantage would be wasted because of the pref-
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EIA1E EIA1L EIA2 OA AA

Empirical Eglob diff. 0.008 0.007 0.007 0.01 0.01
EE Eglob diff. 0.033 0.022 0.047 0.048 0.027

TABLE III: Global efficiency difference between
empirical and EE networks of SE with old coordinates

and new corrected coordinates.

erential attachment in its road building method. In 3b
we can see that indeed, if both regions have the same
resources and Latium does not waste in PA, their global
efficiency is more or less the same. Also, the algebraic
connectivity of developed Etruria is larger in 3a than in
3b. One should consider that developed SE in 3a is de-
veloped from the empirical network. Thus, the EE model
has had less influence on the network than in 3b. The
difference is small, but it is still surprising, because the
EE model adds at each step the link that constitutes the
best improvement in the communication among any pair
of nodes. However, the chance exists that different, non
instantly optimal choices could lead to a better final re-
sult. There might be something else at work here, but
a more detailed study would be necessary to reach any
relevant results. Also, note that the structural advantage
of LV in the later ages is maintained after developing the
network with both models (see Figures 3e and 3f).

C. Coordinate Correction

It should be noted that the values of empirical (Fig. 3a)
and EE modeled (Fig. 3b) global efficiency are different
from the ones obtained in [2]. The difference in global
efficiency in both the empirical and EE networks is quan-
tified in Table III. This is due to a previous error in the
coordinates of Etruria that has now been corrected, as
noted in Sec. II. For the empirical network, the new
values of global efficiency barely change after the correc-
tion. This is evident considering the paths are the same
ones, only with a slight variation in distance. As for the
EE networks, the correction is larger, about an order of
magnitude larger in the earlier ages. Here the networks
are developed with the EE model from the different co-
ordinates, thus producing different networks. The larger
discrepancy in global efficiency is expected, but it is still
small. This means that the perturbed set of coordinates,
although it builds a different network, still manages to
obtain a similar global efficiency. In conclusion, this cor-
rection, although it was important to do, should not af-
fect the results obtained in [2] or its conclusions.

D. Perturbative Analysis

To check whether or not the results were consistent
we decided to make a raw perturbative analysis. We

perturbed the coordinates —latitude and longitude— of
the settlements with a Gaussian white noise with zero
mean and 0.01 standard deviation. This amplitude was
handpicked. The average displacement of one realization
of the perturbation

∆̄ =
1

N

N∑
i

√
(Longi − Long′i)

2 + (Lati − Lat′i)
2 (4)

where N is the number of settlements and the primed
coordinates correspond to the perturbed coordinates, is
small compared to most distances in the networks, but for
the closest settlement clusters (see Figure 1) the pertur-
bation will certainly distort the landscape. Nonetheless,
it is just one value. A more complete perturbation pro-
tocol should be devised and implemented. For now it is
just exploratory work. The perturbation could account,
for example, for misinformation about the costs when
building the road networks, or for particularities of the
terrain that our models do not contemplate. In Figure 4,
for both the empirical and the EE modeled networks, the
difference in global efficiency and algebraic connectivity
with their perturbed counterpart is plotted, normalized
to the non-perturbed value. For each age and region:

δEglob =
⟨Eglob − E′

glob⟩
Eglob

(5)

where E′
glob stands for the global efficiency of an individ-

ual realization of the perturbation. We did not perform
the perturbation on the EE PA (Figures 3c and 3f) be-
cause we did not expect it to provide any new informa-
tion.
The perturbation makes the values of algebraic con-

nectivity and global efficiency drop. It is worth noticing
that the perturbation affects similarly both quantities.
In fact, although not shown in Figure 4, the stronger
the perturbation, the larger the drop. Also, in general,
the EE modeled networks seem to hold better against it.
The difference for the empirical values is non-negligible.
Meanwhile, for the global efficiency of the corrected co-
ordinates (Table III), the correction, which can also be
seen as a perturbation, caused much smaller differences
in the case of empirical networks. The fact that these two
different perturbations in the coordinates cause different
alterations in the networks is interesting, though not sur-
prising. The correction of the coordinates is a systematic
displacement, while the noise is random and thus easily
makes distances in the network larger.
To assess the robustness of the results of this section,

in Table IV we write the p-values of the perturbation:
the percentage of times the perturbation compensates for
the difference in algebraic connectivity or global efficiency
between regions. In other words, if after a perturbation
of the coordinates the global efficiency of the EE modeled
LV network is lower than the global efficiency of SE in
Figure 3b or vice-versa, the p-value of the EE modeled
global efficiency increases by a factor 1/n, where n is the
number of realizations of the perturbation.
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FIG. 4: Difference in algebraic connectivity and global
efficiency between the empirical and perturbed networks

of LV and SE (blue and orange) and between the
empirical and perturbed EE networks (red and olive)
with values normalized to the non-perturbed value of

the network. These results are for 50 realizations of the
perturbation.

EIA1E EIA1L EIA2 OA AA

Empirical Eglob 1 1 1 1 0.98
EE modeled Eglob 1 1 1 1 1

Empirical λ2 0 0 0 0 0
EE modeled λ2 0 0.9 0 0 0

TABLE IV: p-values after 50 realizations of the
perturbations for Figures 3a, 3b, 3d and 3e.

The first two rows in Table IV tell us that the dif-
ferences in global efficiency between LV and SE in 3a
and 3b are not robust. When perturbing the EE mod-
eled network, we are effectively worsening the EE model.
This is realistic in the sense that the model assumes the
settlements have perfect information on the cost of build-
ing roads to their neighbours. However, it is easy to see
that this information would probably not have been so
complete. Thus, we can say that both networks are able
to attain effectively the same global efficiency after be-
ing developed with the EE model. This result, together
with Figure 3a supports the argument in [9] that Latium
wastes their resource excess with the preferential attach-
ment bias. It also highlights the similarities of both re-
gions, supporting our decision of using the Lrsr. As for
the algebraic connectivity, the only time the perturba-

tion compensates the difference is for the EE modeled
EIA1L age, where the values almost overlap (see Figure
3e. Perhaps a larger perturbation could increase the p-
values of the algebraic connectivity in EIA1E, EIA1L or
EIA2, but it is clear that for OA and AA the difference
is too large. The result that there is something else to
the structure of Latium in these later ages holds.

E. River Networks and Combined Regions

Although our analysis of road networks yielded inter-
esting results, it is rather incomplete: ancient transporta-
tion infrastructures were composed not only of roads, but
of rivers as well. If we want to consider a more accurate
picture of the ancient transportation networks, we need
to account for other ways of transport.

FIG. 5: River networks of Latium Vetus and Southern
Etruria, Archaic Period.

Fluvial and maritime routes were, and still are, crucial
ways of transportation. Unlike roads, rivers did not need
to be built; they already were there. They flowed from
high altitude points towards the sea, thus the tree-like
structure in Fig. 5. We also consider short navigable
distances between coastal settlements as links in the net-
work. Since we were also provided with the data on the
links between both regions, we thought it would be in-
teresting to produce the results for the networks of the
combined regions for both road and river networks (Table
V).
When calculating the algebraic connectivity, we only

keep the giant component. For most of the networks
the isolated components are small. However, the rivers
of SE in EIA2 are a special case. Here, the network is
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Road EIA1E EIA1L EIA2 OA AA

LV Eglob 0.891 0.876 0.871 0.877 0.918
SE Eglob 0.884 0.896 0.878 0.863 0.879

Comb. Reg. Eglob 0.901 0.876 0.887 0.897 0.914
LV λ2 1.2*10−2 10−2 1.4*10−2 2.3*10−2 3*10−2

SE λ∗
2 8.1*10−3 8.3*10−3 7.2*10−3 5.3*10−3 5.2*10−3

Comb. Reg. λ∗
2 3.2*10−3 3.5*10−3 2.4*10−3 2.6*10−3 3*10−3

River EIA1E EIA1L EIA2 OA AA

LV Eglob 0.59 0.54 0.53 0.61 0.59
SE Eglob 0.46 0.59 0.62 0.49 0.44

Comb. Reg. Eglob 0.64 0.67 0.58 0.60 0.61
LV λ2 2.3*10−3 1.9*10−3 10−3 2.1*10−3 1.6*10−3

SE λ∗
2 3*10−4 5*10−4 10−3 3*10−4 2*10−4

Comb. Reg. λ∗
2 4*10−4 5*10−4 3*10−4 3*10−4 3*10−4

TABLE V: Global efficiency and algebraic connectivity
for empirical road and river networks of Latium vetus,

southern Etruria and the combined regions. The
asterisk accounts for considering only the giant

component.

separated into two large components. When calculating
the algebraic connectivity, we keep the giant component,
the largest of the two, and the consequence can be seen
in the resulting λ2 being an order of magnitude larger
than for the rest of the ages.

In Table V it can be observed that both measured
quantities are lower for river networks than for road net-
works because rivers were not built. One could argue
that the settlements were built to maximize the benefit
of rivers, but that hardly counters the effect of customiz-
ing the network at least partially, as with roads, to fit the
region’s needs. This difference in algebraic connectivity
and global efficiency between road and rivers is impor-
tant to keep in mind. As for the combined regions, it
is not surprising that the algebraic connectivity is lower:
the network can easily be cut into two components —the
two regions—, due to the smaller number of links between
regions. The global efficiency, on the other hand, is much
more intriguing. Save a couple cases, the combined re-
gions have a higher global efficiency than the isolated
networks. This means that the paths between nodes of
different regions are short, relative to their geodesic dis-
tance. A possible explanation for this could be Rome,
which is a hub in the network of Latium and close to
the border of the regions, immediately connecting many
of Latium’s nodes to Etruria. In any case, although in-
formative, the single layer approach is incomplete. In
order to get a complete picture of the transportation in-
frastructure we need a way to overlap the road and river
layers into a single network.

FIG. 6: Toy two layered multiplex.

V. THE MULTIPLEX APPROACH

A multiplex is a multilayered network in which the
layers share at least part of their set of nodes. Nodes
belonging to more than one layer are connected to all
their counterparts in the other layers (see Fig. (6)). Mul-
tiplex networks are characterized by a supra-adjacency
matrix AM, which has the adjacency matrix of the in-
dividual layers as diagonal blocks [8]. Additionally, the
inter-layer connections between nodes present in multi-
ple layers are represented by the inter-layer coupling or
weight [10].

Now, as we can see in Table V, the river network
has very poor properties compared to the road network.
However, a multiplex formed by these two layers can have
better properties than the single road network, provided
the rivers either create alternative paths or create shorter
paths. These two possibilities account for resilience and
efficiency and are directly connected with the metrics we
use: the algebraic connectivity and the global efficiency.

A. Algebraic Connectivity

Just like with single layered graphs, from the supra-
adjacency matrix we can construct the supra-Laplacian
matrix LGM with the inter-layer weights p outside the
diagonal blocks [8]. The supra-Laplacian of the multiplex
in Figure 6 is
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LG =


d12 + p −d12 0 −p 0 0
−d12 d12 + d23 + p −d23 0 −p 0
0 −d23 d23 + p 0 0 −p
−p 0 0 d13 + p 0 −d13
0 −p 0 0 d23 + p −d23
0 0 −p −d13 −d23 d13 + d23 + p

 (6)

The algebraic connectivity of the multiplex will be the
second smallest eigenvalue of the supra-Laplacian, pro-
vided the multiplex is one connected component, which
will be the case of our networks.

Let us consider any two-layer multiplex. If the strength
of the connection depends on distance equally on both
layers, then, depending on the inter-layer coupling p, the
multiplex can exist in various states [5]. In the discon-
nected phase, the strength of the connections between
layers p is small (p < p∗) and the algebraic connectiv-

ity of the multiplex λ̃2 will increase linearly as 2p, i.e.,
the sparsest cut is to separate the multiplex into the two
layers. If p∗ < p < p⋄, λ̃2 will be given approximately
by p+ λmin

2 , where λmin
2 is the algebraic connectivity of

the Laplacian dominant layer [6], the layer with lowest
algebraic connectivity. The easiest way to disconnect the
multiplex will no longer be to separate the layers, but to
cut the the Laplacian dominant layer (λmin

2 ) and the con-
nections between one of those halves and the other layer
(p). Ultimately, if p > p⋄, the algebraic connectivity is
approximated by that of the aggregated network of both
layers. The aggregated network is a coarse-graining of
the multiplex in which the nodes are represented in one
layer, with connections present in more than one layer
represented as multiple connections between the same
pair of nodes and the inter-layer couplings as self loops.
The transition point p∗ will be approximately given by

2p∗ = p∗ + λmin
2

p∗ = λmin
2

(7)

For simplicity, let us consider the regimes with p > p∗ as
one, with the algebraic connectivity bounded from above
by that of the aggregated network and from below ap-
proximately by 2p∗ = 2λmin

2 . So, either p < p∗ and
the the links between layers are incredibly vulnerable, or
p > p∗ and the multiplex is at best as vulnerable as the
aggregated network. Under these circumstances, adding
a lower algebraic connectivity layer to a higher algebraic
connectivity layer is most likely going to be a hindrance
—not necessarily, if p is large enough and the second layer
is not that bad in terms of algebraic connectivity—.

In our case, rivers are the Laplacian dominant layer
(λriv

2 < λroad
2 ). We have seen in Table V that the river

network is worse than the road network. However, there
is archaeological evidence that rivers were part of the
transportation infrastructure. For that, though, the river
layer needs to compensate for its low algebraic connec-
tivity, so we thought that the strength of a river con-
nection, if equal in distance to a road, should be higher.
The parameter α accounts for this by multiplying weights
in the river layer. This way, rivers are more resilient.

We will effectively enhance the river layer from being
equal in nature to the road layer (α = 1) to being better
(α > 1). The algebraic connectivity of the rivers will be
αλriv

2 , where λriv
2 is the original algebraic connectivity of

the river network. Then, λmin
2 (α) = min(αλriv

2 , λroad
2 ).

There will be a transition point given by

ᾱ =
λroad
2

λriver
2

(8)

for which the river network can be considered more re-
silient than the road network. Then we are no longer
adding a “worse” layer, and the algebraic connectivity
of the multiplex will increase respect to that of the road
network unless, in the disconnected phase,

λ̃2 = 2p < λmin
2 = λroad

2

p <
λroad
2

2

(9)

The algebraic connectivity responds to the question of
how much is worth investing in order to prevent possi-
ble failures in the system. Much like in the single layer
approach, the calculation of the algebraic connectivity
requires a weight that is inversely proportional to the
distance. In this sense, it is intuitive to associate the dis-
tance of the links to their maintenance; if we are able to
make a well connected and resilient network with abun-
dant, shorter paths —and thus easier to maintain, or
rather, more difficult to remove—, then the algebraic con-
nectivity will be large. The parameter that allows rivers
to enhance the network by decreasing their maintenance
costs will be regarded as the river convenience factor α,
which divides distances and thus multiplies weights in the
river block of the supra-adjacency matrix. A high river
convenience factor will increase the weights of the river
connections, thus making the incorporation of rivers to
the multiplex increase the algebraic connectivity further.
Or, in other words, a high convenience factor means that
it will be hard to perturb the multiplex by removing —as
in the case of a failure— river connections. Meanwhile,
the inter-layer coupling p will also be the inverse of a
distance, which we interpret as the cost 1/p of maintain-
ing a port on the settlement, the port cost. A unit of
cost is equivalent to one kilometer of road maintenance.
Maintaining the river network and its ports might not be
worth it if it does not add enough to the network to pay
off for the costs.
Whether or not the river layer adds to the road layer

is determined by these two parameters. This is the diffi-
culty of the multiplex respect to the single layer networks:
the need for the convenience factor and the inter-layer
weight. Depending on their value, the measured proper-
ties of the multiplex will be different. Their actual value
is unknown, and it probably varied from network to net-
work. Our aim is not to determine them, but to use them
to asses the relevance of the river network.
To see how good the interplay between layers is, for

each age and region, including also the network of the
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FIG. 7: Algebraic connectivity figures of road and river multiplexes. The river convenience factor α is a factor
dividing distances, and thus multiplying weights, in the river layer. The port cost (1/p, the inverse of the inter-layer
coupling) is the cost of maintaining a port in a settlement measured in kilometers of road maintenance. The colored
area means an improvement in algebraic connectivity when adding the river layer. A larger colored area means good

interplay between layers. The black vertical line corresponds to ᾱ given by Eq. 8.
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combined regions, and for the river convenience factor
in the interval [0.5, 12], we calculated the value of the
port costs at which adding the river network increased
the algebraic connectivity of the network. In Figure 7,
the colored areas represent the range of the parameter
values for which maintaining the multiplex network sup-
posed an improvement respect to just the road network.
The blank areas represent the conditions for which the
river network did not compensate the maintenance costs.
A larger colored area is an indication of a good interplay
between rivers and roads, meaning the river layer will
easily provide the road network with alternative paths,
thus improving the overall resilience of the multiplex. We
can clearly see that Latium Vetus made good use of the
river network in the early ages, but it became more and
more redundant as time passed and the region developed.
This is not to say that later on the rivers were useless;
quite on the contrary, the growing population and econ-
omy begged for alternative ways of transportation. Still,
because the rivers rarely change —though the nodes do,
and thus our network—, this figures provide a qualita-
tive assessment of the development of the road network
through the ages.

In the case of Southern Etruria, there is not such a
progression. From our previous analysis of the road net-
works, we know that the algebraic connectivity of SE was
worse than Latium’s. A moderately convenient —in the
sense that it provides alternative paths— river network
should have easily increased the algebraic connectivity
of the region. Instead, we find that the colored area is
smaller in the EIA1E period, which means the river net-
work was not good. During EIA1L and EIA2 the inter-
play between both layers improves. This is due to a bet-
ter algebraic connectivity of the river network. Finally,
in the later OA and AA periods the area is reduced due
to the development of the road networks. Nevertheless,
SE does not reach the level of development of LV, with
is why it still needed to be complemented by the river
network.

As for the combined regions, we can clearly see in the
case of the Archaic Age that the interplay is better than
the mean interplay of both regions. This is most likely
due to the poorer road connections between regions com-
pared to the Tiber river, which crossed from SE to LV.

The y axis in Figure 7 is the port maintenance costs
c = 1/p, the inverse of the inter-layer coupling p. It
should be noted that the interval (0, 20] of c is within
the p > p∗ regime for all figures. From Eq. 7, p∗ =
1/c∗ = λmin

2 . Thus, c∗ = 1/λmin
2 , and the maximum

λmin
2 in Table V is given by LV AA (only relevant if

α > ᾱ, see Eq. 8), which results in c∗ = 33, way off the
limit of our figures. Thus, in our figures, the algebraic
connectivity of the multiplex will be bounded from above
by that of the aggregated network, which can be better
or worse than the road layer depending on the quality
of rivers —which in turn depends on α—. There can
be no improvement if the river layer is not good enough.
The algebraic connectivity will approach this value as p

increases.
We also plotted in Figure 7 a vertical black line corre-

sponding to the values of ᾱ as given by Eq. 8. For the
figures with no such line, either it is outside the limit of
the figure (Latium) or the quotient cannot be calculated
because the river network is disconnected (Etruria and
the Combined Regions). It could be approximated by
the giant component, which would give an upper bound
of ᾱ. In any case, on the right side of this line the river
network is more resilient than the road network, so the
multiplex will be more resilient than the road networks
unless Eq. 9 is fulfilled, i.e., the ports are so prone to
failures that they do not compensate for increase in re-
silience provided by the river paths.

B. Global Efficiency

Global efficiency is not well established in the multi-
plex formalism: the distance between nodes from differ-
ent layers is difficult to define, and thus the distances in
the network, even for nodes in the same layer, consider-
ing one can traverse from layer to layer, are also not well
defined. Here I propose a definition of global efficiency
in a multiplex. It is only valid for two-layer multiplexes,
like the ones we have, and one of the layers needs to be
regarded as the main layer, with the second layer acting
as a complement. In our case, the main layer is the road
network, while the river layer is there to possibly provide
shorter paths. It is a reasonable choice considering one
would need to embark to transverse through the river
layer and would also need to disembark to arrive at its
destination. Then, the global efficiency is calculated by
taking Eq. (1) for the main layer, but the network paths
can shortcut through the second layer:

Eglob =
1

N(N − 1)

∑
i ̸=j

dij
L′
ij

(10)

N is the number of nodes in the main layer —the road
layer—. Like in Eq. (1), L′

ij accounts for the shortest
path length between nodes i and j in the network, but
because we are dealing with a multiplex, this path may
go through the second layer. Let us consider the exam-
ple of Figure 6: if we only consider the main layer l1,
the distance between nodes n1 and n3 is the sum of the
distances d12 and d23. When we add the second layer,
there is an alternate path through the secondary layer of
length d13. To this distance we need to sum 2t, where
t is the inter-layer distance. This accounts for hopping
into the secondary layer and back to the main layer. If
this path provides a shortcut respect to the path on the
main layer, i.e., 2t+d13 < d12+d23, the global efficiency
will be larger. The river network will be convenient not
when it provides alternative pathways, but when it short-
ens distances between the settlements. It is no longer a
question of whether maintaining the river network pro-
vides a good backup in case of node failures, but if it
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FIG. 8: Normalized global efficiency difference between multiplex and road network (Eq. 12). The relative cost β is
a factor dividing distances in the river layer. The transfer cost t is the cost of traversing from one layer to the other

measured in cost of traversing kilometers of road.

makes communications more efficient. In this sense, the
distance in the network between two nodes can be seen as
a transport cost instead of a maintenance cost, just like
in the single layer approach. The inter-layer coupling t
will be regarded as a transfer cost, the cost of traversing
from one layer to the other. As well as in the case of al-
gebraic connectivity, we need to account for the different
nature of rivers. Also, there is evidence that transport
through rivers had different costs than through roads.
The parameter β, the relative cost, will divide distances
in the river layer to account for this difference in trans-
portation costs between roads and rivers. Although the
parameters remain formally the same to their counter-
part for the algebraic connectivity, their interpretation is
completely different.

For another way in which the second layer can shorten
the distances, back in Figure 6, consider (n2, n3). This
link is present in both layers. Let us call X the distance
in the main layer. Then the distance through the second
layer will be 2t+ X

β . β > 1 will favor transit through the

second layer. If

2t+
X

β
< X

X >
2t

1− 1
β

,
(11)

then the second layer will shorten the path, increasing the
global efficiency. Note that, in this definition, adding the
second layer can only increase the global efficiency of the
network. In fact, this new definition of global efficiency
allows values larger than one: the paths through the sec-
ond layer can be shorter than the straight paths through
the first layer if the relative cost β is high enough. We
cannot normalize it by adding the nodes of the second
layer to the normalizing factor, because then we would
need to account for the paths between nodes in the sec-
ond layer when applying Eq. 10. This does not make

sense in our road and river framework. Having a defi-
nition of the global efficiency not well normalized is less
than ideal, but for now it serves our purpose of extracting
information out of the multiplex.
Like for the algebraic connectivity, we want to know

how good the interplay between layers is in terms of the
newly defined global efficiency. However, in Fig. (7) both
the blank and colored areas represent a variety of values
of algebraic connectivity, with the borderline represent-
ing the parameter for which road network and multiplex
algebraic connectivity is the same. If we were to take this
approach with the global efficiency, then the blank areas
would represent the same value of the global efficiency,
equal to that of the road network, while the colored area
would represent an improvement in efficiency provided
by the river network, which is different for every pair of
parameters. Thus, it feels more natural to instead use
a heat map to plot the normalized difference in global
efficiency between the road network and the multiplex:

∆Eglob =
Emult

glob − Eroad
glob

Eroad
glob

(12)

Also, because the computation takes more time, Figure
8 only corresponds to the EIA1E of Latium and Etruria.
Obviously, left of β = 1 no improvement can happen

(see Figure 8). As soon as we cross that threshold, how-
ever, the global efficiency increases. Note that we mea-
sure values larger than one. As β increases, the condition
in Eq. 11 is met easily, so we arrive at values of global
efficiency greater than one when β is large. Thus the
brighter colors as we progress to the right of the figure. In
fact, increasing β is more beneficial than decreasing the t,
because there are more river kilometers than ports. Also,
both layers of the empirical networks are very overlapped
—many rivers run parallel to roads—, which encourages
this effect.
Also, a horizontal asymptote can be inferred at some
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value tmax, above which the global efficiency cannot in-
crease. If we take a look into Eq. 11, we can see that
for a value of t, no matter how high beta, due to transfer
costs, it is better to just traverse through the road layer.
Then, tmax will be bounded from below by

t̄ = (1− 1

β
)
Xmax

2
(13)

whereXmax stands for the longest road parallel to a river.
The difference between this lower bound and the real
tmax will depend on the alternate path the river network
provides.

This new global efficiency is not as good a quantity as
the algebraic connectivity. Being only able to increase,
the moment there is a link slightly favored by a river,
the difference will be larger than zero. Any combination
of parameters out of the zero area in Figure 8 must not
be taken as good interplay between layers. Instead, this
heat maps should be used in combination with Figure 7
to better assess the impact of adding the rivers to the
transportation network. The parameters are defined dif-
ferently, so it is not possible to just overlap the figures.
Still, their function is formally the same, so the figures
can complement one another: if the colored area in the
algebraic connectivity figures accounts for good interplay
between layers, the heat maps of the global efficiency in-
dicate how good.

VI. CONCLUSIONS

In this thesis, by following the work of [2] and [3],
we have successfully translated ancient transportation
infrastructures into complex network formalism. Then,
through the global efficiency and the algebraic connec-
tivity, we have analyzed the road and river networks
of Southern Etruria and Latium Vetus and confirmed a
number of old results, as well as found some other new
ones.

Firstly, we corrected the Etruscan coordinates, which
had been displaced by an error in the conversion from
GIS. Then, by developing Etruria from the empirical net-
work and from scratch (Figures 3a and 3b), we showed
that the EE model does not lead to the best network in
terms of global efficiency. We also found that, if provided
with the same amount of resources and developed from
scratch, both regions arrived at more or less the same
values of global efficiency (Figure 3b). A perturbation
of the coordinates could compensate for the difference
(Figure 4); although a more detailed study of a com-
plete perturbation protocol is advised, it shows that the
difference is not significant. This result highlights the
similarities between regions and supports the result of
[9] that, had Latium not wasted resources on preferential
attachment, the region could have accomplished a much
better efficiency than Etruria. However, there is a differ-
ence in algebraic connectivity that arises in the later ages
no matter the model used. It is a structural property of

the networks due to the positions of the nodes, and the
perturbation did not remove this property (Table IV).

Following in this line of work, a perturbation protocol
should be devised and the response of the networks mea-
sured. Beyond a more detailed analysis of a Gaussian
white noise for different amplitudes, perhaps it would be
interesting to apply a perturbation that depends on the
node strength. Highly connected settlements are also the
ones receiving more information, so it is reasonable to as-
sume that they would be the most affected by possible
information errors. This perturbations should be simple
enough to implement and would not require much work.

After the road network analysis, we measured the
global efficiency and algebraic connectivity of the river
networks and the roads and rivers of the combined re-
gions. As expected, river networks had much poorer
properties than road networks, because they could not
be build. Thus, we explored the multiplex approach in
terms of adding a poorer layer to a richer layer. We
provided two different interpretations of the parameters
of the multiplex, each suited for the quantity at hand.
Regardless of their definitions, they behaved effectively
the same and thus could complement each other when
extracting information from the multiplex. We showed
that the algebraic connectivity suffered two —though we
simplified to one— transitions depending on the value of
the inter-layer weight p. We then represented the inter-
play between layers in Figure 7, which accounted only
for a set of parameters for which p > p∗, i.e., the alge-
braic connectivity was bounded from above by that of
the aggregated network.

Finally, we proposed a definition of global efficiency
suitable for a two-layer multiplex. Although not well
normalized and in need of a more strict definition, it has
proved to be useful when applied to our multiplexes. Of
course, the first thing to do next should be to apply it to
all ages, not just EIA1E. A more formal study of the mul-
tiplex formalism should be next, both in terms of alge-
braic connectivity and the global efficiency, which should
be formally defined. This would be a more difficult task
and would require time. Furthermore, the results in Sec.
IV could be attempted with the multiplex. However, the
parameters of the multiplex would pose a problem, for
we do not know their value. Instead, one could try to
mirror the processes in [2] and [3] with the multiplex
and find the combination of parameters that, taking the
rivers into account, best reproduces the empirical road
networks. This would also take time, though, either com-
putationally by using our codes, or by translating them
into a more efficient language.

Hopefully by now we have shown not only that net-
works are an effective tool to analyse ancient transporta-
tion infrastructures, but that the multiplex approach can
be a very powerful tool for doing so. We expect this the-
sis to serve as a basis for future work focused on further
studying the multiplex properties of this case study, and,
possibly, others.
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