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Abstract
Lafora disease (LD) is a fatal childhood-onset dementia characterized by the extensive accumulation of glycogen aggre-
gates—the so-called Lafora Bodies (LBs)—in several organs. The accumulation of LBs in the brain underlies the neurologi-
cal phenotype of the disease. LBs are composed of abnormal glycogen and various associated proteins, including p62, an 
autophagy adaptor that participates in the aggregation and clearance of misfolded proteins. To study the role of p62 in the 
formation of LBs and its participation in the pathology of LD, we generated a mouse model of the disease  (malinKO) lacking 
p62. Deletion of p62 prevented LB accumulation in skeletal muscle and cardiac tissue. In the brain, the absence of p62 altered 
LB morphology and increased susceptibility to epilepsy. These results demonstrate that p62 participates in the formation of 
LBs and suggest that the sequestration of abnormal glycogen into LBs is a protective mechanism through which it reduces 
the deleterious consequences of its accumulation in the brain.
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List of Abbreviations
Arg-1  Arginase-1
C1q  Complement component 1q
C3  Complement component 3
CA  Corpora amylacea
CAL  Corpora amylacea-like bodies
CCL2  Chemokine (C–C motif) ligand 2
CD14  Cluster of differentiation 14
CXCL10  C-X-C motif chemokine ligand 10
CCL12  Chemokine ligand 12
EPM2a  Epilepsy, Progressive Myoclonus Type 2A
EPM2b  Epilepsy, Progressive Myoclonus Type 2b
GFAP  Glial fibrillary acidic protein
IBA1  Ionized calcium-binding adapter molecule 1
IL1- α  Interleukin 1 α
IL10  Interleukin 10
IL12  Interleukin 12
IL13  Interleukin 13
IL4  Interleukin 4
KA  Kainic acid
LBs  Lafora bodies
LCN2  Lipocalin-2
LD  Lafora disease
MGS  Muscle glycogen synthase
NHLRC1  NHL Repeat Containing E3 Ubiquitin Protein 

Ligase 1
nLBs  Neuronal Lafora bodies
PAS  Periodic acid–Schiff
S100A10  S100 calcium-binding protein A10
TNF-α  Tumor necrosis factor α

Background

Glycogen, a branched polymer of glucose, is found in most 
tissues but is particularly abundant in the liver and muscle 
[1]. In the brain, glycogen is present mainly in astrocytes 
[2–4], although neurons also have an active glycogen metab-
olism that contributes to their function [5, 6]. In mammals, 
glycogen is synthesized by glycogen synthase and degraded 
by glycogen phosphorylase. The muscular isoform of glyco-
gen synthase (MGS) is expressed in most tissues, including 
the brain.

Progressive myoclonic epilepsy type 2 (EPM2, OMIM 
#254,780) or Lafora disease (LD) is an autosomal reces-
sive disease characterized by severe and progressive myo-
clonus epilepsy, and neurodegeneration rapidly progress-
ing to dementia and death within 5–10 years after the onset 
[7, 8]. LD is caused by mutations in either the EPM2A 
gene, which encodes laforin, a dual specificity phosphatase 
with a carbohydrate-binding domain, or EPM2B (also 
NHLRC1), which encodes malin, an E3-ubiquitin ligase. 
The histopathological and clinical outcomes of LD patients 

and mouse models of LD carrying mutations in either of 
these two genes are very similar, thereby indicating that 
malin and laforin participate in the same physiological 
process. The hallmark of the disease is the accumulation 
of cytoplasmic aggregates of poorly branched glycogen 
called Lafora bodies (LBs) in several tissues [9, 10]. In the 
brain, LBs are found in astrocytes and neurons [11–13]. 
Neuronal LBs (nLBs) typically manifest as single, large, 
round and juxtanuclear aggregates, while astrocytic LBs 
are smaller and amorphous and have a granular distribu-
tion throughout astrocytic processes [12]. We refer to these 
astrocytic LBs as CAL (corpora amylacea-like), since 
they are morphologically similar to corpora amylacea—
glycogen aggregates that accumulate in normal aging [8, 
14]. Blocking or reducing brain glycogen synthesis in LD 
mouse models prevents the progression of the disease [13, 
15–18], thereby indicating that glycogen accumulation 
underlies the pathophysiology of LD. Furthermore, forced 
accumulation of glycogen in neurons leads to neuronal loss 
[19] while in astrocytes it induces neuroinflammation [13].

In addition to glycogen, LBs contain a number of pro-
teins, including laforin (in malin-deficient LD), enzymes 
involved in glycogen metabolism such as MGS, ubiquit-
inated proteins, and the autophagy adaptor p62 [17, 18, 20]. 
The presence of ubiquitin and p62 suggests that, like other 
insoluble molecular aggregates characteristic of neurodegen-
erative diseases, LBs could be targets for autophagic clear-
ance [17, 20–23]. In this regard, the mechanisms that drive 
the formation and clearance of LBs have not been identified 
yet. Since p62 has been shown to aggregate polyubiquit-
inated proteins [24], it could play a similar role in the for-
mation of LBs. Furthermore, although glycogen accumula-
tion underlies LD pathogenesis, it remains to be determined 
whether the sequestration of this polysaccharide into LBs is 
protective (to minimize the toxic consequences of the accu-
mulation of abnormal glycogen) or pathogenic (LBs them-
selves being the toxic species). Finally, the accumulation of 
p62 per se is deleterious for neurons [25, 26] and other cell 
types [27, 28]. In this regard, p62 depletion clears nuclear 
inclusion bodies and increases lifespan in a model of Hun-
tington’s disease [29].

Given all of the above, p62 may exert a neuroprotective or 
a neurotoxic function in the context of LD. To study the con-
tribution of p62 to LB formation and to the pathophysiology 
of LD, we generated a malin knockout mouse  (malinKO) [30] 
devoid of p62  (malinKO +  p62KO). Our results demonstrate 
that p62 is essential for LB formation in skeletal muscle and 
cardiac tissue. In the brain, p62 is also involved in the forma-
tion of these aggregates. When this protein is absent in the 
brain, neuroinflammation is mildly enhanced and suscepti-
bility to epilepsy is exacerbated. These observations identify 
p62 as a key player in the cellular protective response against 
glycogen aggregates.
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Materials and Methods

Animal Studies

All procedures were approved by the Barcelona Science 
Park’s Animal Experimentation Committee and were carried 
out following Spanish (BOE 34/11370–421, 2013) and Euro-
pean Union (2010/63/EU) regulations, and The National 
Institutes of Health guidelines for the care and use of labo-
ratory animals. For the generation of the  malinKO +  p62KO 
model,  malinKO mice [30] were crossed with  p62KO animals 
[23]. After weaning at 3 weeks of age, tail clippings were 
taken for genotyping by qPCR (performed by TransnetYX). 
Experiments were conducted using littermates, and males 
and females were included in each group. Mice were main-
tained on a 12/12 h light/dark cycle under specific pathogen-
free conditions in the Animal Research Center (Barcelona 
Science Park) and allowed free access to a standard chow 
diet and water.

Glycogen Quantification

Mice were deeply anesthetized and decapitated. Whole 
brains and quadriceps were quickly removed, frozen, and 
pulverized in liquid nitrogen. For glycogen measurements, 
frozen tissue aliquots were boiled in 30% KOH for 15 min 
and glycogen was precipitated in 60% ethanol and then 
determined by an amyloglucosidase-based assay [5].

Western Blot

For western blot, lysates of frozen tissue aliquots were pre-
pared using the following buffer: 25 mM Tris–HCl (pH 
7.4), 25 mM NaCl, 1% Triton X-100, 0.1% SDS, 0.5 mM 
EGTA, 10 mM sodium pyrophosphate, 1 mM sodium ortho-
vanadate, 10 mM NaF, 25 nM okadaic acid and a protease 
inhibitor cocktail tablet (Roche). Soluble and insoluble 
fractions of total homogenates were obtained as previously 
described [30]. Briefly, total homogenates were centrifuged 
at 13,000 rpm for 15 min at 4 °C. The pellet containing the 
insoluble fraction was resuspended in the same volume as 
the supernatant corresponding to the soluble fraction. Sam-
ples were loaded on 10% acrylamide gels for SDS-PAGE 
and transferred to Immobilon membranes (Millipore). The 
following primary antibodies were used: anti-MGS (3886, 
Cell Signaling); anti-laforin (3.5.5, kindly provided by Dr. 
Santiago Rodríguez de Córdoba); and anti-p62 (GP62-C, 
Progen). The following secondary antibodies were used: 
anti-rabbit and anti-mouse IgG-HRP (GE Healthcare); and 
anti-guinea pig HRP (Jackson Immuno Research). Proteins 
were detected by the ECL method (Immobilon Western 

Chemiluminescent HRP Substrate, Millipore), and loading 
control of the western blot membrane was performed using 
the Revert total protein stain (LI-COR Bioscience).

Histology and Immunohistochemistry

Animals were deeply anesthetized and perfused transcardi-
ally with phosphate-buffered saline (PBS) containing 4% 
paraformaldehyde (PBS 4% PFA). Brains, skeletal muscles 
and hearts were removed, post-fixed overnight with PBS 
4% PFA and embedded in paraffin blocks. Periodic acid-
Schiff staining (PAS) was performed using an Artisanlink 
Pro machine (AR16511-2 kit, Dako-Agilent).

For immunohistochemistry, 3-μm paraffin-embedded tis-
sue sections were either dewaxed and subjected to antigen 
retrieval treatment with Tris–EDTA buffer pH 9 for 20 min at 
97ºC using a PT Link (Dako – Agilent) or dewaxed as part of 
the antigen retrieval process using the Low pH EnVision™ 
FLEX Target Retrieval Solutions (K8005, Dako-Agilent) for 
20 min at 97ºC using a PT Link (Dako – Agilent). Endog-
enous peroxidase was quenched with Peroxidase-Blocking 
Solution (S2023, Dako-Agilent). Non-specific binding was 
blocked using 5% of normal goat serum (16,210,064, Life 
technology) with 2.5% BSA (10.735.078.001, Sigma) for 
60 min. Also, unspecific endogenous mouse Ig staining 
was blocked using the Mouse on mouse (M.O.M) Immuno-
detection Kit (BMK-2202, Vector Laboratories). Primary 
mouse IgG1 anti-GFAP (MAB360, Merck Millipore) and 
rabbit pAb 1 anti-IBA1 (019–19,741, WAKO) antibodies 
were diluted at 1:250 and 1:1000 respectively with EnVision 
FLEX Antibody Diluent (K800621, Dako-Agilent) and incu-
bated overnight at 4ºC. Tissue sections were then incubated 
for 45 min with Polyclonal Anti-Mouse 1:100 (P0447, Dako-
Agilent) or a BrightVision Poly-HRP-Anti Rabbit IgG, RTU 
(Immunologic, DPVR-110HRP). Antigen–antibody com-
plexes were revealed with 3–3′-diaminobenzidine (K3468, 
Dako). Sections were counterstained with hematoxylin 
(Dako, S202084) and mounted with Toluene-Free Mounting 
Medium (CS705, Dako) using a Dako CoverStainer.

For immunofluorescence, endogenous peroxidase was 
quenched by 10 min of incubation with Peroxidase-Block-
ing Solution (S2023, Dako-Agilent). Non-specific binding 
was blocked using 5% of normal goat serum (16.210.064, 
Life technology) with 2.5% BSA (10.735.078.001, Sigma) 
for 60 min. Also, unspecific endogenous mouse Ig stain-
ing was blocked using the M.O.M Immunodetection Kit 
(BMK-2202, Vector Laboratories). Primary antibodies 
anti-MGS (15B1) (1:250, 3886 Cell Signaling), anti-GFAP 
(1:250, MAB360, Merck Millipore), anti-βIII-Tubulin 
(1:500, T86660, Sigma Aldrich), and C3d antibody (1: 100, 
AF2655, R&D) were incubated overnight at 4ºC.

The following secondary antibodies were used: an Alexa 
Fluor® 488 anti-mouse IgG (405,319, BioLegend); Alexa 
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Fluor® 488 anti-mouse IgG1 (A21121, ThermoFisher); 
Alexa Fluor 568® anti-mouse IgG2b (A21144, Ther-
moFisher); DyLight 594 anti-rabbit (DI1094, VectorLabs); 
or an Alexa Fluor 647® anti-rabbit IgG (A32733, Ther-
moFisher), diluted at 1:500 and incubated for 60 min. Sam-
ples were stained with DAPI (D9542, Sigma) and mounted 
with fluorescence mounting medium (S3023 Dako). Speci-
ficity of staining was respectively confirmed by staining with 
rabbit IgG, polyclonal Isotype Control (ab27478, Abcam), 
mouse IgG1, Kappa Monoclonal (NCG01) Isotype Control 
(ab81032, Abcam), or a mouse IgM (PFR-03) Isotype Con-
trol (A1-10,438, ThermoFisher).

Brightfield and fluorescent images were acquired with a 
NanoZoomer- 2.0 HT C9600 digital scanner (Hamamatsu) 
equipped with a 20 × objective. For super-resolution micros-
copy, images were acquired in a Zeiss 880 confocal micro-
scope equipped with Fast Airyscan and a piezo-stage. A 
63 × magnification 1.40 NA oil-immersion lens with a digital 
zoom of 1.5 × was used. The Z-step between the stacks was 
set at 0.8 μm. Fast Airyscan raw data were pre-processed 
with the automatic setting of Zen Black.

The stainings were analyzed by the digital software analy-
sis package QuPath [31]. For detection of the morphologi-
cal features of nLBs and CAL, MGS-positive granules were 
identified using the Cell detection plugin (QuPath). Inten-
sity thresholds were set for GFAP and βIII-Tubulin in the 
surrounding area of each MGS-positive granule. Morphol-
ogy and intensity data were then exported and plotted with 
RStudio [32].

RT‑qPCR Analyses

Total RNA of pulverized brains was prepared with the 
RNeasy Micro Kit (Qiagen), following the manufacturer’s 
instructions. Single-stranded complementary DNA was 
produced by reverse transcription using 1 µg of DNA-free 
RNA in a 20-µL reaction qScript cDNA SuperMix (Quanta 
bio). Quantitative polymerase chain reaction (PCR) was per-
formed using SYBR green (Quanta bio) on the QuantStudio 
6 Flex as per the manufacturer’s instructions. The ΔCt was 
defined as the difference between the Q-PCR cycles of the 
housekeeping gene and those of the target genes.

Assessment of Kainate‑Induced Epilepsy

Mice were weighed and placed in individual cages to pre-
vent contact between animals, which could startle them. 
They were then administered three consecutives intraperi-
toneal (i.p.) injections (6 mg/kg body weight) of the gluta-
mate agonist kainic acid (KA) (Sigma) dissolved in 0.1 M 
PBS pH 7.4, in order to induce non‐lethal convulsive sei-
zures. Seizure intensity after KA injections was evaluated 
as described previously [33–35] for 240 min from the first 

KA administration. After the first KA injections, the ani-
mals developed hypoactivity and immobility (Grade I–II). 
After successive injections, hyperactivity (Grade III) and 
scratching with mild non-convulsive seizures (Grade IV) 
were often observed. Some animals progressed to a whole-
body convulsive seizure with loss of balance control (Grade 
V). Extreme behavioral manifestations such as uncontrolled 
hopping activity or “popcorn behavior” (blinking seizure), 
as well as continuous or chronic seizures (> 1’ without body 
movement control) were included in Grade VI. All behav-
ioral assessments were performed blind to the experimental 
group (genotype) in situ and were also recorded and reana-
lyzed blind to the first analysis.

Statistical Analysis

Two-group hypothesis testing was evaluated using an inde-
pendent sample t-test performed with the GraphPad Prism 
software (La Jolla, CA, USA). Two-way analysis of variation 
(ANOVA) was used for comparing three or more groups. 
Data are represented as mean ± standard error of the mean 
(SEM). When indicated, linear mixed-effects model was 
used as follows:

nLB and CAL morphology. For each morphological 
parameter independently, linear mixed effect models were 
fitted with the R package lmerTest [36] using the parameters 
response variable, cell type, and the interaction between cell 
type and genotype as covariates of interest, the experimental 
group and the position as adjusting factors, and both the 
Mouse ID and the interaction between the Mouse ID and 
cell type as random effect to account for non-independence 
among data from the same mice. Transformations: for 
parameter values between 0 and 1, a logit transformation was 
applied. Otherwise, for parameter values larger than zero, a 
log transformation was considered.

Q-PCR analysis at gene level. For every gene, indepen-
dently, linear mixed-effects models were fitted with the R 
package lmerTest using the ΔCt as response variable, Geno-
type as covariate of interest, experimental group as adjusting 
factor and Mouse ID as random effect to account for the 
variability of technical replicates. Adjustment for multiple 
testing (single-step correction method) was performed using 
the R package multcomp [37].

Q-PCR analysis for pro- and anti-inflammatory differ-
ences. For each mouse, ΔCt levels for the measured repli-
cates were averaged out. For each gene, the mouse group 
(batch) effect was also balanced out and, finally, standardiza-
tion was applied to these balanced data. The average value of 
each genotyping condition is shown in the graphs.

To evaluate consistency between gene patterns across 
inflammatory groups, a linear mixed-effects model was 
fitted with the R package lmerTest [36] using the interac-
tion between the genotype and the inflammatory group as 
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fixed effects and the gene Id as random effect. Adjustment 
for multiple testing (single-step correction method) was 
performed using the R package multcomp [37].

Results

p62 Progressively Accumulates with Age in the Brain 
and Skeletal Muscle of  MalinKO Mice

We previously described increased levels of p62 in 
11-month-old  malinKO brains [17, 18]. The accumulated 
p62 is bound to LBs, both CAL and nLBs [12]. To fur-
ther characterize p62 accumulation in  malinKO tissues, 
we performed immunofluorescence against this pro-
tein. We observed an increase in p62 in the cortex and 
the hippocampus of 4- and 11-month-old  malinKO mice 
(Fig. 1A), which paralleled the accumulation of LBs. 
Indeed, the number of p62-positive aggregates more than 
doubled in the brains of 11-month-old animals compared 
to those aged 4 months (Fig. 1B). A massive increase 
in p62-positive aggregates was detected in the skeletal 
muscles of 11-month-old  malinKO animals compared to 
4-month-old counterparts (Fig. 1A, C).

p62 Is Essential for LB Formation in Muscle 
and Heart Tissue But Not In the Brain

To evaluate the impact of p62 deletion on LB formation and 
LD progression, we generated  malinKO mice devoid of p62 
 (malinKO +  p62KO). The presence of LBs was visualized by 
periodic acid-Schiff staining (PAS), which specifically stains 
carbohydrates, and by immunofluorescence using anti-MGS 
antibody, since MGS is attached to LBs and can thus be used 
as an LB marker [13, 18].

The 11-month-old mice  malinKO animals showed abun-
dant PAS-positive LBs in all the tissues analyzed, i.e., skel-
etal muscle, heart, and brain, as previously described [17, 
18, 30] (Fig. 2A, Supplemental Fig. 1A). Strikingly, the 
skeletal muscles of  malinKO +  p62KO mice were devoid of 
PAS-positive aggregates (Fig. 2A) and instead showed a dif-
fused pattern of PAS-positive material. MGS immunostain-
ing confirmed the absence of glycogen aggregates in the 
skeletal muscle of  malinKO +  p62KO mice (Fig. 2B). Simi-
lar results were observed in cardiac tissue, where deletion 
of p62 resulted in the absence of PAS-positive and MGS-
positive aggregates (Supplemental Figs. 1A, B). Although 
devoid of LBs,  malinKO +  p62KO skeletal muscles showed 
an increase in total glycogen, as determined by biochemi-
cal quantification, similar to that seen in  malinKO muscles 
(Fig. 2D). These results indicate that the skeletal muscles of 
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 malinKO +  p62KO mice also accumulated glycogen, although 
not in the form of LBs.

In contrast, the brains of these mice showed PAS-positive 
aggregates (Fig. 2A). As expected, these aggregates con-
tained MGS but not p62 (Fig. 2C). Total glycogen levels 
were similarly elevated in  malinKO +  p62KO and  malinKO 
brains (Fig. 2D).

Accumulation of Insoluble MGS and Laforin 
Is Prevented in the Skeletal Muscle 
of MalinKO + p62KO Animals But Not in the Brain

Using western blot of total tissue homogenates, we next 
studied the content of proteins known to accumulate in 
 malinKO tissues. Since LBs are insoluble aggregates that 
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p62 and MGS in skeletal muscle (quadriceps) and brain (cortex). 
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groups, one-way ANOVA followed by Holm's Multiple Compari-
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precipitate under low-speed centrifugation [30], we also 
examined the distribution of these proteins between the 
soluble and insoluble fractions, the latter corresponding 
to the LB-enriched fraction. Western blots confirmed the 
absence of p62 in tissues from  p62KO and  malinKO +  p62KO 
mice. In the skeletal muscles of  malinKO mice, MGS, laforin 
and p62 were significantly increased in the insoluble frac-
tion (Fig. 3A, B), as previously reported [18]. However, in 
 malinKO +  p62KO skeletal muscles, MGS and laforin showed 
levels similar in the insoluble fraction to those of controls 
(Fig. 3A, B). These results were consistent with the absence 
of LBs in  malinKO +  p62KO skeletal muscles.

In brain total homogenates,  malinKO mice showed an 
increase in MGS and laforin, which corresponded to an 
increase in the insoluble fraction (Figs. 3c, d), as we previ-
ously described [18, 30]. In contrast to skeletal muscles, the 
brains of  malinKO +  p62KO mice showed similar increases in 
these two proteins in the insoluble fraction, consistent with 
the presence of LBs in this tissue.

p62 Depletion Alters the Morphology of Brain LBs

Although LBs were still present in  malinKO +  p62KO brains, 
we studied the morphology of these aggregates formed in 
the absence of p62. Super-resolution microscopy revealed 
that nLBs in  malinKO +  p62KO animals appeared less dense 
and more irregular than the typical round, compact nLBs 
found in  malinKO brains (Fig. 4A). The morphology of astro-
cytic LBs (CAL), which are inherently more heterogene-
ous than nLBs [12] was indistinguishable between the two 
genotypes, both showing highly irregular shapes (Fig. 4B).

We further characterized the morphology of nLBs and 
CAL by studying regularity parameters of MGS-stained 
granules in βIII-tubulin-positive/GFAP-negative areas 
(corresponding to nLBs) and GFAP-positive/βIII-tubulin-
negative areas (corresponding to CAL).  MalinKO +  p62KO 
nLBs showed changes in circularity, eccentricity, and maxi-
mal caliper with respect  malinKO nLBs (Fig. 4C, Supple-
mentary Fig. 2). No significant differences in CAL morphol-
ogy were detected between  malinKO +  p62KO and  malinKO 
brains (Fig. 4D, Supplementary Fig. 2). Taken together, 
these results indicate that p62 is necessary for the correct 
packing of nLBs.

MalinKO +  p62KO Mice Present Neuroinflammation

Astrogliosis, microgliosis, and increased expression of 
genes related to neuroinflammation are characteristic traits 
of  malinKO brains [13, 17, 18, 38]. Given the importance of 
p62 in inflammatory responses [39], we studied the impact 
of p62 deletion on these processes. GFAP and IBA1 immu-
nostainings showed an increase in reactive astrocytes and 
microglia in the hippocampi of  malinKO mice (Fig. 5A, 

B), as previously described [13, 17, 18].  MalinKO +  p62KO 
mice showed similar GFAP and IBA1 stainings (Fig. 5A, 
B), thereby indicating that the deletion of p62 alone did 
not significantly alter the number of reactive astrocytes or 
microglia. We also examined the presence of A1 astrocytes, 
a subset of reactive neurotoxic astrocytes whose cytoplasm 
accumulates the inflammatory component protein C3 [40]. 
 MalinKO +  p62KO mice showed a significant increase in reac-
tive C3-positive astrocytes compared to control animals 
(Fig. 5C, D), although they did not show a significant dif-
ference with  malinKO mice.

We next examined the transcriptional profiles of cytokines 
and other mediators of the immune response associated with 
activated microglia.  MalinKO and  malinKO +  p62KO mice 
showed a similar increase, with respect to control mice, in 
the expression of IL1-α, TNF-α, and C1q; cytokines; and 
key mediators of A1 astrocyte activation [40] (Fig. 5E). We 
observed a similar result in other inflammation-associated 
genes, including LCN2, CXCL10, CCL12, and CCL2 [38, 
41]. The expression of genes involved in suppressing inflam-
mation, like S100a10, IL10, and Arg-1A, was significantly 
increased in  malinKO mice (Fig. 5E). Overall,  malinKO mice 
showed the upregulation of both anti- and pro-inflammation 
genes, while  malinKO +  p62KO animals had a more marked 
increase of pro-inflammatory cytokines (IL12, CCL12, 
CD14, CCL2 and C3), and a reduced expression of the 
anti-inflammatory molecule Arg-1 and anti-inflammatory 
cytokines such as IL4 and IL13 (Fig. 5E). Next, we com-
pared normalized ΔCt patterns across the four genotypes for 
gene signatures defining pro- and anti-inflammatory activity. 
Interestingly,  malinKO +  p62KO mice showed higher expres-
sion of the pro-inflammatory signature than  malinKO mice, 
whereas this trend was reversed for the anti-inflammatory 
signature, with  malinKO mice showing greater expression 
than  malinKO +  p62KO counterparts. This pattern was con-
sistent for most of the genes that defined the two signatures 
(Fig. 5F, G). Overall,  malinKO and  malinKO +  p62KO mice 
showed a similar inflammatory response, albeit modestly 
exacerbated in the latter.

Deletion of p62 Enhances the Epileptic Phenotype 
of  MalinKO Mice

MalinKO mice present increased susceptibility to kainate-
induced epilepsy [17, 30], a finding consistent with one of 
the main symptoms of LD patients. We have proposed that 
this pathological trait is due to the accumulation of LBs 
in neurons [13, 30]. Therefore, we next aimed to examine 
whether the change in nLB morphology in  malinKO +  p62KO 
brains was translated into a worsening of the epileptic phe-
notype. To that end, 5-month-old mice received three con-
secutive kainate injections (6 mg/kg, i.p. every 30 min) and 
were video-recorded for 240 min after the first injection 
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to monitor behavior (i.e., epileptic events).  MalinKO and 
 malinKO +  p62KO animals showed a significant decrease in 
the average onset time of the first seizure (Fig. 6A) and an 
increase in the number of seizures compared to control mice 
(Fig. 6B). Furthermore,  malinKO +  p62KO animals showed 
the highest number of all kinds of seizures per animal, and 
the percentage of mice that reached the most severe stage 
(VI) was significantly higher in this group (Fig. 6B). While 
mice from the four genotypes reached all severity stages, 
only in the  malinKO and  malinKO +  p62KO groups all the 

mice reached stage IV and showed an increased propor-
tion of mice reaching stages V and VI (Fig. 6C). Regarding 
the time spent in each stage, again  malinKO +  p62KO mice 
showed the highest time spent in severe stages (Fig. 6D) 
and the lowest in mild stages (I-III, not shown).  MalinKO and 
 malinKO +  p62KO animals spent more time in stage IV, the 
latter group being statistically higher than the former and the 
only one to show significantly greater time spent in stage V 
when compared to control animals (Fig. 6D). In summary, 
the increased susceptibility to kainate-induced epilepsy of 

A

B

C

D

control 
p62KO

malinKO 
malinKO 

+p62KO

MGS laforin

soluble insoluble soluble insoluble

SKELETAL MUSCLE

BRAIN

n.s.
n.s.

n.s.n.s.

0.0

0.5

1.0

1.5

in
te

ns
ity

 (A
.U

.)

0.0

0.5

1.0

1.5

in
te

ns
ity

 (A
.U

.)

0

2

4

6

in
te

ns
ity

 (A
.U

.)

0.0

0.5

1.0

1.5

2.0

2.5

in
te

ns
ity

 (A
.U

.)

0.0

0.5

1.0

1.5

2.0

in
te

ns
ity

 (A
.U

.)

0

2

4

6

8

in
te

ns
ity

 (A
.U

.)

0

1

2

3

4

in
te

ns
ity

 (A
.U

.)

0.0

0.5

1.0

1.5

in
te

ns
ity

 (A
.U

.)

0

10

20

30

40

in
te

ns
ity

 (A
.U

.)

0.0

0.5

1.0

1.5

2.0

2.5

in
te

ns
ity

 (A
.U

.)

0.0

0.5

1.0

1.5

in
te

ns
ity

 (A
.U

.)

0

2

4

6

8

10

in
te

ns
ity

 (A
.U

.)

total homogenate

control p62KO malinKO control p62KO malinKO control p62KO malinKO malinKO 

+p62KO

soluble fraction insoluble fraction

MGS

p62

Laforin

Revert

total homogenate

malinKO 

+p62KO
malinKO 

+p62KO

soluble fraction insoluble fraction

MGS

p62

Laforin

Revert

total homogenate

control p62KO malinKO control p62KO malinKO control p62KO malinKO malinKO 

+p62KO
malinKO 

+p62KO
malinKO 

+p62KO

n.s.
n.s.

n.s.n.s.

n.s.
***

**n.s.

n.s.
n.s.

n.s.n.s.

n.s.
*

*n.s.

n.s.
****

****n.s.

total homogenate

control 
p62KO

malinKO 
malinKO 

+p62KO

MGS laforin

soluble insoluble soluble insoluble

**
****

n.s.n.s.

total homogenate

**
**

n.s.*

***
**

n.s.n.s.
****

****
n.s.n.s.

n.s.
n.s.

n.s.n.s.

**
***

n.s.n.s.

total homogenate

1 3

Molecular Neurobiology (2022) 59:1214–1229 1221



 malinKO mice was further increased in  malinKO +  p62KO 
mice.

Discussion

The high levels of p62 in  malinKO brains [17, 18, 20] made us 
consider the possibility that its accumulation per se contributes 
to the etiopathology of LD. In this regard, it is worth not-
ing that p62 interacts with many factors that play key roles in 
determining cell fate [26]. The accumulation of p62 can lead to 
overactivation of oxidative stress responses through the Nrf2/
Keap1 pathway [42] or can co-operate with other disease-asso-
ciated proteins to induce cellular toxicity [43]. Conversely, p62 
depletion clears nuclear inclusion bodies and increases lifespan 
in a model of Huntington’s disease [29]. Strikingly, our results 
indicate that the accumulation of p62 per se does not under-
lie the etiopathology of LD, as  malinKO +  p62KO mice are not 
rescued from the characteristic pathological traits of LD but 
instead present exacerbated susceptibility to epilepsy.

p62 participates in the autophagic removal of protein 
aggregates in a process known as aggrephagy [44]. p62 con-
tains multiple protein-interaction domains, including a ubiq-
uitin-binding domain and an oligomerization domain, which 
allow it to bind to and aggregate polyubiquitinated proteins 

into less harmful inclusions [45]. The presence of p62 in 
LBs led us to hypothesize that glycogen aggregation in LD 
follows a similar pattern. Importantly, LBs were absent in 
the skeletal muscles and hearts of  malinKO +  p62KO mice, 
thereby revealing that the abnormal glycogen that is formed 
in LD does not aggregate by itself, as it has been generally 
assumed, since p62 is essential for the formation of LBs 
in these tissues. These results have important implications 
for other diseases in which glycogen aggregates accumulate 
in skeletal muscle and heart, including Andersen’s disease 
(OMIM 232,500) [46], Cori’s disease (OMIM 232,400) 
[47], Tarui disease (OMIM 232,800) [48], polyglucosan 
body myopathy-1 (OMIM 615,895) [49], and polyglucosan 
body myopathy-2 (OMIM 616,199) [50]. In contrast, the 
brains of these animals still contained LBs, indicating that 
the process of LB formation is tissue-specific. In this regard, 
it is worth noting that aggrephagy genes appear to be dif-
ferentially used in a tissue-specific manner [44]. Functional 
redundancy of autophagy receptors [51, 52] could explain 
the presence of LBs in  malinKO +  p62KO brains, as other 
receptors might compensate for the absence of p62 to trig-
ger glycogen aggregation in this tissue.

However, super-resolution analysis revealed that p62 
deletion results in more irregular, less round, less compact 
aggregates in neurons, thereby confirming the involvement 
of p62 in LB formation also in this cell type. In this regard, it 
is interesting to note that protein aggregates rich in p62 (p62 
bodies) have liquid-like properties (high sphericity) and can 
undergo fusion events [53]. Therefore, it is conceivable that 
the deletion of p62 blocks the liquid-like properties (round-
ness) and the fusion of insoluble glycogen aggregates into 
larger droplets. We have proposed that the epileptic pheno-
type of LD is due to the accumulation of abnormal glycogen 
in neurons [13, 30]. Our results show that the change in the 
morphology of nLBs in  malinKO +  p62KO mice is accom-
panied by an increase in susceptibility to kainate-induced 
epilepsy, thereby corroborating that the proper sequestration 
of abnormal glycogen into nLBs is essential to minimize its 
toxic effects in neurons.

Although p62 is present both in CAL and nLBs in the 
brains of  malinKO mice [12], analysis of the number and 
morphology of astrocytic CAL did not show significant dif-
ferences in  malinKO +  p62KO mice. However, the morphol-
ogy of CAL is inherently heterogeneous [12], which could 
hamper the detection of changes in the parameters studied. 
Thus, we cannot discard that the deletion of p62 also affected 
CAL formation. We have recently demonstrated that the 
accumulation of CAL in astrocytes underlies neuroinflam-
mation in LD [13]. Accordingly, the cytokine inflammatory 
program was sustained and even switched toward a potential 
exacerbation of the neuroinflammation in  malinKO +  p62KO 
mice. These results confirm the key role of astrocyte-driven 
inflammation in the pathophysiology of LD.

Fig. 3  p62 deletion rescues accumulation of insoluble glycogen-
bound proteins MGS and laforin in skeletal muscle but not in brain. 
A-C. Western blotting for MGS, p62 and laforin in muscle (A) and 
brain (C). Total protein was used as loading control. B-D. Densitom-
etry of the western blots in skeletal muscle (B) and brain (D). For 
comparisons between groups, one-way ANOVA followed by Holm's 
Multiple Comparisons Test was performed. N = 6–9 animals/group 
were analyzed. Results are presented as the group mean ± SEM. * 
P < 0.05, ∗  ∗ P < 0.01, ∗  ∗  ∗ P < 0.001, ∗  ∗  ∗  ∗ P < 0.0001. Adjusted 
p-values for MGS (a) or laforin (b): Brain whole lysates: control vs. 
 p62KO p = 0.057 (a), p = 0.3489 (b); control vs.  malinKO p < 0.0001 (a) 
p < 0.0001 (b); control vs.  malinKO +  p62KO p = 0.0066 (a), p < 0.0001 
(b); and  malinKO vs.  malinKO +  p62KO p = 0.057 (a), p = 0.0898 
(b). Brain soluble: control vs.  p62KO p = 0.0143 (a), p = 0.8557 
(b); control vs.  malinKO p = 0.0041 (a), p = 0.7614 (b); control vs. 
 malinKO +  p62KO p = 0.0041 (a), p = 0.7614 (b); and  malinKO vs. 
 malinKO +  p62KO p = 0.9128 (a), p = 0.8737 (b). Brain insoluble: 
control vs.  p62KO p = 0.9649 (a), p = 0.9179 (b); control vs.  malinKO 
p = 0.0013 (a), p = 0.0001 (b); control vs.  malinKO +  p62KO p = 0.0001 
(a), p = 0.0075 (b); and  malinKO vs.  malinKO +  p62KO p = 0.5051 (a), 
p = 0.1591 (b). Muscle whole lysate: control vs.  p62KO p = 0.8217 
(a), p = 0.7297 (b); control vs.  malinKO p = 0.8217 (a), p = 0.0919 
(b); control vs.  malinKO +  p62KO p = 0.8217 (a). p = 0.7297 (b); and 
 malinKO vs.  malinKO +  p62KO p = 0.9765 (a), p = 0.1987 (b). Muscle 
soluble: control vs.  p62KO p = 0.9597 (a), p = 0.0573 (b); control vs. 
 malinKO p = 0.1964 (a), p = 0.0135 (b); control vs.  malinKO +  p62KO 
p = 0.1543 (a), p = 0.9727 (b); and  malinKO vs.  malinKO +  p62KO 
p = 0.9597 (a), p = 0.0135 (b). Muscle insoluble: control vs.  p62KO 
p = 0.9966 (a), p = 0.6862 (b); control vs.  malinKO p = 0.0003 (a), 
p < 0.0001 (b); control vs.  malinKO +  p62KO p = 0.7838 (a), p = 0.6862 
(b); and  malinKO vs.  malinKO +  p62KO p = 0.0013 (a) p < 0.0001 (b)

◂
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A longstanding question in LD is whether LBs are the 
toxic species themselves or whether they are formed to mini-
mize the detrimental consequences of the accumulation of 
abnormal glycogen, by sequestering it into less harmful 
aggregates. In this regard, there is wide consensus that in 
proteinopathies, early stages of aggregation are responsi-
ble for cellular toxicity and neurodegeneration [54–56]. 
 MalinKO +  p62KO mice, in which the formation of brain LBs 
is altered, offer the opportunity to study intermediate states 
of LB formation. We observed increased susceptibility to 
kainate-induced epilepsy in  malinKO +  p62KO mice, which 
supports the hypothesis that immature glycogen aggregates 
are more harmful than mature LBs. On the basis of all these 
considerations and our findings, we propose a scenario in 
which LBs play a similar role as neurodegeneration-associ-
ated protein inclusion bodies [55, 57, 58]. Poorly branched 
glycogen, which cannot be degraded by glycogen phos-
phorylase, would be formed as a side-product of glycogen 
metabolism. The malin/laforin complex would serve to pre-
vent the formation of this abnormal glycogen. Thus, in the 
absence of laforin or malin, it would accumulate. In this 
context, p62 (together with other autophagy adaptors in the 
case of the brain) would promote its aggregation into LBs 
in order to minimize the deleterious consequences of aber-
rant glycogen accumulation in neurons [19] and possibly in 
astrocytes [13] (Fig. 7).

Several recent articles explore possible therapies for LD 
based on replacing the missing genes, inhibiting glyco-
gen synthesis or introducing enzymes that can digest LBs 
[18, 59–62]. Moreover, beyond LD, we have witnessed an 
increasing body of literature showing glycogen accumula-
tion as a new common thread in aging, neurodegenerative 
diseases (including Alzheimer’s, Parkinson’s and Hunting-
ton’s disease and amyotrophic lateral sclerosis [63–65]) 
and epilepsy [18, 66–69]. Moreover, the accumulation of 
corpora amylacea, p62 and aggregation-prone proteins in 
the brain correlates with aging and neurodegeneration (8, 
14, 70, 71). The accumulation of glycogen in these condi-
tions could play an active role in disrupting cell homeostasis, 
causing neuroinflammation and epilepsy, as we have shown 

for LD. Therefore, glycogen synthesis emerges as a potential 
therapeutic target for aging and other neurological diseases.

Conclusions

Our study shows that p62 is necessary for LB formation in 
muscle and heart and that it is also important for the correct 
formation of LBs in the brain. The deletion of p62 wors-
ens the susceptibility to epilepsy of LD. Our results provide 
an unprecedented description of a protective role of p62-
directed sequestration of abnormal glycogen in LD.
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