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Effect of lattice defects on Hele-Shaw flow over an etched lattice

E. L. Decker, Jordi Igne´s-Mullol,* A. Baratt, and J. V. Maher
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

~Received 20 November 1998; revised manuscript received 22 April 1999!

We examine the patterns formed by injecting nitrogen gas into the center of a horizontal, radial Hele-Shaw
cell filled with paraffin oil. We use smooth plates and etched plates with lattices having different amounts of
defects~0–10 %!. In all cases, a quantitative measure of the pattern ramification shows a regular trend with
injection rate and cell gap, such that the dimensionless perimeter scales with the dimensionless time. By adding
defects to the lattice, we observe increased branching in the pattern morphologies. However, even in this case,
the scaling behavior persists. Only the prefactor of the scaling function shows a dependence on the defect
density. For different lattice defect densities, we examine the nature of the different morphology phases.
@S1063-651X~99!12508-X#

PACS number~s!: 68.70.1w, 47.20.Gv, 47.54.1r, 47.20.Hw
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I. INTRODUCTION

Many researchers have examined the patterns for
when one fluid is forced into another of higher viscos
between two closely spaced flat surfaces~a Hele-Shaw cell!
@1,2#. If the otherwise flat surfaces have an imposed anis
ropy ~for instance, a periodic lattice imposed on one of t
surfaces!, driven fluid interfaces exhibit very complicated a
isotropic viscous fingering patterns, and under some co
tions dendritic patterns can be formed, reminiscent of cla
cal dendrites observed in solidification@3–9#. To our
knowledge, the effect of lattice defects in viscous finger
in an anisotropic Hele-Shaw cell has rarely been addres
@4,6#. One numerical simulation and an experimental stu
employed a porous medium with no gap and flow on
within etched channels@4#. For a similar system there was
gap @6#. These studies varied the randomness in the cha
widths and produced thinner dendritic fingers and enhan
side branching when compared to the case with cons
channel width. This is consistent with our results and may
a general feature of dendritic growth in the presence of
fects.

Some progress has been made in describing the morp
ogy of the patterns formed in an anisotropic, radial He
Shaw cell and in relating observed morphology to variat
of control parameters@3,5,7–9#. Theoretical work has ex
plored the similar morphologies occurring in solidificatio
@10,11#. Some studies have constructed morphology ph
diagrams showing the types of patterns~phases! formed over
different ranges of the control parameters@3,5,7,9#. In other
studies, dendritic finger growth has been analyzed theo
cally @11# and experimentally@8# and found in each case t
exhibit a power-law relation between finger tip position a
time. These same studies also show a successful scalin
the dendrites at all stages of growth to match a theoret
shape. Descriptions of anisotropic pattern growth explain
dendritic patterns produced at low driving force to be co
trolled by an effective anisotropic surface tension, while d

*Present address: Department of Chemistry, Tulane Univer
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drites at high driving force, which grow along a differe
direction from those at low driving force, result from kinet
effects @7,8,10#. In between these surface-tension dendr
and kinetic dendritic regimes, a tip splitting viscous fingeri
regime results@7,8,10#. As discussed above, experiments e
hibit these different morphological phases, and good ag
ment between experimental and theoretical dendrite sh
and evolution have been achieved.

We report measurements made in a radial Hele-Shaw
with smooth plates and in a series of anisotropic, radial He
Shaw cells wherein we vary the density of defects in
imposed lattice. We present quantitative analysis of patt
characteristics for all cases studied. We also discuss, q
tatively, the effect of lattice defects on the different morph
ogy phases.

II. EXPERIMENTAL DESCRIPTION

Our horizontal, radial Hele-Shaw cell is formed by
smooth, rigid upper glass plate~2.5 cm thick, 61 cm diam-
eter! with a 6 mmdiameter hole in the center, and a low
smooth glass plate of diameter 56 cm and thickness 1.25
The lower plate rests on a large square, 1.25 cm thick g
plate in a bath of heavy paraffin oil~Fisher Scientific, 0122-
4!. The oil has a viscosity of 1.7 P and a surface tension
31 dyn/cm at 24 °C. Nitrogen gas is the less viscous fl
which displaces the paraffin oil during a flow realization. T
introduce the nitrogen under controlled conditions, we fil
large reservoir~a metal box with 28 L capacity! with nitro-
gen to a relative pressure of 4 psi. Then using flow valv
we inject nitrogen from the reservoir at constant flow ra
into the Hele-Shaw cell through the hole in the upper gl
plate. The areal flow rate~or areal growth rate!, Q, is ob-
tained from a linear fit to the area,A, of the growing pattern
versus time,t. During a flow realization, the evolution of th
pattern is viewed with a CCD camera and videotaped with
S-VHS recorder. The images are later digitized and comp
analyzed.

To produce anisotropy in the cell, a circular circuit boa
~40 cm diameter! with an etched rectangular lattice
mounted onto the lower circular glass plate. The copper
lands of the etched lattices are 0.07 mm thick and their
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1768 PRE 60DECKER, IGNÉS-MULLOL, BARATT, AND MAHER
eral dimensions are shown in Fig. 1. Three lattices in Fig
show slightly different lateral dimensions for the etched co
per islands~but not for the unit cell!. Using lattices with no
defects and with copper island variations even larger t
those seen in Fig. 1, we have observed that these smal
ferences in the regular parts of the etched plates do not
our results significantly compared to the effects of latt
defects.~We do observe that the quality of the dendrites
somewhat sensitive to the details of the etched rectang
islands. However, the copper islands on our etched latt
were not circular enough for us to observe coexistence
morphology phases as reported by Banpurkaret al. @12#.!
Imperfect plates were produced by leaving defects~unetched
copper regions! in the grooves between randomly select
copper islands. The percentage of defects for a given p
refers to the total area of unetched copper which forms
defects, relative to the total etched groove area on a pe
lattice with no defects. We report measurements with circ
boards with defect percentages of 0%~for the perfect lattice!,

FIG. 1. Close-up view of each of the three etched circuit boa
used. A section of each circuit board is shown, containing a unit
of the lattice but no defects.~Defects are clearly seen in Fig. 2
where a larger section of each of the boards is shown.! Copper
islands are 0.07 mm thick with lateral dimensions:~a! perfect lat-
tice, 0.1430.47 mm;~b! 3% defective lattice, 0.1730.55 mm;~c!
10% defective lattice, 0.1130.46 mm. The unit cell~shown by
dashed lines! is the same for the three boards: 0.4030.80 mm.
Uncertainty in all lateral dimensions is60.01 mm.
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3%, and 10%.~See Fig. 2.! We place Teflon spacers or strip
of overhead transparency film between the upper glass p
and the circuit board~near the outer edge of the board! to set
a gap of sizeb between the plates. We report measureme
for gap sizes ofb50.11 mm, 0.22 mm, 0.38 mm, 0.79 mm
and 1.59 mm.

III. RESULTS AND DISCUSSION

Characterizations of tip position versus time and sha
for dendrites were calculated by Almgrenet al. @11# and ob-
served by Igne´s-Mullol et al. @8# for the case of the perfec
lattice. Evolution of dendrites with significant side branchi
~the type we observe with defective lattices! is not well
suited to this type of scaling analysis. Dendrites produc
with perfect lattices exhibit main, needlelike fingers growi
along the lattice axes with increasing width and only min
side branching. Such dendrites can be scaled to match a c
acteristic dendrite shape@8#. However, with defective lat-
tices, we observe~Sec. III C! dendrites which exhibit main
fingers with nearly constant width and significant growth
the form of side branching. Thus, we cannot meaningfu
apply the scaling analysis for smooth, needlelike dendrite
the more ramified, side branching dendrites produced w
defective lattices. Rather, since defective lattices enha
side branching, we choose an analysis technique that qu
fies the pattern ramification by measuring pattern perime
@13,14#.

A. Smooth plates

Dimensional analysis of the isotropic flow equations f
Hele-Shaw flow in a radial geometry gives a characteris

s
ll

FIG. 2. Details of the etched lattice on the circuit boards w
varying amounts of defects~a! 0%, ~b! 3%, ~c! 10%. The vertical
scale bar is 3 mm long. The dimensions of the copper islands
shown in Fig. 1.
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FIG. 3. Scaling of patterns produced between smooth plates, from many flow realizations at different flow ratesQ, with three patterns
~with different areas! from each flow realization, and at gaps of~circles! b50.11 mm,~downward triangles! b50.22 mm,~diamonds! b
50.38 mm,~upward triangles! b50.79 mm,~squares! b51.59 mm.~a! p8 plotted vs dimensionless time,t8. A linear least-squares fit to the
data for log(t8).4 gives an average scaling exponent forp8;t8z of z50.6660.01.~b! p8/t81/2 plotted vst8 clearly shows a compact-growt
regime wherep8/t81/2 is constant, and a regime of ramification wherep8/t81/2 increases.~c! p8 plotted vsAQ2. Horizontal axis units are
log(cm4/s). Here, data from different gaps segregate into separate curves.
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length,L05b/Ca, and a characteristic time,t05b2/(QCa2),
where Ca5mQ/(sb) is the usual form of the capillary num
ber in this type of flow with viscositym, areal flow rateQ,
surface tensions, and gapb @13#. As we strive to develop
meaningful quantitative measures of patterns, an interes
quantity is the perimeter,p, of a pattern, made dimensionle
by L0 (p85p/L0) @13,14#. As a growing pattern become
unstable and tip splitting begins, the pattern becomes ra
fied. The perimeter of the pattern increases during the fl
realization (p8 is a function oft8). In Fig. 3~a!, we plot the
dimensionless perimeter,p8, versus dimensionless time,t8,
for flow between smooth plates. The data shown inclu
three patterns from each flow realization. Thus, we plot d
produced with different gap values, from patterns with d
ng

i-
w

e
a,
-

ferent areas~from different times during the flow! produced
at the same flow rate,Q, as well as data from patterns pro
duced at different flow rates. This shows that data from s
eral runs at different values ofQ andb all collapse to a single
curve.

For our experimental setup, the initial area,A0, is small
compared to the area of the patterns from which area
perimeter data were extracted. Thus, since the area,A, of
each pattern is A5A01Qt;Qt, then t85tQCa2/b2

;ACa2/b25A/L0
25A8. We can compare the scaling beha

ior of our patterns to that of compact objects. For a comp
growing object ~such as a growing circle!, the perimeter
should increase as the square root of the area. Likewisep8
should increase ast81/2. Careful inspection of the slope fo
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FIG. 4. Anisotropy parameterDb/b for data from four gaps (b50.22 mm,Db/b50.32; b50.38 mm,Db/b50.18; b50.79 mm,
Db/b50.089; b51.59 mm,Db/b50.044) plotted vs capillary number Ca5mQ/(sb). Patterns from the end of flow realizations at th
corresponding Ca are shown as data points on the plot. The vertical scale bar~showing the size of the patterns! is 25 cm long.
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log(t8),4 in Fig. 3~a! shows a slope of12 . ~Throughout this
paper, log means log10.! Plotting p8/t81/2 versust8 in Fig.
3~b! very clearly reveals this compact-object growth f
log(t8),4. Patterns in this range oft8 have minimal tip split-
ting and are often simple round shapes with constantp8/t81/2.
For log(t8).4, patterns become ramified andp8/t81/2 in-
creases. The linear fit of log(p8) vs log(t8) @for log(t8).4] in
Fig. 3~a! shows a scaling exponent of 0.6660.01. Thus,
within our range of pattern sizes where fingering occurs,
average scaling exponent differs significantly from the va
of 1

2 for compact objects.
In Fig. 3~c!, plotting p8 versusAQ2 reveals similar scal-

ing behavior as when plotting versust8. However, such a
plot allows the gap dependence of the data to be manifes
Fig. 3 ~b!, the data segregate into separate parallel curves
each gap. Thus, the perimeter increases at constantAQ2 as
the gap decreases.

B. Perfect lattice

At the larger gaps ofb50.79 mm and 1.59 mm, pattern
produced over perfect~defect-free! etched lattices at low
flow rates are smooth and round and patterns at our lar
flow rates exhibit no dendrites. Thus, results at these la
e
e

In
or

st
er

gaps are similar to those with smooth plates. This obse
tion is consistent with the calculations of Sarkar and Jasn
@15#, where they predict the effects of the anisotropy to va
ish when the anisotropy parameter falls below 0.07. Ev
though we are not confident of how to write an anisotro
parameter that relates to our experimental parameters,
strength of the anisotropy may be related to the depth of
grooves,Db, relative to the gap,b. With Db50.07 mm, the
above mentioned gaps giveDb/b50.089 and 0.044, respec
tively. At smaller gaps ofb50.38 mm and 0.22 mm, becaus
of the enhanced influence of the lattice (Db/b50.18 and
0.32, respectively!, we observe different morphologica
phases: surface tension dendrites at our lowest Ca~charac-
terized by growth 45° relative to the lattice axes! @8#, tip
splitting at low to intermediate Ca, and kinetic dendrites
higher Ca~see Fig. 4!. As reported previously for lattices
with twofold symmetry @8#, these kinetic dendrites grow
from the injection hole along one axis of the lattice, with t
splitting fingering growing from the injection hole in othe
directions. Figure 4 implies that for increasing anisotrop
the transition from viscous fingering to kinetic dendrit
moves to lower Ca.

Even though with the perfect lattice we can observe d
dritic patterns at small gaps and no dendritic patterns at la
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gaps, Figs. 5~a! and 5~b! show little distinction in the scaling
behavior for isotropic and anisotropic growth. In Fig. 5~a!
we plot p8 versust8 for patterns produced with the perfe
lattice at a large gap~small anisotropy!, b51.59 mm, and at
a small gap~large anisotropy!, b50.22 mm. Figure 5~b!
shows that the transition from compact growth to ramifi
growth occurs near log(t8)54 as it did with smooth plates
We perform a three-parameter fit to the data in Fig. 5~a! for

FIG. 5. Scaling of patterns produced with the perfect lattice~no
defects! at two gaps. The data shown here come from many fl
realizations at different flow ratesQ, with five patterns~with differ-
ent areas! from each flow realization.~Circles! b50.22 mm, large
anisotropy.~Squares! b51.59 mm, small anisotropy.~a! p8 plotted
vs t8 hardly distinguishes between cases of large anisotropyb
50.22 mm!, small anisotropy (b51.59 mm!, and no anisotropy
@see Fig. 3~a!#. A three-parameter fit to both data sets simul
neously ~see text! gives an average scaling exponent ofz50.68
60.01 for the scaling functionp85at8z, and prefactors ofa
50.5860.08 forb50.22 mm, anda50.6760.07 forb51.59 mm.
~b! p8/t81/2 plotted vs t8 still shows a compact-growth regim
where p8/t81/2 is constant, and a regime of ramification whe
p8/t81/2 increases.
log(t8).4. In this fitting process, the slopes are forced to
the same, but the intercepts can differ. Thus, we fit log(p8)
5log(a0.22)1zlog(t8) and log(p8)5log(a1.59)1zlog(t8) si-
multaneously to the data sets for gaps ofb50.22 mm and
b51.59 mm, respectively. Thus, the three parameters arz,
a0.22, anda1.59. ~This fit has a reducedx2 that is about equa
to the average of those obtained by fitting, two-parameter
to each data set individually. However, the three-param
fit reduces the effect of uncertainty in the individual slop
from washing out any trend in the intercepts.! The results
show that the scaling exponent (z50.6860.01) is not sig-
nificantly different from that (z50.6660.01) obtained with
smooth plates.~In fact, the fingering patterns produced wi
perfect lattices at the four gaps we used give an aver
exponent ofz50.6760.01.! The prefactors in the scaling
function,p85at8z, show a nonsignificant dependence on t
anisotropy (a50.5860.08 for b50.22 mm anda50.67
60.07 for b51.59 mm!. This insignificant offset of the
curves is difficult to see in Fig. 5~a!. Any difference is even
difficult to observe inp8/t81/2. However, for log(t8).4 in
Fig. 5~b!, p8/t81/2 does appear slightly smaller for the ca
with larger anisotropy. Thus, the scaling behavior we m
sure hardly distinguishes between pattern formation w
smooth plates and that with etched lattices.

C. Defective lattices

To examine the effect of defects in our anisotropic He
Shaw cell, we use a small gap (b50.22 mm! where the
influence of the etched circuit board~lattice and defects! is
strong. Figure 6~a! shows a comparison ofp8 versust8 for
the perfect lattice, and for lattices with 3% and 10% defec
The data overlap significantly so that by eye it is difficult
distinguish any difference between the data from differ
defect densities. Figure 6~a! does show significant broaden
ing of the curve in thep8 direction compared to that seen
Fig. 3~a! and Fig. 5~a!. In order to better observe the effect o
the defects, we smoothed the data with a window of se
data points in Fig. 6~b!. Here, three curves can be distin
guished for each of the defect densities. By examining
data range where well-developed kinetic dendrites are
served@for log(t8).7], the smoothed data definitely sho
that, for constantt8, the perimeter increases as the defe
density increases. In Fig. 6~c! we plot p8/t81/2 versus t8.
Here, we observe that the defective lattices produce rami
patterns even for log(t8),4. This is seen mostly in the dat
from the 10% defective plate. In Fig. 6~d! we plot the same
data but smoothed with an averaging window of seven d
points. Here, we clearly observe increased ramification~as
measured byp8/t81/2) in the dendritic-growth regimes (t8
,5.5 andt8.7) as the defect density increases.

To further quantify the effect of the defects, in Fig. 6~a!,
we do a simultaneous, four-parameter fit to the three d
sets~for 0%, 3%, and 10% defects! over the entire range o
t8. We fit log(p8)5log(a0)1zlog(t8), log(p8)5log(a3)
1zlog(t8), and log(p8)5log(a10)1zlog(t8) simultaneously to
the data sets for 0%, 3%, and 10% respectively. Thus,
four parameters arez, a0 , a3, and a10. „This fit has a re-
ducedx2 that is about equal to the average of those obtai
by fitting linear, two-parameter fits to each data set individ
ally. However, the four-parameter fit reduces the effect

-
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FIG. 6. Scaling of patterns produced with the lattices with~circles! 0% defects,~squares! 3% defects, and~triangles! 10% defects. Data
come from many flow realizations at different flow ratesQ at one gap,b50.22 mm, with five patterns~with different areas! from each flow
realization.~a! p8 plotted vst8. The four-parameter, linear least-squares fit givesz50.6960.01 and~lowest line! a50.53 for 0% defects,
~middle line! a50.65 for 3% defects, and~top line! a50.87 for 10% defects, for the scaling function,p85at8z. ~b! p8 plotted vst8. The
data are smoothed using an averaging window of seven data points.~c! p8/t81/2 plotted vst8 no longer shows a compact-growth regim
wherep8/t81/2 is constant for the defective plates.~d! p8/t81/2 plotted vst8. The data are smoothed using an averaging window of seven
points.
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uncertainty in the individual slopes from washing out t
trend in the intercepts that can be detected by examinatio
the data@see Figs. 6~b! and 6~d!#.… Thus, for the scaling
function, p85at8z, z50.6960.01, whilea depends on the
density of defects (a50.5260.06 for 0% defects,a50.65
60.07 for 3% defects, anda50.8760.09 for 10% defects!.

As suggested by models of unstable interface growth
the presence of quenched disorder@16#, the role of the de-
fects might be thought of as a rescaling of an effective s
face tension. For instance, the effect of the defects in
scaling function p85at8z, contained in the parametera
~which depends on the amount of defects!, can be absorbed
into t8. Recall thatt8 is proportional tos22. This surface
tension, s, in t8 can be replaced by an effectives8
5(a0 /a)1/(2z)s, such that for the perfect lattices85s.
of

n

r-
e

Thus, s8 decreases with increasing defect density. For
stance, for 10% defects,s850.7s ~a 30% decrease in th
effective surface tension!.

Figure 7 shows some patterns from which the perime
were obtained for lattices with 0%, 3%, and 10% defec
The patterns chosen for display here are those obtained a
end of flow realizations. We do not observe any clear shif
the transition points in Ca between different morpholo
phases. However, we do observe that the nature of th
different morphology phases is drastically changed by
addition of defects. In all cases, the randomness of the
terns seems to increase as the defect density increases
the surface tension dendritic pattern shown at the lowest
ues of Ca~see Fig. 7!, the degree of definition of the den
dritic tips seems to decrease as the defect density increa
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FIG. 7. Percentage of defects plotted vs capillary number Ca5mQ/(sb). Patterns from the end of flow realizations at the correspond
Ca are shown as data points on the plot. The vertical scale bar~showing the size of the patterns! is 25 cm long.
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At 10% defects, the ‘‘surface tension dendrite’’ has a rat
random looking shape, as opposed to the more defined
dritic tip shape seen with the perfect lattice. We see the
fects of lattice defects most prominently in the morpholo
of the kinetic dendrites. Kinetic dendrites produced with t
perfect lattice can exhibit needle fingers with almost no s
branching. We always observe significant side branching
kinetic dendrites produced with 3% or 10% defects. W
10% defects, the defect-enhanced ramification produces
netic dendrites that vary significantly from the ‘‘classica
dendrite shape with regular side branching extrusions, wh
are observed with 0% and 3% defects.

We observe other specific qualitative features of kine
dendrites which change with defect density. Figure 8 co
pares kinetic dendrites produced at roughly the same fl
rate but with different lattice defect densities. Clearly, t
finger width decreases and the side branching amplitude
creases with increasing lattice defects.

IV. CONCLUSIONS

We have reexamined the scaling of dimensionless pe
eter,p8, versus dimensionless time,t8, for patterns produced
in a radial Hele-Shaw cell. This scaling shows that, in g
eral, as the gap,b, decreases and as the flow rate,Q, in-
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FIG. 8. Time series of patterns for development of dendrites:~a!
0% defects, areal flow rate for finger isQf511.760.4 cm2/s; ~b!
3% defects, Qf510.960.5 cm2/s; ~c! 10% defects, Qf511
62 cm2/s. The time step between intermediate patterns for e
finger is 0.6 s.
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creases, patterns become more ramified. Patterns that
as circular bubbles scale as compact objects withp8;t8z,
with z50.5. As bubbles begin to ramify by tip splitting or b
dendritic growth with side branches,z increases. Over ou
size range of fingering patterns produced with smooth pla
we measure an average exponent ofz50.6660.01. Adding
anisotropy in the form of an etched lattice does not sign
cantly change this scaling behavior. In this case for finger
patterns, we measure an average exponent ofz50.6760.01.
Addition of lattice defects to the case with anisotropy giv
an average exponent (z50.6960.01) which is not signifi-
cantly different from that for isotropic plates. The effect
the defects is to change the prefactor to the scaling func
p85at8z. The prefactor,a, increases as the defect dens
increases. Thus, for patterns at constantt8 the dimensionless
perimeter increases as the defect density increases.
-

H.

. A
ow

s,

-
g

s

n

Defects to the imposed lattice in an anisotropic, rad
Hele-Shaw cell have a dramatic effect on the resulting p
tern morphology. The lattice defects tend to increase r
domness in pattern ramification in all morphology phas
Thus, the nature of dendritic growth can appear quite diff
ent from that of classical dendrites produced with a perf
lattice. In the regime of kinetic dendrites, with dendrit
growth along the direction of a lattice axis, the main nee
fingers become thinner and the side branching amplitude
creases as the defect density increases.
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