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Abstract. We investigate the root finding algorithm given by the secant method applied
to a real polynomial p of degree k as a discrete dynamical system defined on R2. We extend
the secant map to the real projective plane RP2. The line at infinity `∞ is invariant, and
there is one (if k is odd) or two (if k is even) fixed points at `∞. We show that these are of
saddle type, and this allows us to better understand the dynamics of the secant map near
infinity.
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1. Introduction and preliminaries

Root finding algorithms are not only an efficient way to find numerical solutions of non
linear equations which cannot be solve explicitly but a fruitful source of interesting dynamical
systems. The common idea behind any such algorithm is to construct sequences converging to
the solutions of the equation, and these sequences correspond to orbits of discrete dynamical
systems.

Let X be a topological space. Roughly speaking a discrete dynamical system over X
(known as phase space) is a map f ∶ X → X and the orbits induced by this map starting
at x0 ∈ X, {xn ∶= fn (x0)}n∈N. The main goal is to describe the phase portrait, that is the
description of the asymptotic behaviour of those orbits when x0 runs over all X. We say that
ζ in X is a fixed point if f (ζ) = ζ. We say that ζ is attracting or repelling depending if all
nearby seeds correspond to orbits converging or divergingto ζ. It is well known that fixed (as
well as periodic) points play a key role to understand the global dynamics, specially when f
models a root finding algorithm. In the case that ζ in X is an attracting fixed point we define
its basin of attraction by

A (ζ) = {x ∈X ∣ fn(x) → ζ, as n→∞},

or, in other words, A(ζ) is the maximal set where orbits converge to ζ under iteration. The
connected component of A (ζ) which contains x0 is called the immediate basin of attraction
of ζ and it is denoted by A⋆ (ζ).

Why discrete dynamical systems are related with root finding algorithms is almost direct.
Suppose we want to solve the nonlinear equation p(x) = 0. A root finding algorithm can be
understood as a discrete dynamical system fp ∶ X → X so that its orbits {xn ∶= fnp (x0)}n∈N,
converge to the solutions of p(x) = 0 for most initial conditions x0 ∈X. For instance, studing
the global phase portrait associated to fp gives valuable information on how to choose the
initial conditions to find all solutions of p(x) = 0 (see [?] for the case that p is a polynomial
with complex coefficients).
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To simplify the exposition we focus on the case that the nonlinear equation p = 0 is given
by a polynomial with complex coefficients. The most well-known and universal root finding
algorithm to find out the roots of p is Newton’s method defined as the iterates of the Newton’s
map

(1) N ∶= Np(z) = z −
p(z)
p′(z)

.

Observe that p(α) = 0 if and only if Np(α) = α. Moreover, easy computations show that
∣N ′

p(α)∣ < 1 and so the roots of p are attracting fixed points of Np, in fact if α is a simple

root then N ′
p(α) = 0, and one of the major interest is to study the basins of attraction of the

different roots of p as well as their boundaries which are contained in the Julia set of Np.
A first step is to extend the Newton map to the point at infinity, that is, to extend the

phase space from C to Ĉ = C∪{∞}, where Ĉ denotes the Riemann sphere. Using appropriate

charts on Ĉ we can see that z = ∞ is always a repelling fixed point of Np.
It is worth to be noticed that Newton’s method was the starting point of holomorphic

dynamics when Cayley used dynamical systems to understand the phase portrait of Newton’s
method applied to low degree polynomials (see [?, ?, ?]). Because of the importance of this
universal root finding algorithm there is a wide literature on different aspects of Newton’s
method, including recent results for the non polynomial case. See for instance [?, ?, ?, ?]).

An alternative to Newton’s method is the Secant method. Although it admits a complex
variable version (see [?] and Section ?? in this paper) in this work we focus on the (real)
Secant’s method applied to real polynomials of the form

(2) p(x) = akxk + . . . + a1x + a0, ak ≠ 0,

with k ≥ 3. We also assume that p has n real simple roots α0 < α1 < . . . < αn−1 with
n ∈ {0, . . . , k}. The roots α0 and αn−1 are called external roots and the rest internal roots.
The secant’s method is the root finding algorithm defined as the iterates of the Secant’s map
S ∶= Sp ∶ R2 ↦ R2 given by

(3) S ∶ ( x
y

) ↦ ( S1(x, y)
S2(x, y)

) = (
y
y − p(y) y−x

p(y)−p(x)
) = (

y
yp(x)−p(y)x
p(x)−p(y)

) .

Observe that in contrast to Newton’s method, the phase space of the Secant’s method is
two dimensional: R2 or C2 in its complex version. To visualize this, consider the Chebychev’s
polynomial p4(x) = 1 − 8x2 + 8x4 having all four single roots in the interval (−1,1). So, given
a root z = α of p4 Newton’s method Np (see Figure ??(a)) exhibits a fixed point located
a z = α (in this case real) while the Secant’s method Sp (see Figure ??(b)) has a fixed
point at (x, y) = (α,α) ∈ R2. We show the two dynamical planes: the complex plane C for
Newton’s method and the real plane R2 for the Secant’s method. We plot with the same
colour points converging to the same root using both algorithms. However for Newton’s
method the attracting fixed points are located on the real line {z = x+ iy ∈ C ∣ y = 0} while for
the Secant’s method the fixed points are located on the diagonal line {y = x} ⊂ R2. Similarly
Figures ??(c-d) illustrate the same phenomena for p5(x) = 5x − 20x3 + 16x5.

We refer to [?, ?, ?], and references therein, for a general background of the Secant’s method
applied to a polynomial p.

In this paper we emphasize on the behaviour of the Secant’s method near infinity. As we
already noticed, in the Newton’s case we might use the complex structure of S2 to show that
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(a) Dynamical plane of the Newton map applied to

p4(x) = 1 − 8x2 + 8x4.

(b) Dynamical plane of the Secant map applied to

p4(x) = 1 − 8x2 + 8x4.

(c) Dynamical plane of the Newton map applied to

p5(x) = 5x − 20x3 + 16x5.

(d) Dynamical plane of the Secant map applied to

p5(x) = 5x − 20x3 + 16x5.

Figure 1. Dynamical planes of the Newton’s map (left) and the Secant’s
map (right) map applied to the Chebychev polynomials p4(x) = 1 − 8x2 + 8x4

(top) and p5(x) = 5x − 20x3 + 16x5 (bottom). The range of all the pictures is
[−1.5,1.5] × [−1.5,1.5].

via the local chart ϕ(z) = 1/z we have that the Newton’s map is conjugated near infinity to
the map

Gp(z) = (ϕ ○Np ○ ϕ−1)(z) =
1

Np(1/z)
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near the origin. Thus, Newton’s method exhibits a repelling fixed point at z = ∞ with
multiplier N ′

p(∞) ∶= G′
p(0) = k/(k − 1) > 1. Moreover it is proven in [?] that z = ∞ belongs to

the boundary of all immediate basins of attraction of all fixed points of Np, or equivalently,
the immediate basins of attraction of all fixed points (roots of p) of Np are unbounded. This
crucial property is used in [?] to determine a universal set of initial conditions, only depending
on k (the degree of p), from which we can find all roots of p at once.

Our goal is to extend the Secant’s map to infinity and see the potential consequences and
numerical applications. In this case, however, we cannot add just a point as we did with
the Newton case. Instead we use the compactification of R2 given by the projective plane
RP2. A first step is to extend S, using homogeneous coordinates, to a map Ŝ on RP2. Once
this is done we observe that Ŝ itself induce a map Ŝ∞ over the line at infinity of RP2. The
expression of Ŝ∞ only depends on the degree k of the polynomial p. In Lemma ?? we study
the dynamics of Ŝ∞ and we show that, qualitatively, it only depends on the parity of k.

Alternatively, the map Ŝ∞ at a given point on the line at infinity can also be defined as
the limit behaviour of S over a line ending at this point-direction. This is well defined at all
point-directions except the horizontal one since

(4) lim
x→∞

Sp(x, y0) = (y0, y0),

and so Ŝ([1 ∶ 0 ∶ 0]) would be a point in R2.
In Figure ?? we show the dynamical plane of the Newton’s method and the Secant’s method

applied to the Chebyshev polynomials p4(x) = 1 − 8x2 + 8x4 and p5(x) = 5x − 20x3 + 16x5,
but now we focus our attention on the behaviour of S near infinity (compare with Figure
??). To do so, we show the dynamical planes inside a large circle centerer at the origin. In
Figures ??(a) and (c) we can see that the immediate basins of attraction of the roots of p
approach infinity forming wide accesses or sectors and this was the basic idea behind the
mentioned results in [?] to determine a universal set of initial conditions. In contrast, the
Secant’s method near infinity seems to be only related with the largest (red) and smallest
(blue) roots of p with the exception of two (k odd) or three (k even) points. The reason for
this to happen is a direct consequence Lemma ?? and it is explained in Section ??.

Our main result is the study of the global dynamics of Ŝ∞. That is, to show that S defines
a map over the line at infinity of RP2 and that such dynamics only depends on k, the degree
of the polynomial p. Let k ≥ 3 and let ϕk ∶ R→ R be the real map defined by

(5) ϕk(ζ) =
ζk−1 − 1

ζk − 1
= ζ

k−2 + ζk−3 + . . . + ζ + 1

ζk−1 + ζk−2 + . . . + ζ + 1
.

Theorem A. Let p be a degree k polynomial and

(6) ∆ =
∞

⋃
n=0

ϕ−nk (−1).

Then, the following statements hold.

(a) If k is odd, then there exists a unique fixed point [1 ∶ ηk ∶ 0] in `∞ for Ŝ∞, which is

attracting. Moreover, Ŝn∞([1 ∶ ζ ∶ 0]) → [1 ∶ ηk ∶ 0] as n→∞, for all ζ ∈ R ∖ {0,−1}.
(b) If k is even, then Ŝ∞ has exactly two fixed points: one attracting [1 ∶ ηk ∶ 0] and one

repelling [1 ∶ τk ∶ 0]. Furthermore, we have that Ŝn∞([1 ∶ ζ ∶ 0]) → [1 ∶ ηk; 0] as n →∞,
for all ζ ≠ {0} ∪ {τk} ∪∆.
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The paper is organized as follows. In Section ?? we introduce homogeneous coordinates
to define Ŝ in RP2. In section ?? we prove Theorem A. In section ?? we extend Ŝ in CP2

and study the global dynamics of this extension at infinity. In Section ?? we conclude some
numerical considerations.

We would like to thank the anonymous referees of a previous version of this paper. We
learn from their reports a better way to approach our results.

2. The secant map on RP2

In this section we extend the Secant map S to the infinity by considering its expression
over the whole the projective plane RP2 = R2 ⊔ RP1, where ⊔ denotes a disjoint union. In
this way the line at infinity is represented by RP1 or `∞. In the complex version we use the
notation CP2 = C2 ⊔CP1 instead of RP2 and in this case the line at infinity is the Riemann
sphere.

Recall that RP2 is a compact, non orientable space which can be associated to the set of
lines through the origin in R3. On the one hand we identify every line through the origin not
contained in the plane z = 0 with the intersection point between this line and the plane z = 1.
So, we might parametrize these points by [x ∶ y ∶ 1] (this is precisely R2 in the definition of

RP2 above). See Figure ??(a).
The set of lines excluded in this construction, that is the lines contained in z = 0, form the

so called line at infinity of the real projective plane. The coordinate [0 ∶ ζ ∶ 0] of a point in
`∞ is determine by the slope of the line ζ ∶= y/x when x ≠ 0 and the remaining point directly
by [0 ∶ 1 ∶ 0]. See Figure ??(b). Notice that antipodal points are identified. All together

determine the coordinate of each point in RP2, also called homogeneous cordinates

(7) RP2 = R2 ⊔RP1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

[x ∶ y ∶ 1] with (x, y) ∈ R2

[1 ∶ ζ ∶ 0] with ζ ∈ R

[0 ∶ 1 ∶ 0]

If [x ∶ y ∶ z] are the homogenous coordinates in RP2, the expression of the Secant map in

(??) writes, in the z = 1 coordinate chart (that is, (x, y) ↔ [x ∶ y ∶ 1]), as a rational map Ŝ
given by

Ŝ[x ∶ y ∶ z] = Ŝ[x/z ∶ y/z ∶ 1] = [y/z ∶ y/z p (x/z) − x/z p (y/z)
p (x/z) − p (y/z)

∶ 1]

= [y (p (x/z) − p (y/z)) ∶ y p (x/z) − x p (y/z) ∶ z (p (x/z) − p (y/z))] .
(8)

So, denoting by

q(t, z) = zkp(t/z) = aktk + ak−1tk−1z + . . . + a0zk

direct computations from (??) give the following expression of Ŝ as a 3-tuple of homogeneous
polynomials

Ŝ[x ∶ y ∶ z] = [y (p (x/z) − p (y/z)) ∶ y p (x/z) − x p (y/z) ∶ z (p (x/z) − p (y/z))]

= zk [y (p (x/z) − p (y/z)) ∶ y p (x/z) − x p (y/z) ∶ z (p (x/z) − p (y/z))]
= [y (q (x, z) − q (y, z)) ∶ y q (x, z) − x q (y, z) ∶ z (q (x, z) − q (y, z))]

= [y(xk − yk) +O(z) ∶ (yxk − xyk) +O(z) ∶ O(z)]

(9)
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(a) Dynamical plane of the Newton map applied to

T4(x) = 1 − 8x2 + 8x4.

−1●

τ4
●

η4
●

(b) Dynamical plane of the Secant map applied to

T4(x) = 1 − 8x2 + 8x4.

(c) Dynamical plane of the Newton map applied to

T5(x) = 5x − 20x3 + 16x5.

−1
●

η5
●

(d) Dynamical plane of the Secant map applied to

T5(x) = 5x − 20x3 + 16x5.

Figure 2. Dynamical planes of the Newton (left) and Secant (right) map
applied to the Chebychev polynomials T4(x) = 1− 8x2 + 8x4 (top) and T5(x) =
5x − 20x3 + 16x5 (bottom). We show the dynamical plane inside the disk
centered at the origin with radius 10, points outside this disk are colored in
black.

Remark 1. The indeterminacy points of Ŝ are given by 3-tuples [x ∶ y ∶ z] such that Ŝ[x ∶ y ∶
z] = [0 ∶ 0 ∶ 0]. According to (??) we have
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1

z = 1

z = 0

x

z

y

(a) The space of all lines through the origin in

R3 not contained in the plane z = 0.

y

x

[1 ∶m2 ∶ 0]

[1 ∶m1 ∶ 0]

[1 ∶m3 ∶ 0]

[1 ∶ 0 ∶ 0]

[0 ∶ 1 ∶ 0]

(b) The space of all lines through the origin

in the plane z = 0.

Figure 3. A model for the real projective plane RP2 = R2 ⊔ `∞ (a). The line of
infinity `∞ (b).

(a) Finite indeterminacy points (z = 1 in homogeneous coordinates). They correspond
to points (x, y) such that x ≠ y and p(x) = p(y) = 0. For a discussion of finite
indeterminacy points we refer to [?] where they are called focal points.

(b) Points at infinity (z = 0 in homogeneous coordinates) such that y = 0 and x ≠ 0, or
x = y and xy ≠ 0 (that is, {[1 ∶ 0 ∶ 0], [1 ∶ 1 ∶ 0]}, see the last expression in (??)).

3. Proof of Theorem A

We split the proof of Theorem A in two technical lemmas. First we observe that Ŝ defines
a map over the line at infinity.

Lemma 3.1. Consider a polynomial p as defined in (??). Denote ζ = y/x and assume

generically that xy ≠ 0. Then the Secant map S induces a map Ŝ∞ ∶ `∞ → `∞ given by

(10) Ŝ∞[1 ∶ ζ ∶ 0] = [1 ∶ ϕk(ζ) ∶ 0] .
Moreover the points {[1 ∶ 0 ∶ 0], [1 ∶ 1 ∶ 0]} are indeterminacy points of the secant map at
infinity.

Proof. The restriction of the Secant map (??) at infinity, that is with {z = 0}, under the
generic condition xy ≠ 0, writes as

Ŝ∞[x ∶ y ∶ 0] = [xk − yk ∶ (xk − xyk−1) ∶ 0] =
⎡⎢⎢⎢⎣
1 ∶

x (xk−1 − yk−1)
(xk − yk)

∶ 0
⎤⎥⎥⎥⎦
.

If ζ = y/x and we consider ϕk as defined in (??), we immediately conclude (??). The indeter-
minacy points at infinity follows from the previous remark. �

From the previous lemma it follows that the dynamics of Ŝ∞ is governed by the dynamics
of the map ϕk in R.

Lemma 3.2. The following statements hold.
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−1
●●

ϕk(ζ) = ζ

ζ

ϕk

ηk 1
● ●

τk

(a) Graphic of ϕk for k even.

−1
●

ϕk(ζ) = ζ

ζ

ϕk

ηk
●

1
●

(b) Graphic of ϕk for k odd.

Figure 4. The qualitative graph of the auxiliary map ϕk in R depending on the
parity of k.

(a) If k is odd, the map ϕk has a unique fixed point ηk. Moreover, ηk ∈ (0,1) and it is a
global attractor, i.e., ϕnk(ζ) → ηk as n→∞ for all ζ ∈ R.

(b) If k is even, the map ϕk has exactly two fixed points. One, ηk ∈ (0,1), is attracting.
The other τk < −1 is repelling. Moreover, ϕnk(ζ) → ηk as n→∞ for all ζ ∈ R∖∆∪{τk},
where ∆ is defined in (??).

Proof. We first prove (b). Clearly the map ϕk(ζ) has a unique vertical asymptote at ζ = −1,
and a horizontal asymptote at y = 0 since ϕk(ζ) → 0± as ζ → ±∞. Easy computations show

(11) ϕ′k(ζ) = −
ζk−2

(xk − 1)2
ψk(ζ),

where ψk(ζ) = (ζk − [k(ζ − 1) + 1]). We have that sign (ϕ′k(ζ)) = −sign (ψk(ζ)) since k is an
even number. But observe that ψk(ζ) measures the difference from the graph of the function
y = ζk and the graph of the function y = k(ζ − 1) + 1 which is precisely the tangent line to the
graph of y = ζk at the point ζ = 1. Hence ψk(ζ) ≥ 0 for all ζ ∈ R and ψk(ζ) = 0 if and only
if ζ = 1. In particular this implies that ϕk is strictly decreasing in its domain of definition.
All together prove that ϕk has exactly two fixed points: τk < −1 and ηk ∈ (1/2,1) (notice that
ϕk(1/2) > 1/2 and ϕk(1) = (k − 1)/k < 1). See Figure ??(b).

We claim that the positive fixed point ηk is attracting by showing that ∣ϕ′k(ηk)∣ < 1, and
the negative fixed point τk is repelling by showing that ∣ϕ′k(τk)∣ > 1. We consider each case
in turn. To see this we notice that ϕ′k(ζ) may be written as

ϕ′k(ζ) = −
ζk−2 (ζk−2 + 2ζk−3 + . . . + (k − 2)ζ + k − 1)

(ζk−1 + xk−2 + . . . + ζ + 1)2
.
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Doing some computations we get

ϕ′k(ζ) = −
∑k+1j=4 (j − 3)ζ2k−j + (k − 1)ζk−2

ψ(ζ) +∑k+1j=4 (j − 1)ζ2k−j + (k − 1)ζk−2
,

where ψ(ζ) > 0 for all ζ > 0 (in fact it is a polynomial with positive coefficients). Accordingly
∣ϕ′k(ζ)∣ < 1 for all m > 0 since j−3 < j−1 and so the positive fixed point ηk of ϕk is attracting.
The rest of the statement of (a) follows easily.

To finish, we prove (b) by showing that τk < −1 is repelling since the other statements
follow easily. Observe that

ϕ′k(ζ) =
1

(ζk − 1)2
[(k − 1)xk−2ζk − 1) − kζk−1(ζk−1 − 1)]

and since τk is a fixed point of ϕk we conclude that τk−1k −1 = τk (τkk − 1). So some computations
give

ϕ′k(τk) = −
τk−2k

τkk − 1
[k(τ2k − 1) + 1] .

Since τk < −1 and k is even it is clear that ϕ′k(τk) < 0. We claim that ϕ′k(τk) < −1 and so τk
is a repelling fixed point of ϕk. Indeed

−ϕ′k(τk) > k +
1

τ2k
− k

τ2k
> 1.

We secondly assume that k is an odd number. We have that ϕk(ζ) → 0± as x → ±∞ but
now ϕk(−1) = 0. See Figure ?? (b). In a similar way as in the even case ϕk(ζ) is a decreasing
map for ζ ≥ 0 since ϕ′k(ζ) < 0 for all value of x ≥ 0. Hence, the map ϕk has a positive fixed
point ηk in the interval (0,1) since ϕk(0) = 1 and ϕk(1) = (k−1)/k. Using the same arguments
as in the even case we conclude that ηk is an attracting fixed point.

Finally, we claim that ηk is the unique fixed point of ϕk when k is an odd number. From
(??) have that ϕk(ζ) = ζ writes as ζk + ζk−1 − 1 = 0 and it is easy to see that the polynomial
qk(x) = ζk + ζk−1 − 1 has a unique real root when k is an odd number, since qk has a local
minimum at 0 with qk(0) < 0 and a local maximum at −(k − 1)/k with

qk(−
k − 1

k
) = −(k − 1

k
)
k

+ (k − 1

k
)
k−1

− 1 = (k − 1)k−1

kk
− 1 < 0.

�

In Table ?? we compute numerically the fixed points of ϕk for several values of k. Com-
bining Lemmas ?? and ?? we obtain Theorem A.

Proof of Theorem A. The statement of Theorem A is basically a direct consequence of Lem-
mas ?? and ??. We only notice that in Theorem A(a) we exclude the point ζ = 0 since in
Lemma ?? we had assumed xy ≠ 0, and we exclude ζ = −1 since ϕ(−1) = 0. �

4. Further results and the secant map on CP2

We start this section by studying the the local dynamics of [1 ∶ ηk ∶ 0] and [1 ∶ τk ∶ 0] as

fixed points of Ŝ in RP2 (that is, not only restricted to the line at infinity). We first write
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k attracting fixed point ηk of ϕk repelling fixed point τk of ϕk
2 ≈0,61803399 ≈ -1,61803399
3 ≈0,75487766 ——
4 ≈0,81917251 ≈ -1,38027757
5 ≈0,85667488 ——
6 ≈0,88127146 ≈ -1,28519903
7 ≈0,89865371 ——
8 ≈0,91159235 ≈ -1,23205463
9 ≈0,92159932 ——
⋯ ⋯ ⋯
20 ≈0.9650705 ≈ -1,1186991
⋯ ⋯ ⋯
50 ≈0.9860941 ≈ -1.05933705

Table 1. Fixed points of the map S̃ on `∞.

the expression Ŝ in the x = 1 homogeneous coordinate system. We have

Ŝ[1 ∶ y ∶ z] = [y (q (1, z) − q (y, z)) ∶ y q (1, z) − q (y, z) ∶ z (q (1, z) − q (y, z))]

= [1 ∶ y q (1, z) − q (y, z)
y (q (1, z) − q (y, z))

∶ z (q (1, z) − q (y, z))
y (q (1, z) − q (y, z))

]

= [1 ∶ (1 − y
k−1) +O(z)

(1 − yk) +O(z)
∶ z
y
]

(12)

Using the notation (y, z) ↔ [1 ∶ y ∶ z] we might rewrite Ŝ as a map G acting as follows

(y, z) → G(y, z) = ((1 − yk−1) +O(z)
(1 − yk) +O(z)

,
z

y
) = (G1(y, z),G2(y, z)) .

The differential of G at any point of the form (ξ,0) is a triangular matrix of the form

(13) DG(ξ,0) = ( ϕ′k(ξ) ⋆
0 1/ξ )

We conclude in the following statement the local behviour of the real fixed points of Ŝ in `∞.

Lemma 4.1. The fixed point (ηk,0) is of saddle type: attracting in the direction of `∞ and
repelling in the normal direction. If k is even, the fixed point (τk,0) is also of saddle type:
repelling in the direction of `∞ and attracting normally.

Proof. We know from Lemma ?? that, on the one hand, (ηk,0) is such that 0 < ηk < 1 and is
an attracting fixed point −1 < ϕ′k (ηk) < 0, and on the other hand, (τk,0) is such that τk < −1
and is a repelling fixed point ϕ′k (τk) < −1. So the lemma follows from (??). �

We finish this section by studding the dynamics at infinity of Ŝ as a map defined in CP2.
Clearly (??) and (??) correspond to the expressions of Ŝ in CP2, just taking the variables

{x, y, z} as complex. So, the infinity of CP2 is now a Riemann sphere, S2 = Ĉ, and the

dynamics of Ŝ∞ is governed by the complex rational map ϕk ∶ Ĉ → Ĉ as defined in (??) but
now considering ζ ∈ C.
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Of course, in CP2, the equation ϕk(ζ) = ζ has k solutions, corresponding to the fixed points

of Ŝ at infinity. Depending on the parity of k, one, or two of them correspond to real solutions,
that is, fixed points of Ŝ∞ located in the real axis of the imaginary complex plane (or the

Riemann sphere). From the previous study it is clear that, for the map Ŝ∞, the fixed point ηk
is always attracting (as a fixed point in C) while the fixed point τk (k even) is always repelling
(as a fixed point in C).

Finally we want to determine the local character of all infinite fixed points of Ŝ (real or

complex) as fixed points of CP2. According to (??), for each infinite fixed point of Ŝ, that is,
for each solution αk ∈ C of ϕk(ζ) = ζ, we need to know ∣ϕ′k (αk) ∣ and ∣α−1k ∣.

On the one hand, if αk = ηk we already know that ∣ϕ′k (ηk) ∣ < 1 and ∣α−1k ∣ > 1, so [1 ∶ ηk ∶ 0]
is a saddle fixed point. On the other hand, ∣ϕ′k (τk) ∣ > 1 and ∣τ−1k ∣ > 1, so [1 ∶ τk ∶ 0] is a
repelling fixed point (the existence of τk requires k even). It remains to consider the non-real

zeros of ϕk(ζ) = ζ, or equivalently, the infinite fixed points [1 ∶ αk ∶ 0] of Ŝ with αk ∈ C.
Of course for small values of k one can make some experimental numerics to conclude. For

instance for k = 3 it is easy to verify that ∣ϕ′3 (α3) ∣ > 1 and ∣α−13 ∣ < 1 as long as α3 ≠ η3. See

Figure ??(a). Hence the two non-real fixed points of Ŝ for k = 3 are saddle points. If k = 6
(see Figure ??(b)) there are four non real fixed points. The numerical experiments illustrate
that the eigenvalue ∣α−16 ∣ is greater or smaller than 1, depending of the fixed point, while the
eigenvalue ∣ϕ′6 (α6) ∣ is always greater than 1. So, the local character of [1 ∶ α6 ∶ 0] (notice there
are four different values fo α6) might be either saddle or repelling; and both cases occurs.

Unfortunately we cannot give a precise answer about the local character of the fixed points
of Ŝ for an arbitrary k > 3. Nonetheless, our conjecture is the following, For an arbitrary
k > 3, there are some (but not all) fixed points with eigenvalue ∣α−1k ∣ greater than 1, and the
rest have eigenvalue ∣α−1k ∣ smaller than 1. On the contrary, the eigenvalue ∣ϕ′k (αk) ∣ is always

greater than one. Consequently, for an arbitrary k > 3 there are non real fixed points of Ŝ
being saddle points and there are non real fixed points of Ŝ being repeling points.

To motivate the second part of the conjecture (about the the eigenvalues ∣ϕ′k (αk) ∣) we argue

as follows. See [?] for an excellent reference on complex rational iteration. Let R ∶ Ĉ → Ĉ be
a rational map. We say that a point z ∈ F(R), where F(R) denotes the Fatou set of R, if
{fn∣U}n≥0 is a normal family for some sufficiently small enigborhood U of z. Its complement,

J (R) = Ĉ∖F(R), is called the Julia set. The Fatou and Julia set are dynamically invariant.
Moreover the Fatou set is open (so, the Julia set is closed) and its connected components
are called Fatou components. One can easily prove that the immediate basins of attraction
of every attracting fixed point of R (as well as their eventual preimages, if any) are Fatou
components. In our setting R is given by ϕk, k > 3, and the point ηk is an attracting fixed
point whose immediate basin, A⋆ (ηk), is a Fatou component. We conjecture that all critical
points of ϕk (that is, all solutions of the equation ϕ′(ζ) = 0) belong to A⋆ (ηk) and then by
Theorem 9.8.1 in [?] the Julia set of ϕk is a Cantor set. Consequently all periodic points (of
any period, including one, of course) different from ηk are repelling.

5. Conclusions

Theorem A describes the dynamics of Ŝ∞ as a map of `∞ ⊂ RP2, and it points out some
differences depending on the parity of k (we illustrate these behaviours in Figures ??(b) and
(d)).
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η3

(a)

η6

(b)

Figure 5. The dynamical planes of ϕk for k = 3 (left) and k = 6 (right). In yellow-
to-orange gradient we draw the completely invariant immediate basin of attraction of
ηk, k = 3,6. The points in orage/red (intersection of all gradient-orange) correspond
to the Julia set which we conjecture it is a Cantor set. So, the Fatou set has a unique
component, A⋆ (ηk), the immediate basin of attraction of the point ηk, and all fixed
points different from ηk are repelling. We also show the unit circle and all the fixed
points.

The first consideration is that Ŝ∞ always has an attracting fixed point [1 ∶ ηk ∶ 0] which
basically trapped all the dynamics on the line at infinity; that is, except for a countable
discrete set of points on `∞, all initial conditions converge to [1 ∶ ηk ∶ 0]. It is worth to notice
that this fixed point has a direct link with the two external roots of p; the largest and the
smallest root of p which have wide sectors inside the immediate basin with [1 ∶ ηk ∶ 0] on their
(infinite) boundaries. Notice also that diametrical opposite points in the circle correspond to
the same homogenous coordinate.

Secondly, we proved that the dynamics of Ŝ∞ is governed by the dynamics of the real map
ϕk. We restrict now to k even (see Figure ??(a)). Clearly x = −1 is a vertical asymptote and
y = 0 is an horizontal asymptote. In Lemma ?? we proved that ϕk has one attractive fixed
point ηk, and one repelling fixed point τk < −1. Except for the preimages of x = −1 and the
point x = τk any other point tends to τk under iteration. How this translates to the dynamics
of Ŝ∞? Outside the points [1 ∶ 0 ∶ 0], [0 ∶ 1 ∶ 0] and [1 ∶ −1 ∶ 0] the map Ŝp reflects trivially
the dynamics of ϕk, so every orbit converge to [1 ∶ ηk ∶ 0]. In fact [1 ∶ 0 ∶ 0] is the endpoint
the horizontal lines Lj = {(x,αj), x ∈ R, j = 0, . . . n} and it is an exercise to prove that, at
least for large values of x, Lj ∈ A (αj). This explains why we see in Figure ??(b) all colours
(corresponding to all roots of p) landing at this point in `∞. Now, since y = 0 is an horizontal

asymptote for ϕk and Ŝp([0 ∶ 1 ∶ 0]) = [1 ∶ 0 ∶ 0] we see a copy of the previous structure in the

vertical direction. Thus, it only remains to discuss the point [1 ∶ −1 ∶ 0]. Certainly Ŝp has a

pole at this point since ϕ(−1) = ∞ but it is possible to redefine Ŝ[1 ∶ −1 ∶ 0] ∶= [1 ∶ 1 ∶ 0] (we
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just use that
lim
x→∞

S(x,−x) = [1 ∶ 1 ∶ 0]

and this is the reason why in Figure ??(b) we see nothing but red in a neighbourhood of
[1 ∶ −1 ∶ 0].

If k is odd (see Figure ??(b) and Figure ??(d)), since

lim
x→±∞

ϕk(x) = 0 and ϕk(−1) = 0

the point [1 ∶ 0 ∶ 0] has two preimages: [0 ∶ 1 ∶ 0] and [1 ∶ −1 ∶ 0]. So, using the same arguments
as above, we see all colours landing at [1 ∶ 0 ∶ 0] and in each of the two preimages. Since

ϕnk(x) = ηk, x ≠ R ∖ {−1}

we easily conclude that Ŝn([1 ∶ x ∶ 0]) → [1 ∶ ηk ∶ 0] as n→∞, for all x ∈ R ∖ {0,−1}.

References

[Bea91] Alan F. Beardon. Iteration of rational functions, volume 132 of Graduate Texts in Mathematics.
Springer-Verlag, New York, NY, 1991.

[BF18] Eric Bedford and Paul Frigge. The secant method for root finding, viewed as a dynamical system.
Dolomites Res. Notes Approx., 11(Special Issue Norm Levenberg):122–129, 2018.
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