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1 Introduction

Groundwater depletion is a major challenge nowadays where groundwater resources are

playing an increasingly important role, not just for irrigation (the regular use in the ma-

jority of aquifers) but also for domestic and industrial purposes. A situation that occurs

and illustrates this increase in competition for groundwater resources is the need of an

exceptional extraction of groundwater for a non-agricultural use, such as the construction

of a water reserve, the transfer between basins or a special need for domestic water in an

urban area because of water scarcity, among other cases. For example, as explained in De

Stefano et al. (2015), groundwater is used for domestic water supply mostly only during

drought periods in the city of Madrid. Because of the exceptional groundwater need and

the priority of this new use (e.g. domestic water supply), a benevolent water authority

who exceptionally prioritizes this new use over the regular users could be more appropri-

ate to solve the water con�ict than a regulator who would be in charge of implementing

e�cient policies during a certain period of time. More speci�cally, in this paper, we study

a problem of exploitation of a groundwater resource, mainly used for irrigation, who faces

exceptionally the entrance of a new use in the system, therefore involving a problem of

water scarcity for the farmers. In this context, a benevolent water authority (e.g. a water

agency) is needed in order to manage how much groundwater could be extracted for the

new (non-agricultural) use in such a way that the pro�ts of the di�erent resource users

(agricultural and non-agricultural users) are guaranteed.

Indeed, we step away from the literature that focuses on centralized management of

aquifers and consequently seeks to implement the e�cient or Pareto solution to the ground-

water management problem. However, groundwater quantity issues are mostly addressed

in the literature using optimal control theory (see Koundouri et al. (2017) for a review),

most of them dealing with di�erent types of uncertainties (see Tsur and Zemel (2014) for

a review), especially the problem of water scarcity (e.g. de Frutos Cachorro et al. (2014)).

In particular, in de Frutos Cachorro et al. (2014), water scarcity is considered through the

modeling of an exogenous shock to the groundwater resource (namely, a decrease in the

recharge rate of the aquifer), and subsequently, optimal extraction paths and the social

costs of optimal adaptation to the shock are analyzed. In contrast with this literature,

our approach importantly introduces the strategic aspect in the behavior of the di�er-

ent decision-makers and treats water scarcity as an endogenous shock to the groundwater

resource.

In this context, the use of dynamic games has been largely justi�ed in the literature of
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water management to deal with problems where dynamic and strategic interactions among

decision makers (i.e. the water agency and the farmers) are taken into account (see Madani

(2010) for a review). Indeed, game theory literature focuses on cooperative or/and non-

cooperative - Nash equilibrium - solutions for irrigation users (e.g. Negri (1989) and Rubio

and Casino (2001)) under water scarcity (e.g. de Frutos Cachorro et al. (2019)), or more

complex problems due to farmers' heterogeneity (e.g. Saleh et al. (2011)), competition

between uses (e.g. de Frutos Cachorro et al. (2021)), and spatial characteristics such as

multicell aquifers (e.g. Saak and Peterson (2007)), among others. However, as explained,

for example, in Kicsiny (2017), when water con�icts enter the problem, Stackelberg (or

leader-follower) equilibria o�er a more real representation of the problem in practical cases

with respect to previous classic Nash-equilibria. In this paper, it is then appropriate and

interesting to consider that the di�erent agents compete à la Stackelberg and play hierar-

chically; that is, the water agency is the leader and therefore makes extraction decisions

of the new (non-agricultural) priority use in the �rst place, before the regular users of

the resource, the farmers. Subsequently, the farmers who can be represented by one agent,

which is called the follower in the Stackelberg game, make the resource extraction decisions

depending on the actions of the leader.

In fact, general Stackelberg dynamic games could be classi�ed according to their rele-

vance at theoretical or/and empirical levels. The books by Dockner et al. (2000) and Ba³ar

and Olsder (1999) are well-known references for Stackelberg dynamic games in continuous

or discrete time, respectively. Some studies o�er interesting �ndings from a theoretical per-

spective, although their application to real cases is restricted (e.g. Nie (2005), Erdlenbruch

et al. (2014)). To the best of our knowledge, few of these papers focus on comparing di�er-

ent types of Stackelberg equilibria, specially open-loop and feedback Stackelberg equilibria,

which correspond to di�erent agents' commitment behavior. In addition, this is extremely

important in practice as each equilibrium concept can be seen as more realistic than the

other one depending on the information that is available to each player. On the one hand,

the implementation of feedback strategies requires that the current state variable (the stock

of water in our model) can be observed. Therefore, in some settings the open-loop strate-

gies are more realistic if the state variable is unobservable or only observable with a delay.

On the other hand, in the open-loop equilibrium, the leader makes a commitment about

his extraction behavior and the follower believes this commitment and chooses his extrac-

tion of the resource under this belief. The problem with Stackelberg open-loop equilibria

is that they are generally inconsistent1over time and therefore less realistic. The feedback

1The problem of temporal inconsistency is due to the fact that, if the leader optimally decides to carry

2



Stackelberg equilibrium does not have this disadvantage. This equilibrium is consistent

over time, and the players do not commit about their extraction behavior over time, but

take decisions depending on the state of the resource at the beginning of each period.

In particular, Nie (2005) analyzes and compares open-loop (commitment) and feedback

(non-commitment) Stackelberg equilibria for a general setting. The study concludes that

feedback Stackelberg strategies are more e�cient for the leader's objective than open-loop

strategies. Turning now to empirical studies, most of these works use general algorithms to

�nd approximate solutions to complex problems, mostly focusing on a speci�c equilibrium

type (e.g. Kicsiny et al. (2014) and Xu et al. (2019)). Concerning the literature combining

Stackelberg problems, water scarcity and competition between groundwater uses, Kicsiny

et al. (2014) address the problem of a local authority (the leader) who would manage for a

given time period the use of a water reserve for di�erent types of uses, by �rstly reserving

a minimal guaranteed quantity for both uses, and subsequently by assigning a proportion

of the water reserve available to domestic use. The follower (a representative agent of the

farmers) then decides the proportion of the available reserve left for irrigation after the

leader's decision. However, in Kicsiny et al. (2014), just the feedback Stackelberg solution

is analyzed, and in contrast with our study, the water con�ict is continuous over time and

therefore, the local authority �xes a minimum and a maximum quantity for both uses at

each period, before taking extraction decisions for the non-agricultural priority use. More-

over, the dynamics in our formulation are in the stock of the aquifer (renewable resource),

while in Kicsiny et al. (2014) the dynamics are in the water available, that is, the water

remaining from the total reserve (non-renewable resource).

In this paper, we aim to study whether feedback (non-commitment) or open-loop (com-

mitment) Stackelberg strategies could be more pro�table for the sustainability of the re-

source (in terms of �nal stock levels) and/or for the agents' pro�ts. To the best of our

knowledge, this paper is novel in the sense that proposes and compares di�erent Stackel-

berg equilibria for the resource management in a context of competition between di�erent

groundwater uses.

Our paper also di�ers from the literature in several ways. First and very importantly,

we are interested in the modeling of a speci�c situation, which is the need of a water

authority (e.g. a water agency) in order to manage an exceptional and priority extraction

of water for a non-agricultural use, as illustrated before in the �rst paragraph of this section

out a number of actions over several periods, and if other economic agents (in our case, the farmers) believe

in this commitment and choose their actions under this belief, then, at some period in the future, the leader

would want to deviate from his commitment (Kydland and Prescott (1977)).
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by means of the example of groundwater need for domestic water in Madrid mostly only

during drought periods. To this goal, we build a two-stage discrete problem, in which the

leader just intervenes when it is necessary (here in the second stage of game where the

non-agricultural water use takes place), while in Nie (2005) and Kicsiny et al. (2014), a

leader-follower approach is applied at each step of the game and both leader and follower

are active players at all stages. Second, we assume that the leader (i.e. the water agency)

is a benevolent entity who decides how much groundwater could be extracted for the

new (non-agricultural) use by considering in his objective the pro�ts from the di�erent

uses (agricultural and non-agricultural uses) in order to avoid a water con�ict, allowing

in addition the possibility of assigning di�erent weights to the di�erent uses. In fact, by

making a sensitivity analysis of main results with respect to these weights, we will show

that the introduction of this aspect in the modeling is extremely relevant, constituting one

of the main drivers of �nal results. Next, as explained in the previous paragraph, we are

particularly interested in analyzing and comparing the extraction behaviors of the agents

for di�erent Stackelberg equilibria depending on the type of existing commitment between

the decision-makers. With this aim, we analytically solve and compare the open-loop

(commitment solution) and feedback (non-commitment) equilibria for some hypotheses on

the parameters. Theoretical results show that commitment strategies lead to higher stock

levels than non-commitment strategies when the leader's weight assigned to the pro�ts from

the agricultural use is lower or equal than the one assigned to the pro�ts from the new

(non-agricultural) use. Finally, we make numerical simulations in order to study whether

the main results remain valid when relaxing previous economic assumptions, for example,

allowing the leader to introduce the sustainability of the resource in his objective function.

Numerical results suggest that there are situations in which non-commitment strategies

could be more favorable than commitment strategies not only in terms of �nal stock of the

resource but also in terms of users' pro�ts.

The remainder of this paper is organized in the following way. Section 2 describes the

Stackelberg game, the model resolution for the two types of commitment behavior and

provides sensitivity analyses of the theoretical solutions. Comparisons between theoretical

results for open-loop and feedback Stackelberg equilibria are performed in Section 3. In

Section 4, we complete our analysis by presenting numerical simulations for a more complex

version of the problem. Conclusions are collected in Section 5. All the proofs are relegated

to the appendices.
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2 The game

We formulate our problem as a two-stage Stackelberg model in discrete time with two

decision-makers. First, there is a representative agent for the regular users of the resource

(the farmers), namely the follower. Second, there is a water authority (e.g., a water agency),

namely the leader of the Stackelberg game, who announces at t = 0 that another priority

extraction (e.g., domestic water) will take place at the beginning of the second stage, for a

non-agricultural use. The stock of the aquifer is the state variable and, at time t = 0, this

stock is denoted by G0. Agents' extraction decisions over the two periods, i.e. extraction

of the leader for the new (non-agricultural) use in the second period and extractions of

the follower for the agricultural use in the �rst and in the second period, are the control

variables of the problem.

2.1 Game formulation

In the �rst period, the aquifer is exclusively exploited by the follower, and we denote by

g1f , the amount of water extracted by the follower in the �rst period. Hence, the stock of

the aquifer at the end of the �rst period (at time t = 1), G1, reads:

G1 = G0 − g1f + r, (1)

where r denotes the constant recharge of the aquifer over the �rst period.

In the second period, we give entrance to a second decision-maker in such a way that

over this period there is competition between di�erent users (and uses) for the exploitation

of the groundwater resource. The new decision-maker is a water agency that has the role of

the leader in the Stackelberg game and aims to decide how much water could be extracted

for a new (non-agricultural) priority use, considering the fact that follower is also exploiting

the aquifer in the second period. In this second period, both agents then make extraction

decisions, denoted by g2l the extraction of the leader for the new (non-agricultural) use

and by g2f the extraction of the follower for irrigation purposes. Assuming for simplicity

that the recharge of the aquifer over the second period is identical to the recharge over the

�rst period, the stock of the aquifer at the end of the second period (at time t = 2), G2,

reads:

G2 = G1 − g2f − g2l + r. (2)

The players, leader and follower, make their extraction decisions in order to maximize

their objectives. In the case of the follower, the representative agent of the farmers aims to
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maximize pro�ts over the two periods. The (per period) pro�ts are given as the di�erence

between the net revenues from groundwater exploitation minus the pumping cost over this

period. In particular, the (per period) net revenues are represented by a linear function of

the extracted quantity of water in this period (gtf ) as follows:

Rf (gtf ) = afgtf , t = 1, 2, (3)

with af a positive parameter (see e.g. Howith (1995) and Buysse et al. (2007) for similar

revenue functions). In Section 4, numerical simulations will be computed for the case of

non-linear revenues2, commonly used to represent agricultural revenues from groundwater

use in the literature (cf. Rubio and Casino (2001), de Frutos Cachorro et al. (2019), Pereau

(2020)), to study whether or not the main results change with respect to the linear revenue

case.

As in the previous literature, the (per period) pumping costs depend on the stock of

the aquifer at the end of the period, Gt, and the extracted quantity of water in this period,

gtf , and reads:

Cf (Gt, gtf ) = (z − cGt)gtf , t = 1, 2, (4)

with z and c positive parameters. More speci�cally, z corresponds to the maximum unit

(or marginal) cost, i.e., the marginal cost when G = 0.3

The (per period) pro�t of the follower is then

Πf (gtf , Gt) = Rf (gtf )− Cf (Gt, gtf ), t = 1, 2, (5)

with functions Rf and Cf given by (3) and (4), respectively.

The leader's objective is to choose the extraction of water in the second period for

the new use, g2l, in order to maximize a weighted sum of the follower's pro�ts and pro�ts

derived from extractions for the new use, that is,

1∑
t=0

θΠf (g(t+1)f , Gt+1) + (1− θ)Πl(g2l, G2), (6)

2In the non-linear revenue case, we will assume a quadratic and concave function of extraction quantities,

i.e. the (per period) net revenues become Rf (gtf ) = afgtf − bf
2
g2tf , t = 1, 2, with af and bf positive

parameters.
3 In what follows we assume that the marginal pumping costs are positive and check a posteriori in all

the numerical simulations that this hypothesis is satis�ed. In particular, G0 < z/c by assumption.
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with θ , 0 ≤ θ < 1, the weight assigned by the leader to the follower's pro�ts, and Πl, the

pro�ts derived from the new use in the second period, de�ned by

Πl(g2l, G2) = alg2l − (z − cG2)g2l, (7)

with al, z, c ≥ 0.

This speci�cation assumes that the pro�ts of the new user of the aquifer can be de�ned

by net revenue and pumping cost functions qualitative similar as those corresponding to

the follower's case. However, we assume that parameters of the revenue functions are agent

speci�c in order to correctly describe the di�erence between the two agents who share the

aquifer for di�erent purposes.

2.2 Game resolution under di�erent commitment behaviors

In a general Stackelberg game, or leader-follower game, the leader takes decisions �rst and

the follower takes decisions subsequently depending on the actions of the leader. Di�erent

types of Stackelberg equilibria can be computed depending on the commitment behavior

between the two agents over the two-period game. In what follows, we analytically solve the

game for two types of Stackelberg equilibrium, namely open-loop (commitment solution)

and feedback (non-commitment) equilibria. While the former involves time-inconsistent

solutions, the latter procures time-consistent solutions (see proofs in Appendix A).

2.2.1 Open-loop Stackelberg equilibrium

In an open-loop Stackelberg equilibrium, the leader commits at t = 0 about his path of

extraction in the second period. The follower then believes this leader's commitment and

chooses subsequently the path of extractions over the two-period game under this belief.

Accordingly, �rst, the follower decides about extraction behavior in the two periods,

g1f and g2f , assuming extraction policy of the leader in the second period, g2l. Since the

follower's objective is to maximize the pro�ts over the two periods, the follower is facing

the following problem:

max
g1f≥0, g2f≥0

1∑
t=0

Πf (g(t+1)f , Gt+1), (8)

s.t: (1), (2)

G1, G2 ≥ 0
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with function Πf given by (5). We then obtain the follower's best-reaction functions

g̃1f (g2l) and g̃2f (g2l), that is, the follower's extractions over the two periods as functions

of the leader's extraction in the second period. Next, the leader chooses the extraction of

water in the second period, g2l, in order to maximize a weighted sum of the two-period

pro�ts of the follower (taking into account the follower's best-reaction functions g̃1f (g2l)

and g̃2f (g2l)) and the pro�ts derived from extractions for the new use:

max
g2l≥0

{
1∑
t=0

θΠf (g̃(t+1)f , Gt+1) + (1− θ)Πl(g2l, G2)

}
, (9)

s.t: (1), (2)

G1, G2 ≥ 0

with functions Πf and Πl given by (5), and respectively (7), and 0 ≤ θ < 1, with θ the

weight assigned to the follower's pro�ts. More speci�cally, the greater the weight θ, the

more important the agricultural use of the aquifer will be for the leader; and vice versa,

the lower θ, the more prevalent the new use of the aquifer will be for the leader. Solving

the previous problem (see Appendix B.1 for details), we obtain gOL2l , where the superscript

OL stands for open-loop equilibrium. Finally, substituting gOL2l in the follower's decisions,

we obtain gOL1f and gOL2f :

gOL1f =
2af + 3al + 5cG0 + 3cr − 5z − θ(5af + 3al + 8cG0 + 6cr − 8z)

6c(2− 3θ)
, (10)

gOL2f =
(1− θ)(4af − 3al + cG0 + 3cr − z)

3c(2− 3θ)
, (11)

gOL2l =
3al − 2af + cG0 + 3cr − z − θ(3al − af + cG0 + 3cr − z)

2c(2− 3θ)
. (12)

Once the optimal extraction strategies have been characterized, we can also obtain the

states of the aquifer at the end of the two periods for previous extraction behavior:

GOL1 =
(3al + 5af − 10cG0 − 12cr − 8z)θ − (2af + 3al − 7cG0 − 9cr − 5z)

6c(2− 3θ)
, (13)

GOL2 =
(3al + 5af − cG0 − 3cr − 8z)θ − (2af + 3al − cG0 − 3cr − 5z)

3c(2− 3θ)
. (14)

Concerning players' pro�ts derived from optimal extractions strategies and states of the

aquifer, mathematical expressions are very long and, are therefore relegated to Appendix
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B.1.

In this paper, we assume that the agricultural use needs water at each moment for

growing its crops. Moreover, we are interested in the problem in which a new use needs

water to procure a new activity. Consequently, we are interested in positive extractions

of water both for the agricultural use (follower's extraction) and the non-agricultural use

(leader's extraction), as well as positive stock of the aquifer at the end of the two peri-

ods. In summary, we focus on interior and strictly positive solutions, and hence, corner

solutions are not analyzed. In order to guarantee the positivity of extraction decisions and

state variables, we assume that the following su�cient conditions are ful�lled.

Condition 1: A: af > z, B: al + 3z − 4af > 0 and C: c(G0 + 3r) > 2(2al − af − z) D:

0 ≤ θ ≤ 1/2.

See Appendix B.2.

Please �rst note that conditions 1.A and 1.B imply al − af > 0, which means that the

marginal revenue for the new use is higher than the marginal revenue for the agricultural

use. Condition 1.A is an usual requirement which establishes that marginal revenue should

be higher than the maximum unit (or marginal) cost. Condition 1.B can also be written

as al − af > 3(af − z) and suggests that the di�erence between marginal revenues for

both activities should be su�ciently higher than the (minimum) marginal pro�t from the

agricultural activity. Finally, condition 1.C requires that G0 is great enough, with G0 < z/c

by assumption to ensure positive marginal costs (see Footnote 3). In summary, su�cient

conditions request that the new use or activity that enters in the game in the second period

needs to be more pro�table than the agricultural use, and the level of the resource at the

beginning of the planning horizon must be high enough to procure these activities.

Since the goal of both players is to reach a maximum value in their objectives (problems

(8) and (9)), the concavity of the objective functions of the leader and the follower with

respect to their decision variables has to be guaranteed. In Appendix B.3 we prove that

Condition 1.D ensures this property.

In the remainder of this section, we assume that Condition 1 is satis�ed, allowing the

following analytical results to be deduced.

Next, as explained before in the introduction of the manuscript, we also assume that

the leader is a benevolent water agency who considers in his objective the pro�ts from the
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di�erent uses, allowing the possibility of assigning di�erent weights to the di�erent uses.

This aspect is introduced in the modeling through the parameter θ, the weight assigned by

the leader to the follower's pro�ts in his objective. It is therefore interesting to analyze how

optimal solutions are in�uenced by the introduction of this parameter. In particular, we are

interested in seeing how a change in θ a�ects the leader's optimal strategy in the second

period, and how this change leads to a modi�cation of the follower's optimal strategies

and, consequently, of the state of aquifer at the end of the two periods and total follower's

pro�ts. Next proposition collects the results.

Proposition 1 The extraction of the follower in the �rst period, gOL1f , and the extraction

of the leader in the second period, gOL2l , decrease as θ increases. However, the extraction of

the follower in the second period, gOL2f , increases with θ. The total e�ect on the follower's

extraction over the two periods, gOL1f +gOL2f , is positive, while the e�ect on the total extraction

in the second period, gOL2f + gOL2l , is negative. Furthermore, the state of the aquifer at the

end of the �rst, GOL1 , and second, GOL2 , periods as well as the follower's optimal pro�ts,

ΠOL
f , increase with θ.

Proof: See Appendix B.4.

This proposition shows that the greater the weight assigned to the follower's pro�ts

by the leader in his objective, the lower the leader's extraction in the second period and

the lower the follower's extraction in the �rst period, but the greater the extraction in

the second period. Note that although any change of θ has two opposite e�ects in the

follower's extraction policies, the total e�ect on the extraction over the two periods is

positive, because
∂gOL

1f

∂θ +
∂gOL

2f

∂θ = −1
3
∂gOL

2l
∂θ > 0. On the other hand, any increment of θ

leads to a lower total extraction in the second period because
∂gOL

2f

∂θ +
∂gOL

2l
∂θ = 1

3
∂gOL

2l
∂θ < 0.

That is, the fall in the leader's extraction in the second period due to an increment of θ

more than compensates the rise in the follower's extraction in this period.

Indeed, a change in θ mainly in�uences the leader's extraction behavior, then it is

important to note that this e�ect is reduced by around 2/3, and respectively 1/3, on the

follower's extraction behavior in the second period, and respectively in the �rst period.

The fact that the leader's extraction in the second period decreases with θ and follower's

total extraction over the two periods increases with θ is natural, because θ represents the

weight the leader gives to the follower in his objective function (in fact the follower exploits

this, by increasing his extraction in the second period).
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As expected from the marginal e�ects of θ on the players' optimal strategies, the state

of the aquifer at the end of the two periods increases as θ augments (see equations (35)

and (36)), being this e�ect higher on the resource state at the end of the second period

(i.e. when the resource is shared by di�erent uses), than at the end of the �rst period.

Finally, we study how the players' optimal pro�ts change with θ. From (37) the e�ect

on the follower's optimal pro�ts, ΠOL
f , is clearly positive under Conditions 1.C and 1.D.

Unfortunately, the e�ect on the leader's optimal pro�ts cannot be easily determined. We

will study this e�ect later on in this paper through some numerical examples.

2.2.2 Feedback Stackelberg equilibrium

In a feedback Stackelberg equilibrium, the follower chooses at each step his extraction be-

havior after the leader has decided and announced his strategy. The problem has to be

solved through backward induction. As the leader does not extract water in the �rst stage,

there is just one decision-maker, the follower, in the �rst period. The feedback equilibrium

of the problem can be therefore seen as a "degenerated Stackelberg", whose solution can

be obtained following a 3-step procedure (see Appendix C.1 for details).

The game is solved backward, and hence, in the �rst step, the follower decides about

extraction behavior in period 2, g2f , assuming the leader's extraction policy in the second

period, g2l, and his own extraction in the �rst period, g1f . The follower then has to solve

the following problem

max
g2f≥0

Πf (g2f , G2), (15)

s.t: (1), (2)

G1, G2 ≥ 0,

with function Πf given by (5). The solution to this problem gives g2f as a function of

g2l and g1f , ĝ2f (g2l, g1f ). In the second step, after substituting ĝ2f (g2l, g1f ) in the leader's

problem, the leader decides about extraction behavior in period 2, g2l. The leader's problem

becomes:

max
g2l≥0

θΠf (ĝ2f , G2) + (1− θ)Πl(g2l, G2), (16)

s.t: (1), (2),

G1, G2 ≥ 0,
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with functions Πf and Πl given by (5), and respectively (7), and 0 ≤ θ < 1. The solution

to this problem establishes g2l as a function of g1f , i.e. ĝ2l(g1f ). Finally, substituting the

leader's reaction function in the second stage in the follower's problem in period 1, the

follower's problem to solve becomes:

max
g1f≥0

Πf (g1f , G1) + Πf (ĝ2f (ĝ2l, g1f ), G2) , (17)

s.t: (1), (2),

G1, G2 ≥ 0,

with function Πf given by (5). From the solution to this problem, we obtain the follower's

extraction strategy in the �rst period, gFB1f , where the superscript FB stands for feedback

equilibrium. Subsequently, we replace the latter value in the reaction functions of the

leader and the follower in period 2, and we obtain gFB2l , gFB2f , the optimal strategies of the

leader and the follower in the second period. Next we present all these optimal strategies

as well as the states of the resource derived from these strategies:

gFB
1f =

af (3θ(5θ−6)+5)+2al(1−θ)2+((22−17θ)θ−7)(z−cG0)+c(4θ(4θ−5)+6)r

c(5θ − 3)(7θ − 5)
, (18)

gFB
2f =

(1− θ)(2− 3θ)(5af − 4al + cG0 + 3cr − z)
c(5θ − 3)(7θ − 5)

, (19)

gFB
2l =

2(af ((11− 5θ)θ − 5) + al(θ − 1)(11θ − 7) + (θ(6θ − 7) + 2)(c(G0 + 3r)− z))
c(5θ − 3)(7θ − 5)

, (20)

GFB
1 =

af (3(6−5θ)θ−5)−2al(1−θ)2+c
(
2G0(2−3θ)2+

(
19θ2−26θ + 9

)
r
)
+
(
17θ2−22θ+7

)
z

c(5θ − 3)(7θ − 5)
,

(21)

GFB
2 =

af ((21− 20θ)θ − 5) + (4al − c(G0 + 3r))((5− 3θ)θ − 2) +
(
32θ2 − 41θ + 13

)
z

c(5θ − 3)(7θ − 5)
. (22)

Again, mathematical expressions concerning optimal pro�ts are very long, and hence,

are relegated to Appendix C.1.

As in the open-loop scenario, we are interested in positive extractions for the agricul-

tural and non-agricultural uses as well as positive stock of the aquifer at the end of the

two periods, and hence, we focus on strictly positive and interior solutions. In order to
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ensure the positivity of extractions and state variables in the feedback case, stronger con-

ditions than in the open-loop case must be imposed. Su�cient conditions ensuring positive

resource extractions and stocks are given either by Condition 2.1 or Condition 2.2 below.

Condition 2.1:

A: af > z, B: al + 3z − 4af > 0, C': c(G0 + 3r) >
12al+20af−32z

3 and D': 0 ≤ θ ≤ 1/2.

Condition 2.2:

A: af > z, B: al + 3z − 4af > 0, C� : 8al+5af−13z
2 > c(G0 + 3r) > 2(2al − af − z) and D� :

θ̄1 < θ ≤ 1/2, with 0 < θ̄1 < 1/2.

See Appendix C.2.

Note that in comparison with Condition 1 (the equivalent set of su�cient conditions in

the open-loop case that ensure positive extractions and stocks) we must either impose a

greater initial resource (C' instead of C) or avoid small values of θ (D� instead of D).

As in the open-loop equilibrium, the concavity of the objective functions of the leader

and the follower with respect to the corresponding decision variables in the three steps of the

game resolution (i.e. in problems (17), (15) and (16)) has to be guaranteed. In Appendix

C.3 we prove that either Condition 2.1.D' or Condition 2.2.D� ensures the concavity of the

di�erent objective functions.

In the remainder of this section, we assume that either Condition 2.1 or Condition 2.2

is satis�ed, allowing the following analytical results to be deduced.

A sensitivity analysis of the variables in the feedback case with respect to change in θ

could be performed, and is presented in the next proposition. These results are qualitatively

similar to those obtained when the players use open-loop strategies.

Proposition 2 The extraction of the follower in the �rst period, gFB1f , and the extraction

of the leader in the second period, gFB2l , decrease as θ increases. However, the extraction of

the follower in the second period, gFB2f , increases with θ. The total e�ect on the follower's

extraction over the two periods, gFB1f + gFB2f , is positive, while the e�ect on the total extrac-

tion in the second period, gFB2f + gFB2l , is negative. Furthermore, the state of the aquifer

at the end of the �rst, GFB1 , and second, GFB2 , periods as well as the follower's optimal

pro�ts, ΠFB
f , increase with θ.

Proof: See Appendix C.4.
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As in the case of open-loop strategies, the e�ect of an increment in θ on the leader's

optimal pro�ts cannot be determined analytically and we postpone this study to the nu-

merical examples. We corroborate that the main tendencies, which were found in the

open-loop case, regarding the e�ect of θ on extractions, the state of the aquifer and the

follower's pro�t are maintained for the feedback case.

In the next sections, we compare the output variables for the di�erent commitment

behaviors. In Section 3, we focus on theoretical results for the case in which the weight

assigned for the agricultural use is lower than or equal to the weight of the non-agricultural

use, θ ≤ 1/2. A numerical analysis for other leader's weight, θ, and economic assumptions

will be performed in Section 4.

3 Theoretical results: Open-loop vs. Feedback Stackelberg

equilibria

In this section, we compare extraction behavior of both agents, the states of the resource

and the players' pro�ts for the di�erent types of equilibria (see equations (10) to (14) for

the open-loop case and (18) to (22) for the feedback case). Results for both equilibria can

be compared if Condition 1 and either Condition 2.1 or Condition 2.2 are satis�ed. As

previously shown, Condition 2.1 and Condition 2.2. ensures the ful�llment of Condition 1.

Therefore, these conditions are assumed in what follows. We remain that our attention is

restricted to the case of the leader's weight for the new use greater or equal to the weight

for the agricultural use, θ ≤ 1/2.

We �rst compare extraction behavior of the follower and leader for each period depend-

ing on the type of commitment behavior.

Proposition 3 Individual follower's extraction in the �rst period, g1f , and the leader's

extraction in the second period, g2l, is greater in the feedback than in the open-loop case.

The opposite is obtained for the follower's extraction behavior in the second period, g2f .

Proof: See Appendix D.1.

One of the results indicating that the leader's extraction behavior in the second period

is more aggressive in the feedback than in the open-loop case can be explained by the

fact that the leader has an extra information about stock levels at the beginning of each

period in the feedback case (also called non-commitment solution) than in the open-loop
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case (also called commitment solution), and consequently, he could better adapt to the

fact that he is only using the resource in the second period by increasing extractions. In

addition, as explained in the introduction, we can interpret the entrance of a new use in

the second period, and therefore the leader's extraction, as an endogenous shock to the

groundwater resource, implying a problem of water scarcity for the follower. In the litera-

ture about shocks in optimal groundwater management, de Frutos Cachorro et al. (2014)

treats water scarcity as an exogenous shock to the groundwater resource and shows that

the higher the intensity of the shock (which could be equivalent here to a higher leader's

extraction), the higher the impatience e�ect and therefore the extractions before the shock

occurrence (which could be equivalent here to the follower's extraction in the �rst period).

The same reasoning can then be applied in this work to explain that, gFB2l > gOL2l implies

gFB1f > gOL1f . Furthermore, the follower in the feedback case earlier adapts to anticipated

extraction losses of the second period (i.e. gFB2f < gOL2f ) due to competition with the leader,

by increasing extractions in the �rst period in comparison with the open-loop case (i.e.

gFB1f > gOL1f ).

Next, we compare the di�erence in extraction behavior of the follower in the �rst and

the second period, which we name "the jump", for the open-loop (dOL = gOL1f − gOL2f )

and the feedback (dFB = gFB1f − gFB2f ) cases. First, we are interested in studying the sign

of dOL and dFB. This gives us important information about how the follower reacts to

the entrance of the new use in the second period. Possible cases are summarized in the

following (see description and computation details in Appendix D.2.1).

• If al − af > 2cr/3:

Case 1: dOL > 0, dFB > 0.

• If al − af < 2cr/3, two di�erent cases can arise depending on additional conditions

(see Appendix D.2.1 for details):

Case 2: dOL < 0, dFB < 0.

Case 3: dOL < 0, dFB > 0.

We are also interested in the comparison of the "jumps" between the possible equilibria,

i.e. the sign of d = |dFB| − |dOL|. This sign will depend on the previous study cases as

described in the next proposition.
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Proposition 4 If Case 1 applies, the di�erence in extraction behavior of the follower

between the two periods is higher when feedback strategies are used than under open-loop

commitment behavior, i.e. d > 0. The opposite is true, i.e. d < 0, if Case 2 is ful�lled.

The result is ambiguous under Case 3.

Proof: See Appendix D.2.2.

Indeed, despite the commitment behavior considered, Case 1 can be explained by the

fact that the higher the marginal revenue of the new use with respect to the marginal

revenue of the agricultural use (i.e. the greater the value of al−af ), the higher the leader's
interest in extracting to accumulate gains4 (i.e. the greater the value of g2l), and therefore

from the interpretation of Proposition 3 the higher the follower's interest to anticipate

future extraction losses by increasing his extraction in the �rst period, i.e. g1f − g2f > 0.

The opposite reasoning can be applied to explain Case 2. However, Case 3 depends on

other parameters of the model (see Appendix D.2.1 for speci�c conditions) and therefore

results are not conclusive. Furthermore, interpretation of Proposition 4 for Cases 1 and 2

is immediate from results obtained in Proposition 3.

We now compare total extractions for both players over the two periods under the two

scenarios concerning the players' behavior (open-loop and feedback). Using the notation

Total = g1f + g2f + g2l, we obtain the following proposition.

Proposition 5 The total amount of resource extracted by the follower and the leader over

the two periods is higher in the feedback case, TotalFB, than in the open-loop case, TotalOL.

Proof: See Appendix D.3.

Focusing now on the impact of extraction decisions on the states of the resource, the

following corollary is immediate from Propositions 3 and 5.

Corollary 1 The state of the resource both after the �rst and second periods, i.e. G1 and

respectively G2, is higher in the open-loop case than in the feedback case.

This means that players' commitment about extraction behavior over the two peri-

ods is positive for the state of the resource with respect to the non-commitment case.

4This could be also seen directly by studying the sign of the derivatives of expressions in (12) and (20)

with respect to al.
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This is in line with results obtained in the literature characterizing Nash equilibria (Negri

(1989), Rubio and Casino (2001), de Frutos Cachorro et al. (2019)). Indeed, the strategic

externality, which appears in feedback non-commitment solutions due to competition be-

tween the di�erent uses for the available stock, exacerbates the exploitation of the resource.

Finally, players' pro�ts for each solution type and for any θ will be compared through

numerical simulations in Section 4. However, for the speci�c cases θ = 1/2 and θ = 0, we

can show the following proposition.

Proposition 6 The leader's and follower's total pro�ts are always higher in the open-loop

case than in the feedback case for θ = 1/2 and θ = 0. Moreover, while in the �rst period

the follower's pro�ts are higher in the feedback case than in the open-loop case, the opposite

applies in the second period (see Appendix D.4 for the proof).

Indeed, for these speci�c cases, open-loop (commitment) equilibrium procures a higher

pro�tability than feedback (non-commitment) solutions for the agents. This result goes also

in line with previous literature that looks for Nash equilibria (e.g. de Frutos Cachorro et al.

(2019)), but contrasts with Nie (2005), which compares di�erent commitment behavior in

the case of Stackelberg equilibria. However, we remind that our speci�c problem could be

seen as a "degenerated Stackelberg" as the leader does not extract in the �rst period. Our

results then are closer to the results obtained in the Nash case (de Frutos Cachorro et al.

(2019)) than to the results obtained in the Stackelberg case (Nie (2005)). In addition, if

we focus on the follower's pro�t in the �rst period, the opposite result is obtained and

feedback strategy procures higher pro�tability than open-loop strategies. As explained

before, this could be interpreted by the fact that the follower in the feedback case adapts

earlier to the entrance of the second use by augmenting extractions in the �rst period and

therefore by increasing pro�ts, in comparison to the open-loop case. In any case, previous

results should not necessarily be maintained for other values of θ or/and for non-linear

revenues for the agricultural use. In what follows, we run some numerical simulations to

test if these results remain unchanged under other economic assumptions.

4 Numerical results

In this section, we perform numerical simulations in order to analyze whether or not the

main results obtained in the previous sections concerning agents' extraction behavior and

stock and pro�t implications remain unchanged relaxing previous economic assumptions.
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Parameter Description Value

af Coe�cient of revenue agricultural use (linear term) 4.5

al Marginal revenue from alternative use 6

z Marginal pumping cost intercept 4

c Marginal pumping cost slope 0.281

G0 Initial stock level 10

r Natural recharge rate 5

bf Coe�cient of revenue agricultural use (non-linear term) bf ∈ {0, 0.01, 0.1}
θ Weight assigned by the leader to agricultural use θ ∈ {0.5, 0.581, 0.655}
A Coe�cient of the leader's valuation of �nal stock A ∈ {0, 0.07}

Table 1: Parameter values of the model.

For this purpose, we use values of the parameters which are listed in Table 1. More

speci�cally, we �x values corresponding to model parameters above the horizontal line and

run several simulations with respect to parameters below the line, i.e., for di�erent non-

linear revenue functions of the agricultural use, with Rf (gtf ) = afgtf −
bf
2 g

2
tf , or more

speci�cally, for di�erent coe�cient (non-linear term) of the revenue function (bf ), and for

di�erent leader's weight of the agricultural use (θ). Moreover, we will address the case

in which the leader, aiming at analyzing the sustainability of the resource, includes in his

objective function the value of the stock at the end of the planning horizon (i.e. by adding

the term AG2 with A > 0 in the leader's objective function, equations (9) and (16), for

the open-loop and feedback scenarios, respectively). In fact, we have obtained analytical

solutions for these general cases, and run numerical simulations for di�erent parameter

values with Maple.

In what follows, we take as a benchmark scenario, the case in which the revenue function

of the agricultural use is linear (bf = 0), the leader equally weighs the pro�ts derived from

both uses of the aquifer (θ = 1/2), and no value is assigned to the �nal stock (A = 0),

for which theoretical results have been shown in the preceding section5. The benchmark

case is compared with the case in which the weight assigned by the leader to the pro�ts

of the agricultural use is higher than 1
2 (i.e., θ > 1

2); the case of non-linear revenues of

the agricultural use (i.e., bf > 0); and the case in which the value of the �nal stock is

considered in the leader's objective (A > 0).

5We note that parameter values of Table 1 satisfy Condition 2.2 and therefore ensure the positivity of

extraction and state variables in the open-loop and feedback cases.

18



We �rst con�rm that results of the sensitivity analysis of the optimal strategies and re-

source stocks with respect to parameter θ (Propositions 1-2) are maintained for parameter

values in all numerical simulations. In the following subsections, we study whether results

on extraction decisions and stock implications (Propositions 3-5) hold up in these new sce-

narios (Tables 2, 3 and 5) and we analyze pro�t results per period and use (Tables 4 and 5).

4.1 Equal θ = 1/2 vs. di�erent θ > 1/2 weights

First of all, focusing on the scenario of linear revenues of the agricultural use (bf = 0), we

compare numerical results for the benchmark case θ = 1
2 with the case θ > 1

2 , where the

leader assigns a higher weight to the pro�ts from the agricultural use than to the pro�ts

from the alternative/new use (see columns 1-4 in Tables 2 and 4 and column 1 in Table 3).

Column 1 2 3 4 5 6 7 8 9 10 11 12

bf = 0 bf = 0.01 bf = 0.1

Follower Leader Follower Leader Follower Leader

Period 1 2 2 Total 1 2 2 Total 1 2 2 Total

θ = 1/2

A=0 + � + + + � + + + � + +

A=0.07 + � + + + � + + + � + +

θ = 0.581

A=0 � + + � � � + + + � + +

A=0.07 � + + � � � + + + � + +

Table 2: Sign of di�erences between the extraction results in the feedback and the open-

loop cases: + means FB > OL, � means FB < OL.

Column 1 2 3

bf = 0 bf = 0.01 bf = 0.1

θ = 1/2

A=0 + + +

A=0.07 + + +

θ = 0.581

A=0 � � +

A=0.07 � � +

Table 3: Sign of the di�erence between the "jump" in the feedback and the open-loop cases,

the "jump" being previously de�ned by the di�erence between the follower's extractions

in the �rst and second periods: + means FB > OL, � means FB < OL.

Concerning extraction behavior, for a great value of θ (e.g. θ = 0.581), extraction

strategies of the follower in both periods are reversed with respect to the benchmark

case (compare penultimate and �rst row in columns 1 and 2). In other words, in the
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feedback case, we observe a more conservative extraction behavior for the resource by

the follower at the end of the �rst period, and a more aggressive extraction behavior at

the end of the second period, in comparison with the open-loop case. This implies lower

extraction di�erences by the follower between periods (see column 1 Table 3) and lower

total extractions by both agents over the two periods (see column 4 in Table 2) in the

feedback than in the open-loop case. Indeed, we remind that lower total extractions means

higher stock levels at the end of the second period. Therefore, when θ = 0.581, we note

that higher stock levels are obtained in the feedback (non-commitment) case than in the

open-loop (commitment) case, after the entrance of the alternative use. The interpretation

behind this result seems therefore intuitive. As already noted, when the leader equally

weights both uses, the follower seems to adapt earlier, i.e. in the �rst period, in the non-

commitment than in the commitment case, to anticipate extraction losses in the second

period due to competition with the other use. When θ increases, that is, the agricultural

use becomes more and more important for the leader with respect to the new use, this

"anticipation" or fear for water shortage is reduced in the feedback case and consequently,

the representative agent for agricultural users focus on extracting more in the second period

than in the �rst period. However, this does not compensate extraction behavior in the �rst

period and total extractions over the two periods become more important in the open-loop

than in the feedback case.

Column 1 2 3 4 5 6 7 8 9 10 11 12

bf = 0 bf = 0.01 bf = 0.1

Follower Leader Follower Leader Follower Leader

Period 1 2 Total Total 1 2 Total Total 1 2 Total Total

θ = 1/2

A=0 + � � � + � � � + � � �

A=0.07 + � � � + � � � + � � �

θ = 0.581

A=0 � + � � � � � � + � � �

A=0.07 � + � � � � � � + � � �

Table 4: Sign of di�erences between the pro�t results in the feedback and the open-loop

cases: + means FB > OL, � means FB < OL.

Next, simulated results concerning the follower's pro�ts reproduce the previous extrac-

tion results (see two �rst columns Table 4). Opposite to the benchmark case, for higher

values of θ (θ = 0.581) lower follower's pro�ts (respectively greater follower's pro�ts) are

now observed for the feedback case at the end of the �rst period (respectively at the end

of the second period). However, same tendencies are observed for the total follower's and

leader's pro�ts over the two periods (see columns 3-4 Table 4).
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Simulated results then suggest that when the leader assigns a higher weight to the

pro�ts from the agricultural use than to the pro�ts from the alternative use, commit-

ment strategies remain more pro�table than non-commitment strategies, although non-

commitment strategies could be more favorable than commitment strategies in terms of

�nal stock levels.

4.2 Linear (bf = 0) vs non-linear (bf > 0) revenues from the agricultural

use

We now compare the cases of linear and non-linear revenues from the agricultural ground-

water use. Similar results to those of the benchmark case are observed in linear and

non-linear cases, when θ is equal to 1
2 (e.g. compare columns 9-12 with columns 1-4 for

the �rst row in Table 2).

Moreover, for θ = 0.581, while extraction strategies of the follower in both periods

are reversed with respect to the benchmark case (i.e. bf = 0 and θ = 1/2) in the case

bf = 0, extraction strategies become more and more similar to the benchmark case when

bf increases, (e.g. compare penultimate row column 9 with �rst row column 1 in Table 2).

As for the follower's pro�ts at the end of both periods (see Table 4), same trends than

for the follower's extraction decisions are now observed, when comparing the linear and

non-linear revenue cases for di�erent values of θ.

Numerical results indicate that a decrease in the follower's marginal revenue (i.e. an

increase in bf ) might compensate the e�ect of an increase in the leader's weight assigned

to the pro�ts from the agricultural use (i.e. an increase in θ) on extraction strategies and

pro�t results.

4.3 Valuation (A > 0) vs no valuation (A = 0) of the �nal stock levels

We �nally compare extraction decisions and pro�t results for the case in which the �nal

stock value is included in the leader's objective function (A > 0) to the case in which it

is not included (A = 0). We note that extraction behavior and pro�t results show similar

trends in both scenarios for simulated values in Tables 2, 3 and 4, i.e. for values of θ

between 1
2 and 0.581 (e.g. compare two �rst rows in Table 2).

However, if we perform additional simulations for a much greater value of θ, i.e. for the

case θ = 0.655 (see Table 5), surprising results are observed concerning the total follower's

pro�ts, when A = 0.07 (see last row column 7).

21



Column 1 2 3 4 5 6 7 8

Extractions Pro�ts

Follower Leader Follower Leader

Period 1 2 2 Total 1 2 Total Total

A=0 � + � � � + � �

A=0.07 � + � � � + + �

Table 5: Sign of di�erences between the extraction and pro�t results in the feedback and

the open-loop cases, bf = 0.1 and θ = 0.655: + means FB > OL, � means FB < OL.

Simulated results show that, in some particular cases, non-commitment extraction be-

havior could be more pro�table for the follower and at the same time, more favorable in

terms of �nal stock levels than the commitment case. This could be obtained when the

leader assigns a great weight to the agricultural use pro�ts with respect to the alternative

use pro�ts and takes into account the �nal stock value in his objective function. Indeed,

when the leader values the sustainability of the resource, extractions for the new use are

reduced to preserve stock levels, entailing then less competition for water in the second

period and subsequently less strategic interactions in the feedback (non-commitment) case.

In other words, this "conservative extraction behavior for the resource" gives more possibil-

ities for the representative farmer to extract and to accumulate pro�ts in the second period

in the non-commitment case, achieving higher pro�ts with respect to the commitment case.

5 Conclusions and extensions

In this paper, we study a problem of exploitation of a groundwater resource, mainly used

for irrigation, who faces exceptionally the entrance of a new priority use in the system,

therefore involving a problem of water scarcity for the farmers. A water agency is there-

fore needed in order to manage how much groundwater could be extracted for the new

(non-agricultural) priority use. To model this situation, we build a two-stage discrete

Stackelberg game in which the leader (the water agency) just intervenes when the new

use takes place (in the second stage) and the follower is a representative agent for regu-

lar users of the resource, the farmers. The aim of the paper is to analyze and compare

extraction behaviors of the di�erent agents (water agency and farmers) for di�erent Stack-

elberg equilibria, representing di�erent commitment behaviors, and the consequences of

these extraction policies for the �nal state of the resource and the agents' pro�ts. In
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particular, we compute and compare the open-loop (commitment solution) and feedback

(non-commitment) equilibria.

First, theoretical results are provided for the case in which the leader assigns a lower

(or equal) weight to the pro�ts from the agricultural use than to the pro�ts from the

alternative/new use. We show analytically that the leader's extraction behavior in the

second period is more aggressive in the feedback than in the open-loop case. The follower

in the feedback case hence earlier adapts to anticipated extraction losses of the second

period due to competition with the leader, by augmenting extractions in the �rst period

in comparison with the open-loop case. In other words, the follower's extraction behavior

is more aggressive (respectively less aggressive) in the feedback case than in the open-

loop case in the �rst period (respectively in the second period). This leads to lower total

extractions, or equivalently, higher �nal stock levels in the commitment than in the non-

commitment case. These theoretical results go in the same line of the existing literature

that considers simultaneous play and characterizes Nash equilibria (e.g. Negri (1989),

Rubio and Casino (2001), de Frutos Cachorro et al. (2019)).

Next, we perform numerical simulations to study if previous results are maintained

for the case of non-linear revenues of the agricultural use and for the case in which the

leader assigns now a higher weight to the pro�ts from the agricultural use than to the

alternative (non-agricultural) use. Simulated results show that an increase in the weight

assigned to pro�ts from the agricultural use could provide higher �nal stock levels in the

non-commitment than in the commitment case. This is mainly due to a reduction of

the fear for water shortage from the representative agent of agricultural users in the non-

commitment case and consequently, a decrease in total extractions over the two periods

with respect to the commitment case. Moreover, a decrease in the marginal revenue from

agricultural use could compensate the e�ect of an increase in the weight assigned to the

pro�ts from the agricultural use on simulated results.

Finally, the two-period model could be seen as a limitation of the study with regard

to the analysis of the sustainability of the resource. To cope with this, we introduce in

the modeling the possibility that the leader values the �nal state of the resource in his

objective (i.e. the addition of a scrap value function) and perform additional simulations

for great values of the leader's weight assigned to pro�ts from the agricultural use. In this

context, simulated results show that non-commitment strategies could be not only more

favorable for the sustainability of the resource (i.e. higher stock levels at the end of the

second period) but could be also more pro�table for the agricultural use, in comparison

with commitment strategies. This interesting result could be explained by the fact that a
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more conservative extraction behavior is performed by the leader when the sustainability

of the resource is valued, hence giving more possibilities for the representative agent of the

farmers to extract and to accumulate pro�ts in the non-commitment case with respect to

the commitment case. For the leader's pro�ts, Nie (2005) obtains a similar result. However,

as our problem can be seen as a "degenerated Stackelberg", in contrast with Nie (2005),

higher leader's pro�ts are always obtained in the commitment than in the non-commitment

case, and therefore, in this sense, results are closer to the results that are often found in

the case of Nash equilibria (e.g. de Frutos Cachorro et al. (2019)).

There are several possible extensions to our paper. First of all, in this work, we consider

that the follower is a representative agent for agricultural users. It could be therefore

interesting to consider di�erent followers, such as for example several farmers with possible

heterogeneities, who play simultaneously à la Nash between them, and à la Stackelberg

with the leader. We could also compute the corresponding e�cient solution to our problem,

in which the leader could be a regulator who takes all the extraction decisions considering

the same objective function, in order to derive and analyze the possible policy implications

of our study. Finally, we could apply our theoretical model to a real case.
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A Study of time-consistency

In order to verify the time-inconsistency of the open-loop equilibrium and the time-

consistency of the feedback equilibrium for our model, we use the pure de�nition of time-

consistency described in Kydland and Prescott (1977) and adapted to our setup. A policy

plan g2l is consistent if, for t = 2, g2l maximizes the objective function of the leader, taking

as given previous decisions, and the strategy selected coincides with the optimal decision

rule.

In the open-loop case, the problem the leader is facing at t = 2 is described in (9),

where the follower's strategies can be expressed as functions of g2l as follows:

g1f = g̃1f (g2l), (23)

g2f = g̃2f (g2l). (24)

Denoting the leader's objective function by a function Π̄OL
l (g1f , g2f , g2l), the leader

aims to �nd g2l that maximizes his objective subject to restrictions (23) and (24).

Necessary condition for an interior solution is then:

∂Π̄OL
l

∂g2l
= 0 ⇐⇒

∂Π̄OL
l

∂g1f

∂g̃1f

∂g2l
+
∂Π̄OL

l

∂g2f

∂g̃2f

∂g2l
+
∂Π̄OL

l

∂g2l
= 0. (25)

If past decision, i.e. g1f , is given, the previous necessary condition becomes:

∂Π̄OL
l

∂g2l
= 0 ⇐⇒

�
���

��∂Π̄OL
l

∂g1f

∂g̃1f

∂g2l
+
∂Π̄OL

l

∂g2f

∂g̃2f

∂g2l
+
∂Π̄OL

l

∂g2l
= 0. (26)

The leader's strategy is time-consistent if conditions in (25) and (26) coincide, i.e. if

∂Π̄OL
l

∂g1f

∂g̃1f

∂g2l︸ ︷︷ ︸
6=0

= 0 ⇐⇒
∂Π̄OL

l

∂g1f
= 0.

From equations (9), (5) and (7), we can easily show that:

∂Π̄OL
l

∂g1f
= −θc(g1f + g2f )− (1− θ)cg2l < 0.

We conclude that the open-loop equilibrium described in this paper cannot be time-

consistent.
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In the feedback case, the problem to solve for the leader at t = 2 is described in (16),

where the follower's strategy at t = 2 can be expressed as a function of g1f and g2l as

follows:

g2f = ĝ2f (g1f , g2l). (27)

Denoting the leader's objective function by a function π̂FBl (g1f , g2f , g2l), the leader

aims to �nd g2l that maximizes his objective subject to restriction (27).

Necessary condition for an interior solution now reads:

∂π̂FBl
∂g2l

= 0 ⇐⇒
∂π̂FBl
∂g2f

∂ĝ2f

∂g2l
+
∂π̂FBl
∂g2l

= 0 (28)

It is easy to see that this expression coincides with the necessary condition when g1f

is given. Thus, the leader's plan is time-consistent under feedback information structure.

B Open-loop Stackelberg equilibrium

B.1 Derivation of the open-loop Stackelberg equilibrium

The follower's objective function in (8), the sum of the pro�ts over the two periods, once

G1 and G2 have been replaced by their expressions in (1) and (2) reads:

Π̄f (g1f , g2f , g2l) = g2f (af +c(G0 +2r−g1f−g2f−g2l)−z)+(af−(z−c(G0−g1f +r)))g1f .

Assuming an interior solution, the maximization of Π̄f (g1f , g2f , g2l) with respect to g1f

and g2f gives the follower's best-reaction functions

g̃1f (g2l) =
af + c(G0 + g2l)− z

3c
, (29)

g̃2f (g2l) =
af + c(G0 − 2g2l + 3r)− z

3c
. (30)

The optimal two-period pro�ts of the follower are:

Π̄f (g̃1f (g2l), g̃2f (g2l), g2l) =
1

3c
{(af − z)(af + c(2G0 − g2l + 3r)− z)

+c2
(
G2

0 + 3r2 + (3r − g2l)(G0 − g2l)
)}
.

The leader's objective in (9) becomes:

θΠ̄f (g̃1f (g2l), g̃2f (g2l), g2l) + (1− θ)Πl(g2l, G2), (31)

26



where

Πl(g2l, G2) =
1

3
g2l(3al − 2af + c(G0 − 2g2l + 3r)− z).

Assuming an interior solution, the maximization of (31) with respect to g2l, gives the

leader's optimal strategy in (12). The follower's optimal strategies in (10) and (11) are

obtained replacing g2l by the expression in (12) into the follower's best-reaction functions

in (29) and (30).
Replacing the optimal extraction strategies in the agents' pro�t functions, we obtain

the optimal pro�ts of the leader and the follower:

ΠOL
l =− 1

12c(3θ − 2)

[
2θ
(
2a2f + af (9al + 13cG0 + 27cr − 13z)− 9a2l + 9al(z − c(G0 + 3r))

+2
(
c2
(
G2

0 − 3r2
)
− 2cG0z + z2

))
− θ2

(
11a2f + af (6al + 28cG0 + 48cr − 28z)− 9a2l

−12al(cG0 + 3cr − z) + 4(cG0 − z)(2cG0 + 3cr − 2z)) + (2af − 3al − c(G0 + 3r) + z)2
]
,

ΠOL
f =

1

12c(2− 3θ)2
[
a2f (θ(43θ − 68) + 28) + 2af

(
−12al(θ − 1)2 + c(G0(θ(31θ − 44) + 16)

+3(θ(13θ − 20) + 8)r) + ((44− 31θ)θ − 16)z) + 9a2l (θ − 1)2 − 6al(θ − 1)2(c(G0 + 3r)− z)

+4θ2(c2
(
7G2

0 + 15G0r + 9r2
)
− cz(14G0 + 15r) + 7z2

)
− 2θ

(
c2
(
19G2

0 + 42G0r + 27r2
)

−2cz(19G0 + 21r) + 19z2
)

+ 13c2G2
0 + 30c2G0r + 21c2r2 − 26cG0z − 30crz + 13z2

]
.

B.2 Positivity conditions

In what follows we derive the conditions ensuring the positivity of the players' optimal

strategies and the states of the aquifer over the two periods. We characterize these condi-

tions under the assumption that Condition 1.D (θ ≤ 1/2) is satis�ed.

• gOL2l > 0 if and only if θ ∈ (0, θ1), with

θ1 =
2af − 3al − cG0 − 3cr + z

af − 3al − 2cG0 − 6cr + 2z
.

Under Condition 1, both the numerator and denominator of θ1 are negative, and

hence, θ1 > 0. Furthermore, the same conditions guarantee θ1 > 1/2.

• gOL1f > 0 if and only if (2af+3al+5cG0+3cr−5z)−θ(5af+3al+8cG0+6cr−8z) > 0.

Under Condition 1, speci�cally, al > z and af > z, the two terms in brackets are

positive. Then, gOL1f > 0 if and only if θ < θ2, with

θ2 =
2af + 3al + 5cG0 + 3cr − 5z

5af + 3al + 8cG0 + 6cr − 8z
.
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Under Condition 1.C it can be proved that θ2 > θ1.

Therefore, θ < θ1 implies θ < θ2.

• Under Condition 1, gOL2f is always positive.

• GOL1 > 0 if and only if (2af+3al−7cG0−9cr−5z)+θ(−5af−3al+10cG0+12cr+8z) <

0. Under Condition 1, the �rst term in brackets is negative and the second term is

positive. Therefore, GOL1 > 0 if and only if θ < θ3, with

θ3 =
2af + 3al − 7cG0 − 9cr − 5z

5af + 3al − 10cG0 − 12cr − 8z
.

Under Condition 1 it can be proved that θ3 > 1/2. Hence, G1 > 0 for all θ ≤ 1/2.

• GOL2 > 0 if and only if (2af+3al−cG0−3cr−5z)+θ(−5af−3al+cG0+3cr+8z) < 0.

If Condition 1.C ful�lls, then the second term in brackets is positive. If the �rst term

in brackets was positive, GOL2 could never be positive. Hence, we impose this term

to be negative, or equivalently,

(G0 + 3r)c > 3al + 2af − 5z. (32)

Under condition (32), GOL2 > 0 if and only if θ < θ4, with

θ4 =
2af + 3al − cG0 − 3cr − 5z

5af + 3al − cG0 − 3cr − 8z
.

Under Conditions 1.A and 1.B it can be easily proved that θ4 > 1/2. Therefore, if

condition (32) is ful�lled, then G2 > 0 for any θ ≤ 1/2.

Finally, Conditions 1.B and 1.C imply condition (32).

B.3 Concavity conditions

The concavity of the follower's objective function in (8) with respect to his decision vari-

ables g1f and g2f is ensured if the quadratic form associated with the Hessian matrix is

negative de�nite. The entries of this matrix are h11 = −2c, h12 = −c, h21 = −c, h22 = −2c,

and therefore, the quadratic form is negative de�nite, and the follower's objective function

is strictly concave.

The best response of the follower to g2l is given by (29) and (30) provided that these ex-

pressions are positives. (29) is always positive under condition 1.A and (30) is positive if

g2l <
af−z+c(G0+3r)

2c . As the leader is interested in positive extractions of the follower, he

28



maximizes (31) under this last condition. The concavity of the leader's objective function

with respect to his decision variable g2l is ensured if the second derivative of this function

with respect to g2l is negative. The sign of this derivative is given by the sign of (−2+ 3θ).

Therefore, the concavity of the leader's objective function requires θ < 2/3 (this condition

is ensured if Condition 1.D is satis�ed) and gOL2l <
af−z+c(G0+3r)

2c .

B.4 Proof of Proposition 1

∂gOL2l

∂θ
= −1

2

4af − 3al + cG0 + 3cr − z
c(2− 3θ)2

. (33)

The derivative in (33) is negative under Condition 1.C, and hence, any increment of θ leads

to a reduction of the optimal extraction of the leader.

Furthermore, the derivatives of the follower's optimal strategies with respect to θ read:

∂gOL1f

∂θ
=

1

3

∂gOL2l

∂θ
< 0,

∂gOL2f

∂θ
= −2

3

∂gOL2l

∂θ
> 0. (34)

The signs of the derivatives in (34) come from (33).

The e�ects of a change in θ on the state of the aquifer at the end of the two periods

read:

∂GOL1

∂θ
= −1

3

∂gOL2l

∂θ
= −

∂gOL1f

∂θ
> 0, (35)

∂GOL2

∂θ
= −2

3

∂gOL2l

∂θ
= −2

(
∂gOL2f

∂θ
+
∂gOL2l

∂θ

)
= 2

∂GOL1

∂θ
> 0. (36)

The e�ect on the follower's optimal pro�ts, ΠOL
f , is clearly positive under Conditions

1.C and 1.D:

∂ΠOL
f

∂θ
= −1

3

(1− θ)(4af − 3al + cG0 + 3cr − z)
2− 3θ

∂gOL2l

∂θ
= −3c(1−θ)(2−3θ)

∂gOL1f

∂θ

∂gOL2f

∂θ
> 0.

(37)

C Feedback Stackelberg equilibrium

C.1 Derivation of the feedback Stackelberg equilibrium

The feedback Stackelberg equilibrium is characterized using backward induction.
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In the �rst stage the follower decides the extraction in period 2 and solves the problem

in (15). Once G1 and G2 have been replaced by their expressions in (1) and (2), the

follower's objective function in the second period reads:

Π̃2f (g1f , g2f , g2l) = g2f (af + c(G0 − g1f − g2f − g2l + 2r)− z).

Assuming an interior solution, the maximization of Π̃2f (g1f , g2f , g2l) with respect to g2f

gives the follower's second-period best-reaction function

ĝ2f (g2l, g1f ) =
af + c(G0 − g1f − g2l + 2r)− z

2c
. (38)

The follower's optimal second-period pro�ts are:

Π̃2f (g1f , ĝ2f (g2l, g1f ), g2l) =
(af + c(G0 − g1f − g2l + 2r)− z)2

4c
.

In the second step, the leader decides the extraction in period 2, taking into account

the follower's extraction in this period given in (38). Therefore, the leader's objective in

(16) becomes:

θΠ̃2f (g1f , ĝ2f (g2l, g1f ), g2l) + (1− θ)Πl(g2l, G2), (39)

where Πl(g2l, G2) once G1, G2 and g2f have been replaced by their expression in (1), (2)

and (38), respectively, reads:

Π̃l(g2l, g1f ) = 2g2l(af − 2al − c(G0 − g1f − g2l + 2r) + z).

Assuming an interior solution, the maximization of (39) with respect to g2l, gives the

leader's extraction in the second period as a function of the follower's extraction in the

�rst period:

ĝ2l(g1f ) =
af − 2al(1− θ) + (2θ − 1)(c(G0 − g1f + 2r)− z)

c(3θ − 2)
. (40)

In the third and �nal step, the follower decides the extraction in period 1 taking into

account the leader's reaction function in the second period given in (40). The follower's

objective function in the �rst period becomes:

Π̃1f (g1f ) =
(θ − 1)2(−3af + 2al + c(−G0 + g1f − 2r) + z)2

4c(2− 3θ)2
+g1f (af−(z−c(G0−g1f+r))).

Assuming an interior solution, the maximization of Π̃1f (g1f ) with respect to g1f , gives the

optimal strategy in (18). The optimal strategy in (20) is obtained replacing g1f by the
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expression in (18) into the leader's second-period best-reaction function in (40). Finally, the

optimal strategy in (19) is obtained replacing g1f , and respectively g2l, by the expressions

in (18), and (20), respectively, into the follower's second-period best-reaction function in

(38).
Replacing the optimal extraction strategies in the agents' pro�t functions, we obtain

the optimal pro�ts of the leader and the follower:

ΠFB
l =

−1 + θ

c(5− 7θ)2(3− 5θ)2
[
(2− 3θ)2(θ − 1)θ(5af − 4al + cG0 + 3cr − z)2 − 2(af ((11− 5θ)θ − 5)

+al(θ − 1)(11θ − 7) + (θ(6θ − 7) + 2)(cG0 + 3cr − z))(af ((21− 20θ)θ − 5)

+al(θ(23θ − 26) + 7) + (θ − 1)(3θ − 2)(cG0 + 3cr − z))] ,

ΠFB
f =

1

c(5θ − 3)(7θ − 5)

[
a2f (3θ(5θ − 8) + 10) + af

(
−10al(θ − 1)2 + c(2G0(2θ(5θ − 7) + 5)

+(θ(25θ − 38) + 15)r)− 2(2θ(5θ − 7) + 5)z) + 4a2l (θ − 1)2 − 2al(θ − 1)2(c(G0 + 3r)− z)

+θ2
(
c2
(
9G2

0 + 19G0r + 11r2
)
− cz(18G0 + 19r) + 9z2

)
− 2θ

(
c2
(
6G2

0 + 13G0r + 8r2
)

−cz(12G0 + 13r) + 6z2
)

+ 4c2G2
0 + 9c2G0r + 6c2r2 − 8cG0z − 9crz + 4z2

]
.

C.2 Positivity conditions

The optimal strategy of the follower's extraction in the �rst period, g1f , can be rewritten

as:

gFB1f =
(af + cG0 − z + cr)(4θ(4θ − 5) + 6) + (2al − z + cG0 − af )(θ − 1)2

c(5θ − 3)(7θ − 5)
.

Therefore, either Condition 2.1 or 2.2, speci�cally al > z and af > z, for any 0 ≤ θ ≤ 1/2,

gFB1f is positive.

Moving to the second period, the denominator of gFB2f is positive under Condition

0 ≤ θ ≤ 1/2 and the �rst two factors of the numerator are negative. Therefore, gFB2f is

positive if and only if 5af − 4al + cG0 + 3cr − z > 0. Conditions 2.1.A and 2.1.C' or

Conditions 2.2.A and 2.2.C� imply that this last inequality is ful�lled.

The optimal strategy of the leader's extraction g2l can be rewritten as:

gFB2l =
2((al − af )(θ − 1)(11θ − 7) + (θ(6θ − 7) + 2)(af + c(G0 + 3r)− z))

c(5θ − 3)(7θ − 5)
.

Therefore, under Conditions A and B in Condition 2.1 and Condition 2.2, for any 0 ≤ θ ≤
1/2, gFB2l is positive.
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The positivity ofGFB2 is given by the positivity of the following second-order polynomial

in variable θ:

(3c(G0+3r)−12al−20af+32z)θ2−(5c(G0+3r)−20al−21af+41z)θ+(2c(G0+3r)−8al−5af+13z).

(41)

When θ = 1/2, GFB2 = 1/4(c(G0 + 3r)− 4al + 2af + 2z) > 0 under Conditions A and

B in Condition 2.1 and Condition 2.2, and Condition C' and Condition C� in Condition

2.1 and Condition 2.2, respectively.

When θ = 0, GFB2 = (2c(G0+3r)−8al−5af +13z) > 0 ⇐⇒ 8al+5af−13z
2 < c(G0+3r).

The coe�cient of the quadratic term is positive if and only if c(G0+3r) >
12al+20af−32z

3 .

Under condition A in Condition 2.1 and Condition 2.2

2(2al − af − z) <
8al + 5af − 13z

2
<

12al + 20af − 32z

3
.

The minimum or maximum of the polynomial in (41) is attained at θ̄ such that

θ̄ − 1/2 =
2c(G0 + 3r)− 8al − af + 9z

2(3c(G0 + 3r)− 12al − 20af + 32z)
. (42)

We have that

• Condition 2.1 implies 2c(G0 + 3r) > 8al + af − 9z and the numerator in (42) is

positive, and therefore expression (42) is positive. Then, under this condition the

quadratic polynomial in (41) is convex, taking positive values at 0 and 1/2, with a

minimum value at θ̄ > 1/2. Then GFB2 > 0 for all θ > 0 or GFB2 > 0 for all 0 < θ < θ̃

with θ̃ > 1/2.

• Under Condition 2.2 the quadratic polynomial in (41) is concave, taking a negative

value at 0 and a positive value at 1/2 with a maximum value at θ̄. Then, there exist

two values θ̄1 and θ̄2 with θ̄1 ≤ 1/2 < θ̄2 such that GFB2 > 0 in [θ̄1, θ̄2].

C.3 Concavity conditions

In the second period, the follower's objective function in (15) is strictly concave with

respect to his decision variable g2f , because
∂2Πf

∂g22f
= −2c < 0. The best response of the

follower is given by (38) provided it is positive. Using the fact that we ask for positive

solutions (in extractions and water levels), G2 = G0 − g1f − g2l − g2f + 2r > 0, that is,

G0 − g1f − g2l + 2r > g2f . As g2f > 0 and af > z, we have that (38) is positive.

In the second period, the concavity of the leader's objective function in (16) with respect
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to his decision variable g2l requires
∂2Πl

∂g22l
= c(−2 + 3θ) < 0. Therefore, this concavity

condition reduces to θ < 2/3. The best response of the leader is given by (40) provided

that this expression positive. The denominator of (40) is negative then (40) is positive if

the numerator af −al+(2θ−1)(al−z+c(G0−g1f +2r)) is negative (this is veri�ed under

the assumptions al > af > z, G1 > 0 and θ ≤ 1
2).

In the �rst period, the follower's objective function in (17) is strictly concave with respect

to his decision variable g1f if and only if (θ− 1)2 − 4(2− 3θ)2 < 0. This inequality can be

rewritten as (5θ − 3)(7θ − 5) > 0, and hence, this condition is ful�lled if either θ < 3/5 or

θ > 5/7.

Therefore, either Condition 2.1 or Condition 2.2 ensures the concavity of both stages.

C.4 Proof of Proposition 2

First, results of the leader's extraction behavior with respect to a change in θ can be

expressed as:

∂gFB2l

∂θ
= −2

(5af − 4al + cG0 + 3cr − z)(31θ2 − 40θ + 13)

c(3− 5θ)2(5− 7θ)2
< 0. (43)

Condition C' or Condition C� in Condition 2.1 and Condition 2.2, respectively, ensures

that the derivative in (43) is always negative.

Furthermore, the e�ects of a change in θ on the follower's optimal strategies are given

by

∂gFB1f

∂θ
= 2

(2− 3θ)(1− θ)
31θ2 − 40θ + 13

∂gFB2l

∂θ
< 0,

∂gFB2f

∂θ
= −1

2

(37θ2 − 50θ + 17)

31θ2 − 40θ + 13

∂gFB2l

∂θ
> 0. (44)

Condition (43) and 0 ≤ θ ≤ 1/2 imply the sign of the derivatives in (44).

As in the case of open-loop strategies, the e�ect of an increment in θ on the follower's

extraction over the two periods is positive

∂gFB1f

∂θ
+
∂gFB2f

∂θ
= − (3− 5θ)2

2(31θ2 − 40θ + 13)

∂gFB2l

∂θ
> 0,

while the e�ect on the total extraction in the second period is negative

∂gFB2f

∂θ
+
∂gFB2l

∂θ
=

(3− 5θ)2

2(31θ2 − 40θ + 13)

∂gFB2l

∂θ
< 0.
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As a consequence, both the state of the aquifer at the end of the �rst and the second

periods increase with an increment in θ:

∂GFB1

∂θ
= −2

(2− 3θ)(1− θ)
31θ2 − 40θ + 13

∂gFB2l

∂θ
= −

∂gFB1f

∂θ
> 0,

∂GFB2

∂θ
= −1

2

(37θ2 − 50θ + 17)

31θ2 − 40θ + 13

∂gFB2l

∂θ
=
∂gFB2f

∂θ
> 0.

Any increment of θ unequivocally leads to greater optimal pro�ts for the follower:

∂FFBf
∂θ

= − (2− 3θ)(1− θ)
31θ2 − 40θ + 13

∂gFB2l

∂θ
> 0.

D Open-loop vs. Feedback Stackelberg equilibria

In this section, all proofs have been performed under Condition 1, which is less restrictive

than Conditions 2.1 and 2.2. Therefore the proofs remain valid under Conditions 2.1 or

2.2, which ensure the comparison between the di�erent equilibria.

D.1 Proof of Proposition 3

gFB1f −gOL1f =
(θ−1)(af (θ(95θ−109)+30)−3al(θ(23θ−26)+7)+(2θ−1)(13θ−9)(cG0+3cr−z))

6c(3θ−2)(5θ−3)(7θ−5)
.

(45)

Under condition 0 ≤ θ ≤ 1/2 the denominator is negative, and hence, the sign of gFB1f −gOL1f

is the opposite to the sign of the numerator. Because θ−1 < 0, then the sign of gFB1f −gOL1f

coincides with the sign of the following expression

af (θ(95θ − 109) + 30)− 3al(θ(23θ − 26) + 7) + (2θ − 1)(13θ − 9)(cG0 + 3cr − z).

Last expression can be rewritten as a quadratic polynomial in variable θ as follows:

A2θ
2 +A1θ +A0,

where

A2 = 95af − 69al + 26(cG0 + 3cr − z),

A1 = −109af + 78al − 31(cG0 + 3cr − z),

A0 = 3(10af − 7al + 3(cG0 + 3cr − z)).
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It can be easily proved that Condition 1 implies A2 > 0, A1 < 0 and A0 > 0. Therefore, the

sign of gFB1f −gOL1f is identical to the sign of a quadratic polynomial in variable θ with positive

second-order and independent terms and negative �rst-order term. If A2
1 − 4A0A2 < 0,

then gFB1f − gOL1f > 0. If A2
1− 4A0A2 = 0, then the vertex of the parabola under Condition

1 is greater than 1/2, and hence, gFB1f − gOL1f > 0 for any θ ∈ [0, 1/2]. If A2
1 − 4A0A2 > 0,

then the equation A2θ
2 +A1θ+A0 = 0 has two real positive roots. The smallest root can

be proved to be greater than 1/2 under Condition 1, and therefore, gFB1f − gOL1f > 0 for any

θ ∈ [0, 1/2].

gFB2f −gOL2f =
(θ−1)

(
3(2−3θ)2(5af−4al+cG0+3cr−z)−(5θ−3)(7θ−5)(4af−3al+cG0+3cr−z)

)
3c(3θ−2)(5θ−3)(7θ−5)

.

(46)

As before, under condition 0 ≤ θ ≤ 1/2, the sign of the di�erence gFB2f − gOL2f coincides

with the sign of the following expression

3(2−3θ)2(5af−4al+cG0+3cr−z)−(5θ−3)(7θ−5)(4af−3al+cG0+3cr−z).

Last expression can be rewritten as a quadratic polynomial in variable θ as follows:

B2θ
2 +B1θ +B0,

where

B2 = −5af − 3al + 8(−cG0 − 3cr + z),

B1 = 2(2af + 3al + 5cG0 + 15cr − 5z),

B0 = −3(al + c(G0 + 3r)− z).

Conditions 1.A and 1.B imply B2 < 0, B1 > 0 and B0 < 0. Therefore, the sign of gFB2f −gOL2f

is identical to the sign of a quadratic polynomial in variable θ with negative second-order

and independent terms and positive �rst-order term. Furthermore, B2
1 − 4B2B0 = (af +

cG0 + 3cr− z)(4af − 3al + cG0 + 3cr− z) > 0, and hence, the inverted U -shaped parabola

B2θ
2 + B1θ + B0 cuts the horizontal axis in two points. The smallest root can be proved

to be greater than 1/2 under Conditions 1.A and 1.B, and therefore, gFB2f − gOL2f < 0 for

any θ ∈ [0, 1/2].

gFB2l −gOL2l =
(θ−1)(af ((31−25θ)θ−10)+al(θ(27θ−34)+11)+(θ−1)(2θ−1)(cG0+3cr−z))

2c(3θ − 2)(5θ − 3)(7θ − 5)
.

(47)
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Under condition 0 ≤ θ ≤ 1/2, the sign of the di�erence gFB2l − gOL2l coincides with the sign

of the following expression

af ((31−25θ)θ−10)+al(θ(27θ−34)+11)+(θ−1)(2θ−1)(cG0+3cr−z).

Last expression can be rewritten as a quadratic polynomial in variable θ as follows:

C2θ
2 + C1θ + C0,

where

C2 = −25af + 27al + 2cG0 + 6cr − 2z,

C1 = 31af − 34al − 3cG0 − 9cr + 3z,

C0 = −10af + 11al + cG0 + 3cr − z.

Conditions 1.A and 1.B imply C2 > 0, C1 < 0 and C0 > 0. Repeating the same reasoning

as below in the analysis of the sign of the di�erence gFB1f − gOL1f and showing that either

the smallest root or the vertex of the parabola is greater than 1/2 under Conditions 1.A

and 1.B, we can conclude that gFB2l − gOL2l > 0 for any θ ∈ [0, 1/2].

D.2 Study of dOL and dFB and proof of Proposition 4

D.2.1 Possible case studies

For the open-loop case:

• If al − af > 2cr/3, then dOL > 0 for all θ ∈ [0, 1/2].

• If 3al − 2af + cG0 − cr − z < 0 (this last condition implies al − af < 2cr/3), then

dOL < 0 for all θ ∈ [0, 1/2].

• If 3al − 2af + cG0 − cr − z > 0 and al − af < 2cr/3, then

* dOL > 0 for all θ ∈ [0, θ̃OL).

** dOL ≤ 0 for all θ ∈ [θ̃OL, 1/2], where θ̃OL =
3al−2af+cG0−z−cr

3al−af+2cG0−2z .

For the feedback case:

• If al − af > cr/2, then dFB > 0 for all θ ∈ [0, 1/2].

• If al − af < cr/2, then
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* dFB > 0 for all θ ∈ [0, θ̃FB).

** dFB ≤ 0 for all θ ∈ [θ̃FB, 1/2], where θ̃FB =
2al−af−z+cG0

2al+2cG0+cr−2z .

Proof.

dOL = gOL1f − gOL2f =
−θ(af − 3al − 2cG0 + 2z) + 2af − 3al − cG0 + cr + z

2c(3θ − 2)
. (48)

The partial derivative of dOL with respect to θ reads:

∂dOL

∂θ
=
−4af + 3al − cG0 − 3cr + z

2c(3θ − 2)2
,

and is negative under Condition 1. Therefore, if dOL is positive for θ = 1/2, then is positive

too for any θ ∈ [0, 1/2].

dOL |θ=1/2=
3(al − af )− 2cr

2c
> 0 ⇐⇒ al − af >

2cr

3
. (49)

Consequently, if al − af > 2cr/3, then dOL > 0 for θ ∈ [0, 1/2]. Moreover,

dOL |θ=0= −
2af − 3al − cG0 + cr + z

4c
< 0 ⇐⇒ 2af − 3al − cG0 + cr + z > 0. (50)

Consequently, if −2af + 3al + cG0 − cr − z < 0, then dOL < 0 for θ ∈ [0, 1/2]. Note that

this condition implies al − af < 2cr/3.

In the last situation, i.e., −2af + 3al + cG0 − cr − z > 0 and al − af < 2cr/3, there

exists 0 < θ̃OL =
3al−2af+cG0−z−cr

3al−af+2cG0−2z < 1/2, where the sign of dOL changes from positive to

negative.

For the feedback case:

dFB = gFB1f − gFB2f =
af − 2al − cG0 + z + θ(2al + c(2G0 + r)− 2z)

c(5θ − 3)
. (51)

The partial derivative of dFB with respect to θ reads:

∂dFB

∂θ
=
−5af + 4al − cG0 − 3cr + z

c(3− 5θ)2
,

and is negative under Condition 1. Therefore, if dFB is positive for θ = 1/2, then is positive

too for any θ ∈ [0, 1/2].

dFB |θ=1/2=
2(al − af )− cr

c
> 0 ⇐⇒ al − af >

cr

2
. (52)
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Consequently, if al − af > cr/2, then dFB > 0 for θ ∈ [0, 1/2]. Moreover

dFB |θ=0> 0, (53)

by Condition 1. This implies that if al−af < cr/2 there exists 0 < θ̃FB =
2al−af−z+cG0

2al+2cG0+cr−2z <

1/2, where the sign of dFB changes from positive to negative.

From the previous analysis, taking into account the possible signs of dOL and dFB just

three cases are possible. These cases are summarized below:

• If al − af > 2cr/3:

Case 1: dOL > 0, dFB > 0.

• If al − af < 2cr/3:

Case 2: dOL < 0, dFB < 0.

Case 3: dOL < 0, dFB > 0.

Indeed, the case dOL > 0 and dFB < 0 is unfeasible. In fact, dFB < 0 requires

conditions al − af < cr/2 and θ ∈ [θ̃FB, 1/2]. If al − af < cr/2, dOL > 0 requires

θ ∈ [0, θ̃OL]. But, under condition al − af < cr/2, we have θ̃FB > θ̃OL (more precisely

al − af < cr if and only if θ̃FB > θ̃OL).

D.2.2 Proof of Proposition 4

• When dOL > 0 and dFB > 0 (Case 1),

d = dFB − dOL =
(θ−1)(θ(5af−3al+2cG0+6cr−2z)−2af+al−cG0−3cr+z)

2c(3θ − 2)(5θ − 3)
.

(54)

For θ ∈ [0, 1/2], the sign of dFB − dOL is the opposite to the sign of the following

�rst-order polynomial in θ, θ(5af −3al+2cG0 +6cr−2z)−2af +al−cG0−3cr+z).

Under Condition 1 it can be easily shown that the independent term is negative

and the linear term is positive. Furthermore, under this condition the value of θ for

which this polynomial is null is greater than 1/2. Therefore, for any θ ∈ [0, 1/2], the

polynomial takes negative values, and hence, dFB − dOL is positive.

• When dOL < 0 and dFB < 0 (Case 2), d = −(dFB − dOL). Therefore, following the

previous reasoning, the opposite result is obtained and d < 0.
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• The case dOL < 0 and dFB > 0 (Case 3) is more di�cult to analyze in detail. First,

we prove that the sign of d can change. As described in Appendix D.2.1, Case 3

requires al − af < 2cr/3, implying θ̃FB > θ̃OL. Next we prove that d |θ=θ̃FB and

d |θ=θ̃OL have di�erent signs.

d |θ=θ̃FB=
(al − af − cr)(af − z + cG0 + cr)

2c(−2al − z + 3af + cG0 + 2cr)
.

If al − af < 2cr/3, (note that the same sign is obtained in the more restrictive

situation al − af < cr/2), then

−2al− z+ 3af + cG0 + 2cr > −2al− z+ 3(al−
2cr

3
) + cG0 + 2cr = al− z+ cG0 > 0.

Therefore, in this case, d |θ=θ̃FB< 0.

We also compute

d |θ=θ̃OL= −
(al − af − cr)(af − z + cG0 + cr)

c(−6al − z + 7af + cG0 + 5cr)
.

If al − af < 2cr/3, (note that the same sign is obtained in the more restrictive

situation al − af < cr/2), then

−6al−z+7af+cG0+5cr > −6al−z+7(al−
2cr

3
)+cG0+5cr = al−z+cG0+

cr

3
> 0.

Therefore, in this case, d |θ=θ̃OL> 0. We conclude that there exists θ̄ ∈ (θ̃OL, θ̃FB)

with d(θ̄) = 0.

We can also prove that d(θ) is a quadratic polynomial of θ and that the coe�cient

in θ2 is positive. This fact and taking into account that d |θ=θ̃FB< 0, d |θ=θ̃OL> 0

with θ̃FB > θ̃OL, we conclude that d |θ=0> 0. We also compute

d |θ=1/2=
7

2c

(
−4

7
cr + al − af

)
.

If al − af < 4cr/7, we have θ̄ ∈ (θ̃OL, θ̃FB) with d(θ̄) = 0 and the other root of this

last equation is greater than 1/2. Therefore, d(θ) > 0 if θ ∈ (0, θ̄) and d(θ) < 0 if

θ ∈ (θ̄, 1/2).

If al − af > 4cr/7, then the other root of d(θ) = 0 is θ̂ ∈ (θ̃FB, 1/2). Then d(θ) > 0

if θ ∈ (0, θ̄) ∪ (θ̂, 1/2) and d(θ) < 0 if θ ∈ (θ̄, θ̂).
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D.3 Proof of Proposition 5

The di�erence of the total extractions under the open-loop and feedback scenarios reads:

TotalOL − TotalFB =
(1− θ)(L1θ

2 + L2θ + L3)

3c(−2 + 3θ)(−3 + 5θ)(−5 + 7θ)
, (55)

where

L1 = 5af + 3al + 8(cG0 + 3cr − z) > 0,

L2 = −2(2af + 3al + 5(cG0 + 3cr − z)) < 0,

L3 = 3(al + cG0 + 3cr − z) > 0.

The sign of the expressions above come from Conditions 1.A and 1.B. Under condition

0 ≤ θ ≤ 1/2, the denominator of the expression in (55) is negative, and hence, the sign of

the di�erence TotalOL−TotalFB is the opposite to the sign of the numerator, that coincides

with the sign of the quadratic polynomial L1θ
2 + L2θ + L3. The expression L2

2 − 4L1L3

can be simpli�ed as follows:

L2
2 − 4L1L3 = (af + cG0 + 3cr − z)(4af − 3al + cG0 + 3cr − z).

Condition 1.A states that the �rst factor is positive, while condition 1.C implies that the

second factor is positive too. Therefore, the U-shaped parabola L1θ
2 + L2θ + L3 cuts the

horizontal axis at two positive values of θ denoted by θT and θ̄T , with θT < θ̄T . On the

one hand, it can be easily proved that θT > 1/2 if and only if 3(af −al)(5af +3al+8cG0 +

24cr − 8z) < 0. This last condition is ful�lled under conditions 1.A and 1.B.

D.4 Proof of Proposition 6

For the case θ = 1/2, the di�erence on the leader's pro�ts in the open-loop and feedback

cases is:

ΠOL
l −ΠFB

l =
4c(2G0(af + al − 2z) + 3r(2al − af − z)) + 8(af − z)(al − z)− 13(af − al)2

72c
(56)

+
4c2G0(2G0 + 3r)

72c
,

To prove that this last expression is positive, we evaluate this di�erence at al = af and

we check that it is positive. Then, we compute the derivative of the di�erence with respect
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to al and verify that it is also positive. Note that under Condition 1

ΠOL
l −ΠFB

l |al=af=
cG2

0

9
+

(
2

9
af −

2

9
z +

1

6
cr

)
G0 +

1

18c
(af − z)(3cr + 2af − 2z) > 0,

and

∂(ΠOL
l −ΠFB

l )

∂al
=

1

36c
(12cr + 4cG0 + 17af − 4z − 13al)

=
1

9c
(3cr + cG0 +

17

4
af − z −

13

4
al)

=
1

9c
((3cr + cG0 − 4al + 2af + 2z) + (

3

4
af − 3z +

9

4
al)) > 0.

We conclude that

ΠOL
l −ΠFB

l > 0.

Now, the di�erence on the follower's pro�ts in the open-loop and feedback cases is:

ΠOL
f −ΠFB

f =
(al − af )(9af − 7al + 2cG0 + 6cr − 2z)

12c
.

Following the same reasoning as before this expression is greater than zero under Condition

1.

For the case θ = 0, the di�erence on the leader's pro�ts in the open-loop and feedback

cases is:

ΠOL
l −ΠFB

l =
−100a2

f + (60r + 20G0)c+ 220aL − 20z)af +B

1800c
,

where

B =
99
(
r + G0

3

)2
c2 − (66z − 6al)

(
r + G0

3

)
c− 109a2

L − 2zaL + 11z2

1800c
.

The idea to prove that ΠOL
l −ΠFB

l > 0 is similar to the above reasoning. We can prove

that
∂(ΠOL

l −ΠFB
l )

∂af
=

1

1800c
(20c(G0 + 3r) + 220al − 200af − 20z) > 0,

that is ΠOL
l −ΠFB

l increases with af . To complete the proof we must now verify that this

di�erence is positive for af = z.

ΠOL
l −ΠFB

l |af=z = f(al),
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where f(al) is a quadratic inverted-U function of al, with roots at al1 and al2 with

al1 = z − c(G0 + 3r)20
√

3−1
109 < al2 = z + c(G0 + 3r)20

√
3+1

109 . When af = z we know

by Condition 1.C that al <
c(G0+3r)

4 +z < a2
l . This prove that for al in its feasible interval,

z < al <
c(G0+3r)

4 , one has f(al) > 0.

The same kind of reasoning shows that ΠOL
f −ΠFB

f > 0.

Next, denoting by Π1f ,Π2f the follower's pro�t in the �rst and the second period

respectively, for θ = 1/2, we obtain

ΠOL
2f −ΠFB

2f = −4(ΠOL
1f −ΠFB

1f ) =
(al − af )(2c(G0 + 3r)− 7al + 9af − 2z)

9c

=
(2c(G0 + 3r)− 8al + 4af + 2z) + (al + 5af − 4z)

9c
> 0

by Condition 1, then ΠOL
1f −ΠFB

1f < 0.

For θ = 0 the same condition implies

ΠOL
2f −ΠFB

2f =
(c(G0 + 3r) + aL − z)(9c(G0 + 3r)− 31al + 40af − 9z)

900c
> 0,

ΠOL
1f −ΠFB

1f = −
(3c(G0 + 3r)− 7aL + 10af − 3z)(7c(G0 + 3r)− 23al + 30af − 7z)

3600c
< 0.
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