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Abstract

Multi-site MRI datasets are crucial for big data research. However, neuroimaging

studies must face the batch effect. Here, we propose an approach that uses the pre-

dictive probabilities provided by Gaussian processes (GPs) to harmonize clinical-

based studies. A multi-site dataset of 216 Parkinson's disease (PD) patients and

87 healthy subjects (HS) was used. We performed a site GP classification using MRI

data. The outcomes estimated from this classification, redefined like Weighted HAR-

Monization PArameters (WHARMPA), were used as regressors in two different clini-

cal studies: A PD versus HS machine learning classification using GP, and a VBM

comparison (FWE-p < .05, k = 100). Same studies were also conducted using conven-

tional Boolean site covariates, and without information about site belonging. The

results from site GP classification provided high scores, balanced accuracy (BAC) was

98.39% for grey matter images. PD versus HS classification performed better when

the WHARMPA were used to harmonize (BAC = 78.60%; AUC = 0.90) than when

using the Boolean site information (BAC = 56.31%; AUC = 0.71) and without it

(BAC = 57.22%; AUC = 0.73). The VBM analysis harmonized using WHARMPA pro-

vided larger and more statistically robust clusters in regions previously reported in

PD than when the Boolean site covariates or no corrections were added to the

model. In conclusion, WHARMPA might encode global site-effects quantitatively and

allow the harmonization of data. This method is user-friendly and provides a power-

ful solution, without complex implementations, to clean the analyses by removing

variability associated with the differences between sites.
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1 | INTRODUCTION

Neuroimaging collections of multi-site Magnetic resonance imaging

(MRI) scans are a natural step towards better and deeper knowledge

about brain processes in health and disease. Originally, functional,

structural or diffusion neuroimaging studies have included small sam-

ples, but it has notable limitations. It prevents the detection of true

differences, as well as it favors an increased detection of false-positive

because of the use of liberal thresholds (Radua et al., 2012). In this

sense, large image datasets can be crucial to provide reliable findings,

but neuroimaging studies must face the batch effect to harmonize

data (Leek et al., 2010). Reproducibility and reliability in multi-site

studies are goals that need to be addressed when working with large

collections of MRI brain images, mainly to deal with the variance

introduced by differences in scanners and acquisition protocols. As a

matter of fact, site effects can stunt the detection of consistent find-

ings to the detriment of spurious results (Pinto et al., 2020).

Generally, large-scale datasets are gathered from multiple sites,

using different scanners for the acquisition. In many cases, the acqui-

sition protocol is harmonized, and the issue in the final statistical find-

ings seems more restrained (Fox et al., 2012; Vollmar et al., 2010).

However, other studies show that diffusion tensor images (DTIs) using
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the same acquisition protocol can differ significantly from one site to

another (Jovicich et al., 2014; Nyholm et al., 2013). The major draw-

back, with and without harmonization, is how to remove the non-

biological information associated with scanner effects, acquisition pro-

tocol and hardware. Beyond biological variability, many relevant

works have dealt with scanner manufacturer, scanner upgrade, and

field strength (Han et al., 2006), gradient nonlinearity (Jovicich et al.

2006), and longitudinal drift (Takao, Hayashi, & Ohtomo, 2011). These

properties of MRI scanners have been explored to reduce bias and

variance of brain images (Jovicich et al., 2016). It has been investi-

gated in cortical thickness (Fortin et al., 2018); Han et al., 2006), in

voxel-based morphometry studies (Takao, Hayashi, & Ohtomo, 2014),

and brain diffusion data (Fortin et al., 2017; Pinto et al., 2020), which

has been the modality more studied with many methods. However,

the intervention over the scanner and acquisition parameters cannot

always protect against the total amount of unwanted variability. In

many cases, according to the increased interest for large-scale studies

and new collaborations, multi-site data were pooled and integrated

after the scanner, and the acquisition parameters were considered

together, and data acquired.

Other strategies focusing on pre-processed data have been con-

sidered, but these methods work using metrics (volumes, cortical

thickness and FA among others) extracted from pre-processed data.

In this context, batch-effect correction methods from other areas

have been adapted to the metrics from neuroimaging. The ComBat

(Johnson, Li, & Rabinovic, 2007) is a batch effect correction tool used

in genomics that has been adapted to metrics from diffusion data

(Fortin, Parker, et al., 2017), cortical thickness measures (Fortin

et al., 2018) and functional connectivity matrices (Yu et al., 2018).

The adjusted residual harmonization model is a conventional pro-

cedure that relies on using a linear regression model adjusted for

biological covariates. ComBat extends this method by modeling

site-specific scaling factors and then uses empirical Bayes to improve

the stability of site parameters (https://github.com/Jfortin1/

ComBatHarmonization). This technique has also been adapted for

meta-analyses (Radua et al., 2020) on cortical thickness, surface area

and subcortical volumes from the ENIGMA Consortium (http://

enigma.ini.usc.edu). Other authors have also extended the ComBat

functionality by fitting a generalized additive model (Combat-GAM;

Pomponio et al., 2020). Going further, to avoid depending on a statis-

tically representative sample, the Neuroharmony method relies on

training a machine learning tool on the ComBat outcomes to capture

the relationship between the intrinsic characteristics of the data

(Garcia-Dias et al., 2020). Nevertheless, a study by Chen et al. has

shown that site differences could remain in covariance patterns after

the harmonization, and propose an approach that combines the Com-

Bat method with variance decomposition (CovBat; Chen et al., 2022).

The problem remains opened when the studies aim to explore

pre-processed 3D (NIFTI) images instead of metrics. An approach to

address harmonization in treated images is the removal of artificial

voxel effect by linear (RAVEL) regression method, which is applied

after intensity normalization, prior to segmentation (Fortin, Sweeney,

Muschelli, Crainiceanu, & Shinohara, 2016). This method is according

to two batch effect correction tools used in genomics (SVA and RUV)

(Gagnon-Bartsch & Speed, 2012; Leek & Storey, 2007, 2008), and

decomposes the voxel intensity into a biological component and an

unwanted variation component from a control region from the cere-

brospinal fluid. However, the strong dependency on the reference

region can be wrongly associated, and the correction might remove

biological signals of interest (Fortin et al., 2016).

A widespread approach to deal with multi-site variability in pre-

processed images lies in including a confounding variable in the statis-

tical design. This method relies on the same principle in which ComBat

does, since it is an extension of the linear regression model adjusted

for biological covariates. If assumed, as reported in Chen et al. that

ComBat cannot completely remove covariance patterns after its appli-

cation on the metrics, the same problem could interfere in volumetric

studies (Chen et al. 2022). In fact, it has been reported that the perfor-

mance boost by using the confound versus the models that do not

account for the site is poor (Rao, Monteiro, & Mourao-Miranda, 2017).

This aspect involves inherently that nonbiological confounders might

be interfering in the outcomes, and that the behavior of the site

effects may be unpredictable and heterogeneous.

Pattern recognition and machine learning techniques applied to

images of any acquisition modality can predict the behavior of a system

and identify any encoded pattern of variation associated with the data

(Ashburner & Klöppel, 2011). The scope of application for machine

learning becomes maximized in the field of deep learning. Sophisticated

approaches using deep learning have been developed to face the har-

monization challenge in MRI images. Supervised deep image synthesis

has been used to create harmonized images, using U-Net neural net-

work architecture to generate synthetic images from an overlapping

cohort (DeepHarmony; Dewey et al., 2019). Another proposed genera-

tive model to harmonize MRI is cycleGAN-based model (Zhu et al.,

2017). However, a limitation of these methods is that they need addi-

tional replicated data to train for each site. Also, a deep learning-based

training scheme has been used to create scanner-invariant features, by

considering harmonization to be multiple sources while maintaining per-

formance on the main task of interest, this procedure reduces the influ-

ence of the site on network predictions (Dinsdale et al., 2021).

Nevertheless, this framework has some logistical limitations if there is

no overlap between datasets, as well as it cannot be easily used in con-

junction with tools such as Freesurfer or techniques like the voxel-based

morphometry (VBM). These complex approaches are difficult to be

applied and adapted to clinical studies, where the main goal is cleaning

data efficiently from the site effects without losing biological informa-

tion. A balance must be accomplished to make the harmonization proce-

dure accessible as well as powerful, without complex implementations.

In this work, we aim to address this problem using a machine

learning approach to harmonize structural MRI images, which could

also detect covariance patterns associated with the site effects. For

the study, we have used a multi-site dataset that involves anonymized

MRI data of patients with PD and healthy subjects (HS) from four rele-

vant institutions in PD research. Gaussian process (GP) for machine

learning (Rasmussen & Williams, 2006) were used to quantify the site

effect for each image. We hypothesized that the outcomes provided
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by the GP classification, known as predictive probabilities, encode the

parameters that weight the contribution (in terms of similarity) of each

site to each image better than the Boolean site covariate of belonging

or not to each site, which is 1 (belonging) or 0 (not belonging).

These outcomes, namely Weighted HARMonization PArameters

(WHARMPA), can then be introduced in the statistical design, which

would be equivalent to modifying the Boolean-type covariate by a

weight that would encode to what extent, what is common in all the

images of a dataset is present in a particular image.

2 | METHODS

The design of the current work involves two main parts. First, the esti-

mation of the harmonization parameters by means of a machine learn-

ing classification of the sites. Second, an evaluation of the scope of

these parameters to correct (a) a machine learning classification

between patients and HS and (b) the comparison of patients versus

HS in a voxel-based morphometry study. As references, the same ana-

lyses were conducted using also the conventional Boolean site covari-

ate and without involving information about site belonging.

2.1 | Multi-site dataset

For this study, we used a multi-site data set from four centers.

Anonymized T1-weighted MRI data of Parkinson's disease

(PD) patients and HS were collected from four relevant institutions in

PD research: The University of Deusto, Bilbao, Spain (site 1), the Uni-

versity of Barcelona, Barcelona, Spain (site 2), the Center of Addiction

and Mental Health (CAMH), Toronto, Canada (site 3), and the Univer-

sity of Cologne, Cologne, Germany (site 4).

From the initial sample, 10 subjects were excluded at the visual

inspection: 6 PD and 1 HS due to movement artifacts, and 1 PD and

2 HS due to incomplete acquisition. The final cohort comprised

216 PD patients and 87 HS. The demographic variables considered

involved age and sex.

2.2 | Neuroimaging data

The characteristics of the acquisition parameters for the MRI images

are described below.

2.2.1 | Dataset from [Site 1]

An MRI scanner Philips Achieva 3 T TX was used for the acquisitions.

T1-weighted images were obtained in a sagittal orientation. Repeti-

tion time (TR) = 7.4 ms, echo time (TE) = 3.4 ms, matrix size

228 � 218 mm2; flip angle 9�, field of view (FOV) = 250 mm, slice

thickness 1.1 mm, acquisition time = 405500, 300 slices, voxel size 0.98

� 0.98 � 0.60 mm3.

2.2.2 | Dataset from [Site 2]

Acquisitions were made in an 8-channels head coil SIEMENS MAG-

NETOM TrioTim syngo MR B19 3 T scanner (Siemens). High-

resolution three-dimensional (3D) T1-weighted images were acquired

a sagittal orientation. TR = 2,300 ms, TE = 2.98 ms, matrix size = 256

� 256 mm2, flip angle 9�, FOV = 256 mm, acquisition time = 704800,

240 slices, voxel size 1.0 � 1.0 � 1.0 mm3.

2.2.3 | Dataset from [Site 3]

Images were acquired in a General Electrics Discovery MR750 3 T

scanner. fast-spoiled gradient echo pulse sequence, in a sagittal orien-

tation. TR = 6.7 ms, TE = 3.0 ms, matrix size 256 � 256 mm2, flip

angle 8�, FOV = 230 mm, acquisition time = 401600 , 200 slices, voxel

size 0.89 � 0.89 � 0.9 mm3.

2.2.4 | Dataset from [Site 4]

Acquisitions were made in a PRISMA MAGNETOM 3 T scanner

(Siemens). Acquisition parameters for T1-weighted structural images,

in a sagittal orientation, were as follows: TR = 2,300 ms,

TE = 2.32 ms, matrix size 256 � 256 mm2, flip angle = 8�,

FOV = 230 mm, acquisition time = 503000 , 192 slices, voxel size

0.9 � 0.9 � 0.9 mm3.

2.3 | MRI preprocessing

For the preprocessing, T1-weighted images were first visually

inspected for artifacts and centered in the anterior commissure. Next,

the images were segmented into grey matter (GM), white matter

(WM), and other tissues, using SPM12 (http://www.fil.ion.ucl.ac.uk/

spm/software/spm12/). GM and WM data were normalized to the

MNI space according to DARTEL technique (Ashburner, 2007), also

implemented in SPM12. Finally, Jacobian and non-Jacobian scaled

GM and WM images were smoothed using an isotropic Gaussian ker-

nel, using 11 � 11 � 11 mm3 of FWHM. This size of FWHM was

selected based on previous works about the comparison of MRI fea-

tures (Monte-Rubio et al., 2018).

2.4 | Machine learning classification

2.4.1 | Processing

The Pattern Recognition for Neuroimaging Toolbox (PRoNTo; http://

www.mlnl.cs.ucl.ac.uk/pronto/) was used for machine learning ana-

lyses (Schrouff et al., 2013).

A multi-class classification approach was applied to perform the site

classification. For the subsequent test, the classification between HS
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and PD patients, a binary classification was conducted. In both cases,

the multiclass and the binary classification problems, we applied the GP

machine learning technique (Rasmussen &Williams, 2006).

The outcomes by the GP site classification, known as predictive

probabilities, were used as WHARMPA in the subsequent test analyses.

As features, non-Jacobian scaled GM and GM + WM data from

the pre-processing were used as spatial patterns in both classification

problems. Nonmodulated versions of the tissues have been found to

provide better performance in machine learning analyses (Monte-

Rubio et al., 2018) than modulated. A single linear kernel was created

with the whole dataset, this matrix encodes the dot product between

all the images involved in the analysis. As GP is not a multi-kernel

approach, when the combination GM + WM was used, respective

kernels were concatenated to get a single kernel.

Additionally, the spatial representation of the predictive function

(i.e. weight maps), was estimated in all cases. To show the relative

contribution of all regions for the model (Schrouff & Mourao-Miranda,

2018), the weight maps were labeled according to the Anatomical

Automatic LabellinG (AAL) atlas.

2.4.2 | Statistics

The predicted labels were compared to the true labels using the test

dataset, the balanced accuracy (BAC) was obtained to test the per-

formance. The BAC accounts for the number of samples in each

class, providing equal weight to the accuracies between classes.

Also, class accuracies to show if the model favors some classes over

others, and class positive predictive values to represent the number

of false positives, are given. Permutation test was run for each clas-

sification problem, for demonstration purposes 100 permutations

were carried out to associate a p-value = .0099 to the

corresponding performance (p-value is equal to 1/R, it means p-

value < .01) (http://www.mlnl.cs.ucl.ac.uk/pronto/prt_manual.pdf).

Regarding the PD patients versus HS classification, the Area Under

the Curve (AUC) of the Receiver Operating Characteristic (ROC)

curve was additionally reported.

Performances from GP classifications were assessed using a

leave-one-out cross-validation (LOO-CV) scheme, therefore the whole

sample but one was used during the training phase. For each input, a

probabilistic label of belonging to one class or another was predicted

providing four vectors, one per center. Predictive probabilities from

the classification of centers using GM as a feature were used as

WHARMPA to the subsequent clinical analyses.

The site information is a categorical variable, and it cannot be

introduced into the design as an ordinal vector. It was implemented as

a one-hot encoding type, where each value of a variable (“site1”,
“site2”…) was considered a Boolean 1 (belonging)/0 (not belonging)

variable, a column per site is required. In this way, all values were

treated with the same importance.

In all the classification analyses, covariates were regressed out,

mean-centered and kernel matrices normalized. Regarding the multi-

site classification problem, age, sex, and diagnostic group were

included as covariates. On the other hand, for the diagnostic classifi-

cation of PD patients versus HS, covariates involved were sex, age

and (a) the WHARMPA, (b) the Boolean site covariate, or (c) no vari-

able accounting for the site.

Regarding the estimation of the performance in the PD versus

HS classification, it has been shown that the BAC might be biased

in multi-site studies (Solanes et al., 2021), and that machine-

learning studies must control for the site-effects after obtaining

the BAC provided by the classification. To complete the BAC esti-

mation, the BAC from the site-effect was also estimated using the

“multisite.accuracy” R package (https://cran.r-project.org/web/

packages/multisite.accuracy). The real target and the predicted tar-

get were used to obtain an independent BAC corrected for site-

effect, as well the sensitivity and the specificity of the

performance.

Finally, McNemar's test was used to provide a p-value for the

comparison between harmonization methods in the HS versus PD

classification. It was applied to each pair of predicted targets. The

McNemar's test is a nonparametric test for paired nominal data. The

basis of the test relies on finding out where these two performances

differ, comparing the sensitivity and specificity of the two tests on the

same sample. The cutoff of significance (α) was set to .05, and the

confidence interval (CI) to 95% (SPSS Statistics, V25.0.0.1; IBM Cor-

poration, Armonk, NY).

2.5 | Voxel-based morphometry

2.5.1 | Processing

To explore the scope of the WHARMPA correction in a uni-

variate approach, Voxel-Based Morphometry (VBM;

Ashburner & Friston, 2000) analyses were conducted between

whole samples of HS and PD. The comparison, using age and

sex as covariates, was conducted to obtain the performance

according to each type of site-effect correction. Jacobian

scaled GM data, smoothed at 11 mm of FWHM, were used for

the analyses.

2.5.2 | Statistics

For the VBM analysis, age, sex, and total intracranial volume (TIV)

were used as covariates at all analyses. According to the aim of

the test, the following were added to the design: (a) the

WHARMPA from the GM tissue, (b) the Boolean site covariate or

(c) no covariate.

Statistical parametric maps were corrected for multiple compari-

sons, with a FWE corrected p-value < .05 and an extent threshold of

k = 100. Tables were elaborated using the xjView visualization tool

(https://www.alivelearn.net/xjview).
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3 | RESULTS

3.1 | Demographic data

No significant differences were found regarding age between HS and

PD patients (Student's t-test, age: T = �0.036, p = .971). Regarding

sex, differences were slightly biased between groups (HS: 50.57%

females, PD: 64.35% females; Chi-Squared, X2 test value = 4.922,

p = .027; for Site 4: p = .047; Table 1).

3.2 | Estimation of the weighted WHARMPA

The classification of sites provided high scores. Outcomes from each

feature are detailed in Table 2.

In all cases, the confusion matrix showed a reduced number of

classification errors. The class accuracies were different across sites.

However, all the features performed very efficiently. The BAC scores

were comprised between 95.98 and 98.82%.

Pearson's correlation parameters were estimated between

scores from each feature according to sites. A strong correlation

between predictive probabilities was found. Lower scores were

observed between GM and WM (from Site 1:0.97; Site 2:0.96; Site

3:0.95; and Site 4:0.95). Between GM and GM + WM the correla-

tion was higher (from Site 1:1.00; Site 2:0.99; Site 3:1.00; and Site

4:0.99). Regarding the WM and GM + WM, the scores were in the

range (from Site 1:0.98; Site 2:0.98; Site 3:0.97; and Site 4:0.97).

We can state that predictive probabilities from the classification

using any of these features are highly correlated. However, involv-

ing GM seems to provide higher concordance between perfor-

mances (Figure 1).

3.2.1 | Test 1: Parkinson's disease patients versus
healthy subjects classification

Results from the classification of patients versus controls were

quite different depending on the type of site correction (Table 3).

Performances from any feature, without correction and using the

Boolean site covariate, provided poor efficiency. On the other

hand, those analyses involving the WHARMPA showed increased

performance. Additionally, when the parameters came from the

same feature that the one used in the analysis, results were

maximum.

Statistically significant differences were found between the per-

formances from the different harmonization methods according to

McNemar's test (Table 4). The Boolean site correction provided better

outcomes than when no information about the site was added,

although the performance from the WHARMPA method out-

performed the rest of the corrections. However, the improvement

when using WHARMPA from one tissue or combined was not

relevant.

TABLE 1 Demographics of the whole multi-site sample: Healthy subjects (HS) and Parkinson's disease (PD) patients

Site 1 Site 2 Site 3 Site 4 Total ANOVA

HS

N (f ) 26 (11) 29 (15) 17 (8) 15 (9) 87 (43)

Age ± SD 68.31 ± 7.52 64.21 ± 8.77 61.47 ± 7.40 68.40 ± 7.63 65.62 ± 8.29 0.020*

PD

N (f ) 36 (14) 86 (36) 35 (8) 59 (19) 216 (77)

Age ± SD 68.00 ± 6.26 63.94 ± 10.37 64.77 ± 6.41 67.27 ± 10.32 65.66 ± 9.33 0.063

HS versus PD

Sex (χ2 p-value) .787 .355 .076 .047* .027*

Age (Student's p-value) .861 .902 .104 .693 .971

*p<.05.

TABLE 2 Scores from center classification

Feature set

Multiclass Gaussian Process classification

Balanced accuracy (BAC %) Class accuracies (%) Class positive predictive value (%)

GM 98.39 98.39 96.52 100 98.65 98.39 99.11 100 94.81

WM 95.98 98.39 94.78 96.15 94.59 89.71 99.09 96.15 95.89

GM + WM 98.82 98.39 98.26 100 98.65 98.39 99.12 100 97.33

Note: Permutation test p-value = .0099.

Abbreviations: GM, grey matter; WM, white matter.

Feature sets from non-Jacobian scaled data; smooth 11mm FWHM.
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The most contributive regions involved in the decision criteria

for the GM were mostly in the left hemisphere, the cerebellum

10 (ROI weight 2.10%; size of the ROI 115 voxels; expected rank-

ing [ER] 117) and 9 (ROI weight 2.06%; size of the ROI 922 voxels;

ER 115), the left cerebellum Crus2 (ROI weight 1.79%; size of the

ROI 3676 voxels; ER 114), the paracentral lobule (ROI weight

2.08%; size of the ROI 1750 voxels; ER 116), also in the right hemi-

sphere (ROI weight 1.47%; size of the ROI 1155 voxels; ER 110).

The vermis 1_2 (ROI weight 1.70%; size of the ROI 92 voxels; ER

113) and 9 (ROI weight 1.67%; size of the ROI 335 voxels; ER 112)

were also strongly contributing to the decision. A table with the

region's relevance with a contribution above 100 in the expected

ranking is shown in Figure 2d.

3.2.2 | Test 2: Voxel-based morphometry
comparison between PD and HS

In all analyses, only the contrast HS > PD provided results. The out-

comes when using the harmonization parameters to correct the

model involved more regions, and these were wider than when the

Boolean site covariate or no site information were applied. On the

contrary, when the Boolean site correction was used, the clusters

appeared more spatially restrained and less statistically significant

than in the other two models. When no site correction was used,

the extent of the regions was sized between both types of harmo-

nizations, and some overlap of clusters with these other two

models was observed.

F IGURE 1 (a) Weights map from the site classification using grey matter (GM) as feature; (b) The list shows those regions with a contribution
above 100 in the expected ranking (ER) to identify site effects for the current sample; (c) Histogram and (d) confusion matrix from the same
classification analysis
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The VBM analysis between whole samples of HS and PD showed

areas bilaterally distributed when the WHARMPA were used to cor-

rect for the site effect, also the clusters covered larger regions than

when using the conventional center covariate or none. Statistically

significant regions appeared more restrained and lateralized when the

Boolean site covariate or no site correction were applied.

The statistical map obtained in the VBM using the WHARMPA

(colored in green in Figure 3) showed decreased GM volume regions

consistent with PD deterioration pattern. Occipital regions, the left

occipital middle and superior, and the precuneus and cuneus were

comprised in the most significant cluster. The larger cluster was cen-

tered in the right frontal superior medial and extended all the frontal

lobe and the anterior cingulate. Additionally, the limbic lobe, involving

the bilateral cingulum middle towards the supplementary motor area

was detected. A large cluster placed in the left frontal inferior orbital

that extended towards the temporal superior covered a wide area of

the left temporal and part of the left frontal lobe. Moreover, a cluster

in the right temporal lobe, involving the middle and superior temporal,

extended toward the occipital middle, involving the angular and the

cuneus. Predominantly left, but also right thalamus was observed in a

cluster that extended toward the hippocampus and then the cerebel-

lum. Bilateral amygdala was also involved.

The VBM analysis without using any type of site correction pro-

vided regions (colored in red in Figure 3) that overlapped some of the

findings from the VBM using the WHARMPA. The most remarkable

location above mentioned in the left occipital regions, as well as the

larger cluster in the frontal lobe, were observed. However, the exten-

sion of these clusters was rather limited in contrast with the clusters

obtained using the WHARMPA. Smaller clusters were also detected in

the bilateral temporal superior, and the limbic lobe.

The most relevant difference between the outcomes was

observed when comparing the VBM maps using the Boolean site

covariate (colored in blue in Figure 3) to the other design models. Only

five small clusters were found, the occipital regions were not

detected. The larger cluster, placed in the right frontal superior medial,

exhibited few voxels with respect to the clusters described above,

involving only the superior and medial frontal gyrus. Also, the cluster

in the left temporal superior, in the limbic lobe, and in the left tempo-

ral inferior involving the fusiform were detected. Statistics and loca-

tions involved in the three design models are detailed in Table S5.

4 | DISCUSSION

In the current work, we have tested the outcomes derived from GP

classification as harmonization parameters to correct for the differ-

ences between sites. We have observed that these parameters might

encode quantitatively the whole variability associated with the site

effect, which means those variations associated with the differences

in the MRI data. GM and WM tissue images were used as features for

the site-effect classification. As expected, both features and its combi-

nation provided very similar and high performance, because the target

(i.e. site belonging) is a determinant factor. The predictive probabilitiesT
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TABLE 4 McNemar's test estimation between each pair of performances

Correction for site-effect Boolean site covariate WHARMPA from GM WHARMPA from GM + WM

Feature set GM GM + WM GM GM + WM GM GM + WM

None GM 0.031* 0.011* 0.000* 0.000* 0.000* 0.000*

GM + WM 0.002* 0.000* 0.001* 0.002* 0.000* 0.004*

Boolean site covariate GM 0.581 0.000* 0.000* 0.000* 0.000*

GM + WM 0.000* 0.000* 0.000* 0.000*

WHARMPA from GM GM 0.549 0.508 0.388

GM + WM 0.238 1.000

WHARMPA from GM + WM GM 0.092

GM + WM

Note: Cut-off of significance (α) was set to 0.05, and the confidence interval (CI) to 95%.

Abbreviations: GM, grey matter; None, no site information used; WHARMPA, weighted harmonization parameters; WM, white matter.

*p <.05.

F IGURE 2 Scores of the classification between Parkinson's disease (PD) patients and healthy subjects (HS) using grey matter (GM) tissue as
feature, and harmonization parameters from GM to protect from the scanner effect: (a) histogram of the classification, (b) ROC and AUC,
(c) weights map shows the contribution of each region in the decision and (d) table of the regions that played a role in the classification decision
according to the AAL atlas (https://www.pmod.com/files/download/v35/doc/pneuro/6750.htm). An expected ranking (ER) is assigned to each
region, in the table only the contributions above 100 were selected
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from GM images were used to explore their scope as WHARMPA.

The results showed that these encode site-effect variability more

accurately than using the conventional Boolean site correction. We

tested our hypothesis using a PD multi-site dataset. First, we

attempted to identify a classification pattern between patients and

controls. Second, we focused on the VBM comparison to identify GM

atrophy patterns in the disease. In both cases, when the WHARMPA

were used to correct the two different types of clinical analyses, the

performance became better than using the Boolean approach.

Regarding the classification between HS and PD patients, the

results showed how performance markedly increased when the

WHARPMA were used as a correction factor, against the Boolean site

regressors and no site correction. The best performance achieved

without using the WHARMPA gave a BAC of 58.59% and the AUC

was 0.73, which is a poor outcome. However, when the WHARMPA

were used to correct the model, the BAC was 79.09% and the AUC of

0.90, this means a statistically significant improvement (McNemar's

test, p-value = .001). To put into contrast these scores, there are

some studies in the literature that have attempted the classification

between patients with PD and HS using whole brain images. In a

whole brain resting state fMRI study using between-network connec-

tivity, the authors reported an accuracy of 76.2% (Rubbert

et al., 2019). However, DTI data have been found not feasible in a

support vector machine study on a whole-brain level (FA, MD), ROI-

labeled analyses, or when focusing on the substantia nigra (Prasuhn,

Heldmann, Münte, & Brüggemann, 2020). Certainly, the scores can

improve when one or few regions obtained in a VBM are later asked

to the machine learning analysis. Using this ROI approach, accuracies

can reach 99% to detect PD versus HS in men (Solana-Lavalle &

Rosas-Romero, 2021). Many studies show increased performances

when using non-MRI data, for instance, voice features provided an

accuracy of 93.84% (Karapinar Senturk, 2020), or postural sway classi-

fication reached 86% (Apthorp et al., 2020). The highest performance

that we have obtained using only whole brain data were obtained

with the WHARMPA method (BAC 79.09; AUC 0.90) and provided

comparable findings from studies that used additional strategies.

McNemar's test showed that the proposed method to harmonize

studies provided statistically significant improvements with respect to

the Boolean regressors or the absence of correction.

Moreover, we found that if the features used to determine the

WHARMPA are the same to be used for the posterior study, the coeffi-

cients will better fit the data and optimize the performance. Even so, we

observed that the predictive probabilities from different features were

strongly correlated. In fact, McNemar's test did not show significant differ-

ences between performances when usingWHARMPA from any feature.

A second test focused on the VBM technique. We showed how

harmonizing with WHARMPA provided the best performance con-

cerning amount, size and statistical robustness of the clusters in

regions that have been previously reported in PD (Burton, McKeith,

Burn, Williams, & O'Brien, 2004; Potgieser et al., 2014). Regions

showed a matching with the areas identified in a meta-analysis by Xu

et al. (2020). This study found only reduced GM volume in PD

patients to HS, no GM volume increase was detected. Authors gath-

ered the regions in five areas, all of them have been observed in the

current VBM analyses, but mostly involved in the VBM harmonized

using the WHARMPA. These regions involve the bilateral insula, len-

ticular nucleus and putamen, temporal lobe, right striatum and amyg-

dala. Also, the anterior cingulate, paracingulate gyri, and superior

frontal and fusiform gyrus have been reported (Xu et al., 2020). Addi-

tionally, the occipital, the bilateral thalamus, basal ganglia and the

orbital regions were implicated.

Findings, when no correction was added to the model, were spa-

tially encompassed between those from using the WHARMPA and

the Boolean regressors, which were markedly scarce. However, it was

expected that the model without site correction provided at maximum

the same outcomes as the model with the Boolean site correction.

F IGURE 3 Overlap of the outcomes from the comparison between healthy subjects (HS) > Parkinson's disease (PD) patients. Age and sex
were used as covariates in all the models. The t-score is represented in green for the weighted harmonization parameters (WHARMPA) from grey
matter, in blue for the conventional Boolean site correction, and in red when no correction was applied. Right is left
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The lower statistical scores using the Boolean site-regressors may

imply that those could be strongly removing nonimaging related

(e.g. biological) differences between sites. In this sample, we did not

find one variable to be responsible for the nonexpected behavior of

the outcomes between the types of correction in our data, some vari-

ables might be contributing to this fact.

The influence of unbalanced variables on the harmonization

becomes a limitation in these approaches that account for site-effect

after preprocessing. This is a general problem related to any multicentric

study itself, similar to what happens with cultural, demographic, or

genetic differences across countries. The pure modeling of the variance

due to the scanner and acquisition protocol is the ideal scenario, but this

is quite difficult to reach because often, not all the variables of the multi-

site dataset are available. The effect becomes wider when comparing the

outcomes from using Boolean regressors versus without using site

correction. Mostly, without site correction, the results might be strongly

biased. In terms of reliability, if something is hidden among the noise, we

must struggle with data until we can get the most but, when no real

outcomes overcome the threshold, no spurious outcomes must appear.

Positively, and even though the WARMPA might be removing also bio-

logical differences, this method is efficient in facing this kind of situation

better than the Boolean approach that we have explored in this work.

Another limitation of this method is that from WHARMPA is not possi-

ble to identify what the source of the variance is, whether it is due to the

scanner, the protocol, which parameter, and what the amount of biologi-

cal component is. Thus, all the variables that want to be preserved in the

data must be considered when estimating the WHARMPA parameters

to avoid removing them.

Further work is being conducted to extend the WHARMPA to

metrics, like cortical thickness, volumes or fractional anisotropy (FA).

This approach will enable the comparison between methods like Com-

Bat (Johnson et al., 2007), which has shown high efficiency in harmo-

nizing metrics from MRI and DTIs, better than fixed-effects

covariates.

In conclusion, the current work shows that the WHARMPA can

provide a good solution to accurately clean the analyses in a quantita-

tive way at the image level, by removing variability associated with

the site. It is effective in situations that require regress out scanner

effects multi-site or local (like a scanner calibration during the acquisi-

tion of a cohort). The application of the WHARMPA correction does

not require additional implementations and is straightforward, the

approach allows an user-friendly obtention of the WHARMPA with a

low computational burden.
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