Ω_{c}^{0} baryons in the $\Omega_{b}^{-} \rightarrow \Xi_{c}^{+} K^{-} \pi^{-}$decay

Author: Marta Botella Garcia
Facultat de Física, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.

Advisor: Àngels Ramos Gómez

Abstract

We follow on the steps of the LHCb collaboration which first discovered five excited states of baryons with strangeness and charm, Ω_{c}^{0}, in $p p$ collisions, by discussing the $\Omega_{b}^{-} \rightarrow \pi^{-} \Xi_{c}^{+} K^{-}$ decay, a process which has been recently studied by the same collaboration obtaining four narrow Ω_{c}^{0} states compatible with the previously found ones. We explore these new found states from a hadronic molecular viewpoint and find that two out of the four resonances, $\Omega_{c}(3050)^{0}$ and $\Omega_{c}(3090)^{0}$, might be interpreted as pentaquark states, structured as meson-baryon bound molecules.

I. INTRODUCTION

In recent years the spectroscopy in the heavy quarkonium sector, especially that of charmed baryons, has seen a remarkable progress. The latest experimental observations have challenged the conventional quark model, and some new theories have arisen to explain the internal structure of these new found states. Some of these works interpret the observed resonances as pentaquark molecules structured in a quasi-bound state of an interacting meson-baryon pair.

To this category of discoveries has contributed the LHCb search for new Ω_{c}^{0} resonances [1]. These excited states, first found in $p p$ collisions, decay strongly to the final state $\Xi_{c}^{+} K^{-}$, where the Ξ_{c}^{+}is a weakly decaying baryon. The $\Xi_{c}^{+} K^{-}$mass spectrum study revealed five excited Ω_{c}^{0} states, $\Omega_{c}(3000)^{0}, \Omega_{c}(3050)^{0}, \Omega_{c}(3066)^{0}$, $\Omega_{c}(3090)^{0}$, and $\Omega_{c}(3119)^{0}$. One of the theoretical studies that has explored these states following the mesonbaryon molecular approach [2] concludes that two out of the five Ω_{c}^{0} states might have a molecular origin, in particular, it predicts the presence of two structures with similar masses and widths to those of the observed $\Omega_{c}(3050)^{0}$ and $\Omega_{c}(3090)^{0}$. A more recent experiment of the LHCb collaboration has provided new data on the Ω_{c}^{0} states by studying the $\Xi_{c}^{+} K^{-}$invariant mass spectra from the $\Omega_{b}^{-} \rightarrow \pi^{-} \Xi_{c}^{+} K^{-}$decays [3]. The new experiment has revealed four excited Ω_{c}^{0} baryons, $\Omega_{c}(3000)^{0}, \Omega_{c}(3050)^{0}$, $\Omega_{c}(3065)^{0}$ and $\Omega_{c}(3090)^{0}$, compatible with the ones previously found.
In light of the above, the aim of this study is to build a model for the $\Omega_{b}^{-} \rightarrow \pi^{-} \Xi_{c}^{+} K^{-}$decay observed in the latest LHCb study and, incorporating the interaction of hadrons in the final state through the theoretical model in [2], explore the possibility that some of the Ω_{c}^{0} observed states might be of a molecular nature.

This work is organized as follows. Within the formalism in Section II, we describe in Section II.A the model for the $\Omega_{b}^{-} \rightarrow \pi^{-} \Xi_{c}^{+} K^{-}$decay showing Dalitz plots to provide a general motivation for the theoretical and experimental studies. Section II.B presents the interaction model of [2] modified by introducing the physical states of the pseudoscalar mesons η and η^{\prime} rather than their mathematical expressions η_{1} and η_{8}. The results for the invariant mass distribution of Ω_{b}^{-}are discussed in Section

III, where they are compared to the theoretical predictions from [2] as well as to the experimental data. Finally, Section IV contains our concluding remarks.

II. FORMALISM

A. Ω_{b}^{-}decay

The Dalitz plot of the $\Omega_{b}^{-} \rightarrow \pi^{-} \Xi_{c}^{+} K^{-}$decay into three bodies describes its final state in a two dimensional phase space and, together with the four-momentum conservation, provides the kinematically accessible limits of the process [4]. Also, as pointed out in [5], it provides a theoretical framework against which to compare experimental observations.

FIG. 1: Dalitz plot for $M_{\Xi_{c}^{+} \pi^{-}}$as a function of $M_{\Xi_{c}^{+} K^{-}}$. The inset shows an expanded view of the upper left corner where the vertical bands correspond to the Ω_{c}^{0} states found in the $\Xi_{c}^{+} K^{-}$channel.

The $M_{\Xi_{c}^{+} \pi^{-}}$vs $M_{\Xi_{c}^{+} K^{-}}$Dalitz plot is shown in Fig.1. We observe that the states discovered by the LHCb collaboration fall inside the kinematically allowed region in the invariant mass of $\Xi_{c}^{+} K^{-}$states.
Keeping in mind the Dalitz diagram as a general motivation and following [6] and [7], we now discuss the model for the $\Omega_{b}^{-} \rightarrow \pi^{-} \Xi_{c}^{+} K^{-}$decay. The process can be divided into three steps: the first two describe the weak decay mechanism $\Omega_{b}^{-} \rightarrow \pi^{-} M B$, where $M B$ is
the meson-baryon system with strangeness $S=-2$ and charm $C=1$, and the hadronization process. Then, the final-state interaction takes place and the Ω_{c}^{0} baryons are generated dynamically.

FIG. 2: Diagram of the weak decay $\Omega_{b}^{-} \rightarrow \pi^{-} \Xi_{c}^{+} K^{-}$via a hadronization mechanism. The full lines correspond to quarks, while the wavy line corresponds to the W-boson.

The decay process begins with the Ω_{b}^{-}flavor function:

$$
\left|\Omega_{b}^{-}\right\rangle=|b s s\rangle .
$$

Fig. 2 shows that, in the weak decay step, the b quark of the Ω_{b}^{-}transitions to a c quark and a quark-antiquark pair $d \bar{u}$ which forms the π^{-}meson. Subsequently, the virtual css three-quark state undergoes a process of hadronization:

$$
|H\rangle=|c s s\rangle .
$$

Since the possible resonances are generated from the interaction of pseudoscalar mesons ($J^{P}=0^{-}$) and baryons of the ground state octet $\left(J^{P}=1 / 2^{+}\right)$in s-wave, the spin-parity of the resonance state will be $J^{P}=1 / 2^{-}$. Furthermore, since the two s-quarks act as spectators (so their angular momentum is fixed at $L=0$) and the final-state parity is negative, the c-quark must be in $L=1$. Therefore, the c-quark must be involved in the hadronizing mechanism, as depicted in Fig.2.
After hadronization, the quark flavor state is

$$
\begin{aligned}
|H\rangle & =|c(\bar{u} u+\bar{d} d+\bar{s} s+\bar{c} c) s s\rangle \\
& =|c \bar{u} u s s+c \bar{d} d s s+c \bar{s} s s s+c \bar{c} c s s\rangle \\
& =\sum_{i=1}^{4}\left|\phi_{4 i} q_{i}(s s)\right\rangle
\end{aligned}
$$

where we define

$$
q=\left(\begin{array}{l}
u \\
d \\
s \\
c
\end{array}\right), \quad \phi=q q^{t}=\left(\begin{array}{cccc}
u \bar{u} & u \bar{d} & u \bar{s} & u \bar{c} \\
d \bar{u} & d \bar{d} & d \bar{s} & d \bar{c} \\
s \bar{u} & s \bar{d} & s \bar{s} & s \bar{c} \\
c \bar{u} & c \bar{d} & c \bar{s} & c \bar{c}
\end{array}\right) .
$$

Since ϕ is the quark-antiquark representation of the $S U(4)$ pseudoscalar meson matrix, we can rewrite it in terms of the physical mesons as

$$
\begin{aligned}
& \phi= \\
& \qquad\left(\begin{array}{cccc}
\frac{1}{\sqrt{2}} \pi^{0}+\frac{1}{\sqrt{3}} \eta+\frac{1}{\sqrt{6}} \eta^{\prime} & \pi^{+} & K^{+} & \bar{D}^{0} \\
\pi^{-} & -\frac{1}{\sqrt{2}} \pi^{0}+\frac{1}{\sqrt{3}} \eta+\frac{1}{\sqrt{6}} \eta^{\prime} & K^{0} & D^{-} \\
K^{-} & \bar{K}^{0} & -\frac{1}{\sqrt{3}} \eta+\sqrt{\frac{2}{3}} \eta^{\prime} & D_{s}^{-} \\
D^{0} & D^{+} & D_{s}^{+} & \eta_{c}
\end{array}\right)
\end{aligned}
$$

of the Ξ^{0} baryon. Consequently, the hadronized state consistent with the chiral convention will be

$$
\begin{equation*}
|H\rangle=-\frac{2}{\sqrt{6}}\left|D^{0} \Xi^{0}\right\rangle+\frac{2}{\sqrt{6}}\left|D^{+} \Xi^{-}\right\rangle+\left|D_{s}^{+} \Omega^{-}\right\rangle-\frac{2}{\sqrt{6}}\left|\eta_{c} \Omega_{c}^{0}\right\rangle \tag{2}
\end{equation*}
$$

As in [7], we can rewrite eq.(2) in an isospin basis. Taking into account that the phase convention for the mesons is $\left|D^{0}\right\rangle=-\left|\frac{1}{2},-\frac{1}{2}\right\rangle,\left|D^{+}\right\rangle=\left|\frac{1}{2}, \frac{1}{2}\right\rangle$, and for the baryons is $\left|\Xi^{0}\right\rangle=\left|\frac{1}{2}, \frac{1}{2}\right\rangle,\left|\Xi^{-}\right\rangle=-\left|\frac{1}{2},-\frac{1}{2}\right\rangle,|H\rangle$ is rewritten as a combination of states with $I=0$ as it should be for css-type states:

$$
\begin{equation*}
|H\rangle=-\frac{2}{\sqrt{6}}|D \Xi\rangle_{I=0}+\left|\bar{D}_{s} \Omega_{c c}\right\rangle_{I=0}-\frac{2}{\sqrt{6}}\left|\eta_{c} \Omega_{c}\right\rangle_{I=0} . \tag{3}
\end{equation*}
$$

We observe that there is no direct production of $\Xi_{c}^{+} K^{-}$, however, this channel can be generated through the intermediate loops in the final-state interaction, as diagrammatically represented in Fig.3. Moreover, the intermediate $D_{s}^{+} \Omega^{-}$state will be neglected as well as the $\eta_{c} \Omega_{c}^{0}$ state since their energy is much larger than that of the other channels and they will have a small effect. Hence, effectively, we will only consider the $D \Xi$ channel.

FIG. 3: Diagrammatic representation of the hadronic model for the $\Omega_{b}^{-} \rightarrow \pi^{-} \Xi_{c}^{+} K^{-}$decay. The circle denotes the production mechanism of the $\pi^{-} M_{i} B_{i}$, which contains the hadronization factors of the reaction, whereas the square represents the meson-baryon scattering matrix $t_{i j}$.

After the meson-baryon pair is produced, the finalstate interaction takes place, which is parametrized by the scattering matrix $t_{i j}$. As in [6], we absorb all the kinematic and hadronization prefactors in an overall factor V_{p}, which is unknown and taken as a constant, and calculate the amplitude \mathcal{M} for the transition $\Omega_{b}^{-} \rightarrow \pi^{-} \Xi_{c}^{+} K^{-}$ as a function of the invariant mass of the meson-baryon pair in the final state, in our case, $\Xi_{c}^{+} K^{-}$:

$$
\begin{equation*}
\mathcal{M}(\sqrt{s})=V_{p}\left[h_{\bar{K} \Xi_{c}}+h_{D \Xi} G_{D \Xi} t_{(D \Xi)\left(\bar{K} \Xi_{c}\right)}\right] \tag{4}
\end{equation*}
$$

where $h_{M B}$ corresponds to the relative weights of the different possible meson-baryon pairs as provided by eq.(3)

$$
h_{D \Xi}=-\frac{2}{\sqrt{6}}, \quad h_{\bar{K} \Xi_{c}}=0
$$

$G_{D \Xi}$ denotes the one-meson-one-baryon loop function, and $t_{(D \Xi)\left(\bar{K} \Xi_{c}\right)}$ describes the s-wave contribution to the scattering matrix. Consequently, the invariant mass distribution for the $\Omega_{b}^{-} \rightarrow \pi^{-} \Xi_{c}^{+} K^{-}$process reads as follows [4]

$$
\begin{equation*}
\frac{d \Gamma}{d(\sqrt{s})}=\frac{1}{(2 \pi)^{3}} \frac{M_{\Xi_{c}^{+}}}{M_{\Omega_{b}^{-}}}|\mathbf{p}|_{\pi^{-}}|\mathbf{p}|_{c m}|\mathcal{M}(\sqrt{s})|^{2} \tag{5}
\end{equation*}
$$

where $\mathbf{p}_{\pi^{-}}$is the momentum of the π^{-}meson in the rest frame of Ω_{b}^{-}and $\mathbf{p}_{c m}$ is the centre-of-mass momentum in the $\Xi_{c}^{+} K^{-}$system of reference.

B. Interaction model

In this subsection we summarize the meson-baryon interaction model presented in [2]. This model employs chiral effective Lagrangians to describe the coupling of the vector meson to pseudoscalar mesons ($V P P$) and baryons ($V B B$) using the hidden gauge formalism and assuming $S U(4)$ symmetry:

$$
\begin{align*}
\mathcal{L}_{V P P} & =i g \operatorname{tr}\left(\left[\partial_{\mu} \phi, \phi\right] V^{\mu}\right) \\
\mathcal{L}_{V B B} & =\frac{g}{2} \sum_{i, j, k, l=1}^{4} \bar{B}_{i j k} \gamma^{\mu}\left(V_{\mu, l}^{k} B^{i j l}+2 V_{\mu, l}^{j} B^{i l k}\right) \tag{6}
\end{align*}
$$

where the trace is taken over the $S U(4)$ matrices in flavor space, the indices identify with the (u, d, s, c) quarks, the factor g is the universal coupling constant, ϕ is the 16 -plet matrix of pseudoscalar mesons, B is the tensor of baryons that belong to the $20-$ plet of the proton and V_{μ} represents the vector fields of the 16 -plet of the ρ. Working with these Lagrangians as in [2], one obtains the expression for the t-channel vector-meson-exchange potential:
$V_{i j}(\sqrt{s})=-C_{i j} \frac{1}{8 f^{2}}\left(2 \sqrt{s}-M_{i}-M_{j}\right) \sqrt{\frac{\left(E_{i}+M_{i}\right)\left(E_{j}+M_{j}\right)}{M_{i} M_{j}}}$,
where $M_{i}, E_{i}, M_{j}, E_{j}$ are the masses and energies of the baryons in the i and j channels, respectively, and $C_{i j}$ are the transition coefficients.

For isospin $I=0$, strangeness $S=-2$ and charm $C=1$, the available pseudoscalar meson-baryon channels considered here are given in Table I.

	$\bar{K} \Xi_{c}$	$\bar{K} \Xi_{c}^{\prime}$	$D \Xi$	$\eta \Omega_{c}$	$\eta^{\prime} \Omega_{c}$
Threshold $[\mathrm{MeV}]$	2964	3070	3189	3246	3656

TABLE I: Meson-baryon channels for the $I=0, S=-2$, $C=1$ sector and their corresponding threshold masses.

The matrix of $C_{i j}$ coefficients for the meson-baryon channels is given in Table II, where κ_{c} is a correcting factor. The slight change in the coefficients with respect to [2] stems from the use of the η, η^{\prime} physical mesons.

The resonance states are identified as poles of the scattering amplitude, $T_{i j}$, unitarized via the coupled-channel Bethe-Salpeter equation, which implements the resummation of loop diagrams to infinite order:

$$
\begin{align*}
T_{i j} & =V_{i j}+V_{i l} G_{l} V_{l j}+V_{i l} G_{l} V_{l k} G_{k} V_{k j}+\ldots \\
& =V_{i j}+V_{i l} G_{l} T_{l j} \tag{8}
\end{align*}
$$

with the loop function G_{l} given by

$$
\begin{equation*}
G_{l}=i \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{2 M_{l}}{(P-q)^{2}-M_{l}^{2}+i \varepsilon} \frac{1}{q^{2}-m_{l}^{2}+i \varepsilon} \tag{9}
\end{equation*}
$$

	$\bar{K} \Xi_{c}$	$\bar{K} \Xi_{c}^{\prime}$	$D \Xi$	$\eta \Omega_{c}$	$\eta^{\prime} \Omega_{c}$
$\bar{K} \Xi_{c}$	1	0	$\sqrt{\frac{3}{2}} \kappa_{c}$	0	0
$\bar{K} \Xi_{c}^{\prime}$		1	$\frac{1}{\sqrt{2}} \kappa_{c}$	$-\frac{4}{\sqrt{3}}$	$\sqrt{\frac{2}{3}}$
$D \Xi$			2	$-\sqrt{\frac{2}{3}} \kappa_{c}$	$-\frac{1}{\sqrt{3}} \kappa_{c}$
$\eta \Omega_{c}$				0	0
$\eta^{\prime} \Omega_{c}$					0

TABLE II: Coefficients $C_{i j}$ for the interaction of pseudoscalar mesons and baryons in the $I=0, S=-2, C=1$ sector.
where M_{l} and m_{l} are the baryon and meson masses of the l channel, $P=p+k=(\sqrt{s}, \overrightarrow{0})$ is the four-momentum in the centre-of-mass frame and q is the four-momentum of the meson propagating in the intermediate loop.
The logarithm of the loop function shows a divergence when $q \rightarrow \infty$ which here is solved employing the dimensional regularization approach. This method introduces, for each channel l, a subtraction constant $a_{l}(\mu)$ that depends on the regularization scale, μ, taken here as 1 GeV . The final equations for the loop function and the subtraction constants can be found in [2]. Table III provides the values for a_{l} used in this work.

	$\bar{K} \Xi_{c}$	$\bar{K} \Xi_{c}^{\prime}$	$D \Xi$	$\eta \Omega_{c}$	$\eta^{\prime} \Omega_{c}$
Model 1	-1.69	-2.09	-1.93	-2.46	-2.42
Model 2	-1.69	-2.12	-1.94	-2.46	-2.42

TABLE III: Subtraction constants for Model 1 and Model 2.
Factorizing the V and T matrices, eq.(8) has the following solution

$$
\begin{equation*}
T=(1-V G)^{-1} V \tag{10}
\end{equation*}
$$

Therefore, the resonances correspond to the poles, z_{p}, of eq.(10) which appear when $G=\frac{1}{V}$ and are found in the complex plane using the steepest ascent method. In the neighbourhood of a pole, one may approximate the scattering amplitude as

$$
\begin{equation*}
T_{i j} \sim \frac{g_{i} g_{j}}{z-z_{p}} \tag{11}
\end{equation*}
$$

and the coupling constants for all the channels are obtained as the corresponding residues

$$
\begin{equation*}
g_{i} g_{j}=\left[\left.\frac{\partial}{\partial z}\left(\frac{1}{T_{i j}(z)}\right)\right|_{z_{p}}\right]^{-1} \tag{12}
\end{equation*}
$$

In addition, we calculate the compositeness which measures the amount of each meson-baryon component within a given resonance

$$
\begin{equation*}
\chi_{i}=-\left.g_{i}^{2}\left(\frac{\partial G}{\partial(\sqrt{s})}\right)\right|_{z_{p}} \tag{13}
\end{equation*}
$$

III. RESULTS

In this section we present the results of our approach. Figure 4 shows the sum of amplitudes to final $\Xi_{c}^{+} K^{-}$ states squared multiplied by a phase-space factor for the pseudoscalar meson-baryon interaction obtained in [2], to which we shall refer as Ref.[2], and for the model obtained by exchanging the η mesons by their physical expressions and maintaining the same subtraction constants, which we shall name Model 1.

We observe two peaks in both models, with small differences, which signal the presence of two poles with mass and width values shown in Table IV. These states have energies very similar to the second and fourth Ω_{c}^{0} resonances discovered in [3].

FIG. 4: Sum of amplitudes squared times a phase space factor for Ref.[2] and Model 1.

Table IV also displays the couplings of each resonance to the different meson-baryon channels, together with their compositeness, given by eq.(13). The lowest energy state at 3053.9 MeV couples appreciably to the channels $\bar{K} \Xi_{c}^{\prime}, D \Xi$, and $\eta \Omega_{c}$. In Model 1, although the strongest coupling is to the $D \Xi$ channel, the compositeness is larger in the $\bar{K} \Xi_{c}^{\prime}$ channel, to which the resonance also strongly couples. The higher energy resonance at 3092.1 MeV has the strongest coupling to the $D \Xi$ channel.
We now implement Model 2 modifying the values of the subtraction constants (as seen in Table III) in order to reproduce more accurately the lowest energy state. The resulting mass and width values of the poles found by Model 2 are listed at the bottom of Table IV. The couplings in Model 2 are qualitatively very similar to the ones obtained in Model 1.
Finally, in Fig.5, we compare the data of the LHCb collaboration [3] and their superimposed fitting with the predictions of Models 1 and 2. For both of them, we find, in the invariant $\Xi_{c}^{+} K^{-}$mass distribution, Ω_{c}^{0} resonances which are clearly visible and located around

$0^{-} \oplus \frac{1}{2}^{+}$interaction in the $(I, S, C)=(0,-2,1)$ sector				
Ref.[2]				
M [MeV]	$\begin{gathered} \hline 3050.3 \\ 0.44 \end{gathered}$		3090.8	
$\Gamma[\mathrm{MeV}]$				12.0
	$\left\|g_{i}\right\|$	χ_{i}	$\left\|g_{i}\right\|$	χ_{i}
$\bar{K} \Xi_{c}(2964)$	0.11	$0.00+i 0.00$	0.49	$-0.02+i 0.01$
$\bar{K} \Xi_{c}^{\prime}(3070)$	1.80	$0.61+i 0.01$	0.35	$0.02-i 0.02$
$D \Xi(3189)$	1.36	$0.07-i 0.01$	4.28	$0.91-i 0.01$
$\eta \Omega_{c}(3246)$	1.63	$0.14+i 0.00$	0.39	$0.01+i 0.01$
$\eta^{\prime} \Omega_{c}(3656)$	0.06	$0.00+i 0.00$	0.28	$0.00+i 0.00$
Model 1				
$M[\mathrm{MeV}]$	$\begin{gathered} 3053.9 \\ 0.42 \\ \hline \end{gathered}$		3092.1	
$\Gamma[\mathrm{MeV}]$			14.3	
	$\left\|g_{i}\right\|$	χ_{i}	$\left\|g_{i}\right\|$	χ_{i}
$\bar{K} \Xi_{c}(2964)$	0.15	$0.00+i 0.00$	0.49	$-0.02+i 0.01$
$\bar{K} \Xi_{c}^{\prime}(3070)$	1.67	$0.58+i 0.02$	0.48	$0.04-i 0.03$
$D \Xi(3189)$	1.78	$0.12-i 0.02$	4.19	$0.88-i 0.01$
$\eta \Omega_{c}(3246)$	1.56	$0.13+i 0.00$	0.50	$0.01+i 0.01$
$\eta^{\prime} \Omega_{c}(3656)$	0.46	$0.01+i 0.00$	0.47	$0.01+i 0.00$
Model 2				
$M[\mathrm{MeV}]$	3050.8		3090.0	
$\Gamma[\mathrm{MeV}]$	0.43		14.1	
	$\left\|g_{i}\right\|$	χ_{i}	$\left\|g_{i}\right\|$	χ_{i}
$\bar{K} \Xi_{c}(2964)$	0.16	$0.00+i 0.00$	0.49	$-0.02+i 0.01$
$\bar{K} \Xi_{c}^{\prime}(3070)$	1.71	$0.55+i 0.02$	0.47	$0.04-i 0.03$
$D \Xi(3189)$	1.82	$0.13-i 0.02$	4.22	$0.88-i 0.01$
$\eta \Omega_{c}(3246)$	1.61	$0.14+i 0.00$	0.51	$0.01+i 0.01$
$\eta^{\prime} \Omega_{c}(3656)$	0.48	$0.01+i 0.00$	0.47	$0.01+i 0.00$

TABLE IV: Energy, width, couplings and compositeness of the Ω_{c}^{0} states generated in the model of Ref.[2], Model 1 and Model 2.
the $\Omega_{c}(3050)^{0}$ and the $\Omega_{c}(3090)^{0}$ experimentally found states. The states obtained by Model 2 reproduce better the experimental ones.

IV. CONCLUSIONS

In this work we have studied the $\Omega_{b}^{-} \rightarrow \pi^{-} \Xi_{c}^{+} K^{-}$decay process that has been reported by the LHCb collaboration in search of excited Ω_{c}^{0} baryons. A previous LHCb measurement already established the existence of these Ω_{c}^{0} baryons with strangeness and charm via $p p$ collisions.

FIG. 5: Distribution of the reconstructed mass difference between the $\Xi_{c}^{+} K^{-}$invariant mass and the Ξ_{c}^{+}and K^{-}masses, as seen in [3]. The blue line is the total fit over the data. The red dashed line corresponds to the results of Model 1, and the green dashed line to the results of Model 2.

Implementing the interaction of pseudoscalar mesons with the ground-state baryons in the $I=0, S=-2$, $C=1$ sector through a t-channel vector meson exchange model with effective Lagrangians as in [2], we have explored the possible molecular origin of some of the four Ω_{c}^{0} states. Adjusting the subtraction constants, we have found two states that reproduce very satisfactorily the peaks of the $\Omega_{c}(3050)^{0}$ and the $\Omega_{c}(3090)^{0}$ resonances seen in the LHCb $\Xi_{c}^{+} K^{-}$spectrum from $\Omega_{b}^{-} \rightarrow \pi^{-} \Xi_{c}^{+} K^{-}$decays.

Our results support the view of these two resonances as meson-baryon molecular states. The excited state at 3050 MeV would qualify as a $\bar{K} \Xi_{c}^{\prime}$ system, while the 3090 MeV state would mostly be a $D \Xi$ bound system with an strength of 88%.

Acknowledgments

I would like to express my deepest gratitude to my advisor Àngels Ramos for her guidance, help and encouragement. I also want to thank Agustí, Ikiru, Nietzsche and Nausicaa for our particular bound system.
[1] R. Aaij et al. [LHCb], Phys. Rev. Lett. 118 (2017) no.18, 182001 [arXiv:1703.04639 [hep-ex]].
[2] G. Montaña A. Feijoo and À. Ramos, Eur. Phys. J. A 54 (2018) no.4, 64 [arXiv:1709.08737 [hep-ph]].
[3] R. Aaij et al. [LHCb], Phys. Rev. D 104 (2021) no.9, 9 [arXiv:2107.03419 [hep-ex]].
[4] P. A. Zyla et al. [Particle Data Group], PTEP 2020 (2020) no.8, 083C01
[5] V. Magas, À. Ramos, R. Somasundaram and J. Tena Vidal, Phys. Rev. D 102 (2020) no.5, 054027
[arXiv:2004.01541 [hep-ph]].
[6] L. Roca, M. Mai, E. Oset and U. G. Meißner, Eur. Phys. J. C 75 (2015) no.5, 218 [arXiv:1503.02936 [hep-ph]].
[7] R. P. Pavao, W. H. Liang, J. Nieves and E. Oset, Eur. Phys. J. C 77 (2017) no.4, 265 [arXiv:1701.06914 [hepph]].
[8] F.E. Close, An Introduction to Quarks and Partons (Academic Press, London, 1979).

