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Abstract: In this work we will present a study of noise force spectroscopy using optical tweezers.
In particular, we will study the fluctuations of two kinds of systems, a passive one, polystyrene
spheres of known radius (bead), and a biological system like the red blood cells. Experimentally,
we will directly optically trap the systems at rest and measure the force signal during 30s. Once
we get the force signal, we will compute the power spectra which present a Lorentzian shape. By
fitting the power spectrum to a Lorentzian, we will obtain the friction coefficient and the stiffness
of both systems. The results are compatible with the theoretical predictions and the experimental
values obtained by different techniques.

I. INTRODUCTION

The fluctuation-dissipation theorem is a powerful tool
to predict the behaviour of systems in equilibrium. The
study and measurement of fluctuations is crucial for un-
derstanding the evolution of a wide variety of systems,
including biological ones such as the red blood cells.

Red blood cells (RBCs) are the most common blood
component. Their cytoplasm is rich in haemoglobin, a
biomolecule that binds with oxygen allowing the RBCs
to carry it from the lungs to the body tissues. RBCs
have a diameter of 6− 8µm, are disc-shaped and present
a high deformability which allows them to flow through
tiny blood vessels [1].

Flickering of RBCs is a well-known phenomenon that
has been studied for years and can be directly observed
under optical microscopy. Initially, it was described as
an equilibrium process due to the thermal fluctuations of
the cell membrane, however, more recent studies using
optical tweezers suggest a non-equilibrium explanation
[2].

Optical tweezers (OTs) are instruments that use highly
focused laser beams to hold and move sub-microscopic
objects. Therefore, they are ideal to perform experiments
in the fields of biology, nanoengineering and physics,
among others [3] [4]. Specifically, OTs can work precisely
at the nanoscale and, because of that, they are ideal for
measuring fluctuations in biological systems such as RBC
flickering.

The present work will focus on the physical quanti-
ties that we can extract from flickering. Specifically, we
study two different kinds of systems: a passive one, a
3µm diameter polystyrene bead, and a system of biolog-
ical relevance such as RBCs.

By directly trapping the systems in the optical trap,
measuring the force signal and performing a power spec-
tra analysis, we are able to compute the stiffness and the
friction coefficient of both systems.

II. OPTICAL TWEEZERS

Figure 1a depicts the scattering of the laser beams
when they interact with objects like beads (upper panel)
and RBCs (lower). The scattering process changes the
light momentum, implying that a force is exerted upon
the trapped object. This phenomenon is known as radia-
tion pressure, and it is the fundamental principal behind
optical tweezers (OTs).

FIG. 1: (a) Scheme of the scattering of the lasers beams when
they interact with the bead (upper panel) and the RBC (lower
panel). (b) Image of the mini-Optical Tweezers setup.

Arthur Ashkin is considered the father of the optical
tweezers. His work on microparticles manipulation with
laser beams started in the late 1960s and was culminated
in 1986 with the invention of the optical tweezers. For
his contribution on this field, he was awarded with the
2018 Nobel Prize in Physics.
Optical Tweezers use high numerical aperture objec-

tives to focus two counterpropagating lasers beams cre-
ating an optical trap. Furthermore, OTs are able to mea-
sure and exert forces in the order of picoNewtons and
distances in the order of nanometers. Their resolution
and the possibility to measure at high frequency, makes
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them ideal to perform single-molecule and flickering ex-
periments.

A concern of OTs is the possibility that the highly fo-
cused lasers may heat up the trapped object. As a result
of this effect, samples such as RBCs, could be damaged
[5]. In order to prevent this effect, OTs tipically work
with infrared light (800nm − 1064nm) which minimizes
the optical absorption by water. The heating is also mit-
igated by the liquid medium surrounding the trapped ob-
ject, so we can study their fluctuations and mechanical
properties without much concern.

III. LANGEVIN EQUATION AND POWER
SPECTRUM

For a particle moving inside a one-dimensional har-
monic potential, a good model for an optical trap, the
Langevin equation is

m
d2x

dt2
+ γ

dx

dt
+ kx = f(t) + η(t), (1)

wherem is the particle’s mass, γ is the friction coefficient,
k is the trap stiffness, f(t) is the external force and η(t)
is the noise associated to fluctuations. Notice that <
η(t) >= 0 and < η(t)η(s) >= 2kBTγδ(t − s) where kB
is the Boltzmann constant, T is the temperature, and
δ(t− s) is Dirac’s delta function .
Considering f(t) = 0, the equation can be solved in

the overdamped limit (m = 0),

x(t) = x(0)e−
kt
γ +

1

γ

∫ t

0

η(s)e−
k(t−s)

γ ds (2)

The auto-correlation function is defined as

Rxx(t) = E[x(0)x(t)] =< x(0)x(t) > (3)

Introducing Eq.(2) in Eq.(3) and knowing from the
equipartition theorem that < x2(0) >= kBT

k , the auto-
correlation function is expressed as,

Rxx(t) =< x2(0) > e−
kt
γ =

kBT

k
e−

kt
γ (4)

The power spectrum is defined as the Fourier transform
of the auto-correlation function of a signal:

Sxx(ν) = Ft[Rxx(t)] (5)

Then, we perform the Fourier transform in Eq. (4),

R̂xx(ω) =

∫ ∞

−∞

kBT

k
e−

k∆t
γ e−iωtdt =

=
2kBTγ

γ2ω2 + k2
=

2kBT

γ(ω2 + ω2
c )
, (6)

where ωc = k/γ is the angular corner frequency.

Finally, the force power spectrum in terms of the fre-
quency ν (ω = 2πν) is obtained considering its relation
with the position one,

Sff (ν) = k2Sxx(ν) =
kBTk

2

2π2γ

1

(ν2 + ν2c )
(7)

IV. SPECTRAL ANALYSIS

In the previous section we derived the power spec-
trum of a bead diffusing inside an optical trap from
its Langevin equation. The result, Eq.(7), follows a
Lorentzian shape:

Sff (ν) =
A

ν2 + ν2c
(8)

where A is the amplitude and νc = k/2πγ is the corner
frequency. Comparing Eq.(7) and Eq.(8) we find the re-
lation between parameters A and νc and the ones with
physical meaning, k and γ:

k =
πA

kBTνc
(9)

γ =
πA

2kBTν2c
(10)

Therefore, by fitting the power spectra to Eq.(8), we ob-
tain the parameters A and νc. Then, from Eq.(9) and
Eq.(10), we extract k and γ.
To obtain the power spectra, we trap the systems on

the optical trap and measure during 30s the force signal
at a high sampling frequency. It is necessary to record at
a sampling frequency at least five times larger than the
characteristic corner frequency and in our case we took
data at 100kHz. It is important to mention that, in order
not to damage the RBCs, we perform the experiments at
low laser power (a few mW), corresponding to a trap
stiffness of k = (2.20±0.08)×10−2pN/nm. This value is
obtained from the slope of the force-displacement curve
of a bead fixed on the tip of a micropipette (Figure 2,
this procedure is explained in detail in [6]).

FIG. 2: Force-displacement curve of a bead fixed on the tip of
a micropipette together with a linear fit between 10 pN and
-10 pN.
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As shown in Figure 3a, the force signal oscillates
around zero since we want to study the fluctuations of
the systems at zero external force. Once we get the force
signal, the power spectra is computed by Fourier trans-
forming its square modulus. After that, a boxcar average
(BCA) filter in logarithmic scale is applied, as shown in
Figure 3b. We impose a similar statistical weight to the
BCA points, as we are fitting along different orders of
magnitude.

FIG. 3: (a) Force signal of a bead optically trapped. (b)
Power spectrum of the force signal shown in (a). Raw power
spectrum in grey, boxcar average filter in black circles and fit
to Eq. (8) in red.

In Figure 4a are shown the BCAs and the fits to Eq.(8)
for three different beads, each one represented in a dif-
ferent color and symbol. The three power spectra are
compatible with each other, and their fits are hard to
distinguish.

On the other hand, the measurements for the RBCs
present more dispersion than the beads’ ones. Notice
that in Figure 4b, both BCAs and fits to Eq.(8) can be
distinguished from one RBC to the other.

FIG. 4: (a) Boxcar averages and the fits to Eq.(8) for three
beads. (b) Boxcar averages and the fits to Eq.(8) for three
RBCs.

V. RESULTS AND DISCUSSION

For each fit to a power spectrum, we obtain a couple
of k and γ values. In Table 1, we present the results
obtained with their corresponding uncertainties.

k × 10−2(pN/nm) γ × 10−5(pN · s/nm)

Bead 1 2.19± 0.11 2.38± 0.18

Bead 2 2.21± 0.11 2.44± 0.19

Bead 2 2.23± 0.11 2.50± 0.19

RBC 1 0.48± 0.05 5.0± 0.8

RBC 2 0.71± 0.07 4.6± 0.7

RBC 2 0.66± 0.09 6.2± 1.2

TABLE I: Stiffness and friction coefficient results obtained for
beads and RBCs.
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In Figures 5a and 5b, we plot the k and γ values, re-
spectively, to give a more visual sense of the results. In
these figures there is also plotted the average k and γ
values in order to provide a quick evaluation of the dis-
persion of the results.

As already discussed in the previous section, the re-
sults for the beads are compatible with each other (and
here it is even clearer than in Figure 4a). In fact, this
compatibility is expected as the dispersion in the bead’s
radius is very small (r= 1.50± 0.01µm).

On the other hand, RBCs present a larger heterogene-
ity due to the exogenous processes that suffer in vivo.
For that reason, the dispersion in both stiffness and fric-
tion coefficient are also expected. The fact that we are
able to observe this heterogeneity is a proof of the res-
olution of the noise force spectroscopy measurements to
characterized complex systems.

FIG. 5: (a) Stiffness, k, of three beads (in blue) and three
RBCs (in red) together with their uncertainties. With dashed
lines a representation of the average values for both systems.
(b) Friction coefficient, γ, of three beads (in blue) and three
RBCs (in red) together with their uncertainties. With dashed
lines a representation of the average values for both systems.

The average results for the beads are:

kbead = (2.21± 0.02)× 10−2 pN

nm
(11)

This value is compatible with the trap stiffness men-
tioned in section IV, which is k = (2.20 ± 0.08) ×
10−2pN/nm.

And for the friction coefficient,

γbead = (2.44± 0.06)× 10−5 pN · s
nm

. (12)

In hydrodynamics, the friction coefficient of a spherical
object inside an incompressible fluid has the following
expression,

γ = 6πηr (13)

where η is the fluid viscosity and r is the radius of
the object. In our case, the fluid is mQ water, which
has a viscosity of 0.8904cp at 25◦C, and the radius of
the beads is 1.5µm. Therefore the theoretical value for
γ is 2.52× 10−5pN · s/nm, which is compatible with our
result.

The average results for the RBCs are:

kRBC = (6.2± 1.2)× 10−3 pN

nm
(14)

This value is compatible with the stiffness obtained in
RBC pulling experiments using optical tweezers [7].

While for the friction coefficient,

γRBC = (5.3± 0.9)× 10−5 pN · s
nm

. (15)

To evaluate this result we can do a rough approxima-
tion considering the RBC as an sphere with a diameter
of 6µm. Using Eq.(13), we obtain a theoretical value of
γ ≈ 5× 10−5pN · s/nm. Although it is an inaccurate ap-
proximation, it gives us a first estimate of the value for γ
that we should expect and, actually, the result turns out
to be compatible.

In order to emphasize the variability in the friction
coefficient between beads and RBCs, in Figure 6 we show
an histogram of the friction coefficient. In particular, we
present 7 different beads (blue, measured at high laser
power, notice that γ is independent from the laser power),
and 7 RBCs (red).
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FIG. 6: Histogram of the friction coefficients, γ, obtained for
seven beads (in blue) and seven RBCs (in red).

VI. CONCLUSIONS

• We have obtained the stiffness and the friction co-
efficient for beads and red blood cells (RBCs) by
measuring their force signal with the optical tweez-
ers and performing a power spectra analysis.

• We have shown that power spectra analysis is a
very precise method for the calibration of the trap
stiffness at zero force and the characterization of
the bead geometry through their friction coefficient.

• In terms of the study of biological systems such
as RBCs, we have shown that the power spectrum
analysis is capable of characterizing their hetero-
geneity together with the precise measure of their
stiffness and their friction coefficient.

• The results are compatible with the literature and
measurements obtained with optical tweezers, such
as force-distance curve calibration in pulling exper-
iments.

• Optical tweezers are a well-established instrument
in the fields of molecular and cell biophysics, and
this work is another proof of their important role
regarding single-molecule experiments.
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