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ABSTRACT 

How does the human brain work? How do different brain areas interact with each other when performing 

specific function? These questions have sharply increased in interest over the last decades, as the 

more it is known about human cognition and cognitive process distribution the more accurate some 

procedures will be, such as neuro-pathologies diagnosis, prediction of reaction to stimuli or influence of 

motivation/rewards on decisions.  To analyse human cognition, neuroimaging techniques are commonly 

used, like Functional Magnetic Resonance Imaging (fMRI), Magnetoencephalography (MEG) or 

Electroencephalograms (EEGs). 

The aim of this project is to build a theoretical model, able to capture the neural dynamics of cortical 

interactions, which we referred to as effective connectivity. Neural data are high-density EEGs, 

recorded during a decision-making task (Cos et al. 2022). This approach overcomes the limitations that 

are presented when directly using correlation based connectivity metrics. The framework we created 

consists of a model-based whole-brain effective connectivity, based on the multivariate Ornstein-

Uhlenbeck (MOU) process (MOU-EC). The goal of the model, once fitted, is to provide a directed 

connectivity estimate that reflects the dynamical state of the EEG signals and a method to generate 

signals that follow the connectivity.   
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1 INTRODUCTION, MOTIVATION, OBJECTIVES, COSTS 

Electroencephalograms (EEGs) are potent tool to record brain activity. The advantage that EEGs 

provides over other neuroimaging techniques is that, since they measure relative electrical activity at 

cortical layers of the brain, they provide a high time resolution (up to 1 sample per millisecond) and 

therefore they excel at analysing brain reactions when subjects are presented with visual and/or audio 

stimuli. On top of that, the cost of the machine necessary to record EEGs is considerably cheaper than 

machines needed to record other neuroimaging techniques like MRI, both in purchase and 

maintenance, and the training of the professionals to operate them is not as exhausting and complex. 

Another advantage EEGs provide is that their machine is extremely portable, making them outstanding 

for doing field work. 

Our objective is a model of whole-brain effective connectivity fitted with EEG data. The generative model 

used is the multivariate Ornstein-Uhlenbeck (MOU). The procedure to obtain the effective connectivity 

using this model has already been applied to fMRI data in the articles Gilson et al., 2016, Pallarés et 

al., 2018 and Gilson et al., 2020. When the model parameters have been tuned in, the MOU process 

can simulate the dynamical state of the signals under those regimens. In this project, an auspicious 

method is expected to be obtained by tweeking the model to handle EEG data.  
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2 IMPLEMENTATION AND METHODOLOGY  

2.1 Data meaning and treatment 

The EEG data which is used in this project comes from the article Cos et al., 2022. In that article, EEGs 

were used to record subjects performing under three different motivational states. The test subjects 

were presented to consisted of two targets, between which they had to choose one and reach to it as 

fast and precise as possible. In some situations, subjects were required to stop at their target (referred 

as “stop-in”) while, in others, they were asked to hit their target and cross over it (referred as “cross-

over”). The different motivational states were triggered by making the subject perform on their own, 

side-by-side with a less accurate simulated partner and side-by-side with a more accurate simulated 

partner. In the article, these motivational states are referred as “solo”, “easy” and “hard”, respectively. 

It is said as well that partners are there to provide companionship, not competition, so the motivation is 

generated purely by intrinsic arousal. 

60 electrodes were used to record each of the regions of interest (ROIs) on the cortical surface, 

distributed following a generic pattern to estimate the location of these electrodes for a 60-electrode 

Acticap configuration and, after eliminating noisy and artefactual sources, the source spaces had a 

dimension from 40 to 50 sources, varying from subject to subject (Fig. 1: Stage 1, Fig. 2). 

 
Fig. 1: Phases of processing (Stages 1-4) 

 
Fig. 2: Original signals, example the first trial, stop-in mode, solo mode and first session of subject 34 
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It is important to note that human brains operate using a wide range of frequencies, not all of which 

may be relevant for our analysis. According to EEG literature, the most meaningful frequency ranges in 

our case are α [8-12 Hz], β [15-32 Hz] and γ [40-80 Hz], since they are associated with visual attention 

(α-band), bottom-up/ top-down processing (γ-band and β-band, respectively), motor readiness and 

forward control (β-band), feedback control (γ-band) and hand grip tasks (α-band and β-band coupling). 

To get the information in these ranges, band-pass filters must be applied. This kind of filters attenuates 

the signals outside the range of frequencies we have selected while leaving the same the frequencies 

in that range. The degree of decay of the filter attenuating the outer frequencies is defined by the order 

of the filter. The higher the order of the filter, the quicker the declivity (Fig. 3, Fig. 4).  

 
Fig. 3: Example filter orders 

 
Fig. 4: Filtered signals, same conditions as in Fig. 2 
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After having filtered to a certain range of frequencies (Fig.1: Stage 2), the average signals among 

“cross-over” and “stop-in” tasks and among all trials and sessions were calculated (Fig.1: Stage 3, Fig. 

5). 

 
Fig. 5: Merged filtered signals, same conditions as in Fig. 2 

There is a final step of data pre-processing before accessing the model, which is obtaining the 

envelopes of the former signals (Fig. 1: Stage 4). Envelopes of signals are the boundary within which 

the signals are contained (Fig. 6).  

 
Fig. 6: Example of an envelope 

Although envelopes are imaginary curves, they contain some information of signals, as they help 

generalize the amplitude of these signals. The method used to compute envelopes from the data, which 

is in time-domain, is the Hilbert transform. This transform can turn a real function into its most “natural” 

complex extension. It does so by finding a companion function to the real-valued signal such that the 

real signal can be analytically extended from the real axis to the upper half of the complex plane, that 

is, it finds a function H, called Hilbert transform, so that 

𝑧(𝑡) = 𝑥(𝑡) + 𝑗𝐻𝑥(𝑡) 

where z(t) is the envelope and x(t) is the real-valued signal. After that, the envelopes were normalized 

by subtracting from every source their mean and dividing them by their standard deviation (Fig. 7).  

(1) 
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Fig. 7: Normalized signals, same conditions as in Fig. 2 

This normalization was needed because later in the model it is required that the activity of each source 

varies inside the same range of values.   

 

2.2 Introduction to the model 

The general idea behind any generative model is to be able to reproduce signals which portrait the 

dynamics of the original ones. This is done by tuning in some parameters inside the models with the 

intention of matching the functional connectivity matrices from the model to the ones from the data.  

The generative model used in this project is the multivariate Ornstein-Uhlenbeck model (MOU). This 

model brings balance between simplicity, which ensures tractable analytical calculation, and richness 

of the generated activities when modulating the parameters. For these reasons, MOU excels at 

adapting whole-brain cortical activities from a great number of ROIs. Another reason which makes MOU 

more desirable than other models is that its generated signals present exponential decaying 

autocovariance, which have similar profiles to the empirical data. (Fig. 8)   

 
Fig. 8: Autocovariance of the common sources to all subjects for subject 34 
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2.3 Methodology 

Structural connectivity (SC) is defined as the existence of white matter tracts physically interconnecting 

brain regions. Functional connectivity (FC) is the strength to which activity between a pair of brain 

regions covaries or correlates over time. In the model, the global pattern of FC arises from the local 

variability 𝛴𝑖 (for node i, from 1 to N) that propagates via the network connections 𝐸𝐶𝑖𝑗 (from nodes i 

and j, from 1 to N each and i ≠ j).  

The general idea of the model is that, starting from the SC of our ROIs, which only considers the 

relationship between physically connected ROIs and neglects the rest, by iteratively tuning in 𝛴𝑖 and 

𝐸𝐶𝑖𝑗, the model spatio-temporal FC, measured by FC0 (covariances without temporal lag) and FCtau 

(covariance with temporal lag of tau, which value is later discussed) best reproduces the empirical 

counterpart. 

Before starting with the procedure, the value of the temporal lag tau must be extracted. For the fMRI 

data in Gilson et al., 2016, selected tau was 1, since autocovariances were stable and relevant at that 

point, and only time lags 0, 1 and 2 were computed because signals with higher time lags didn’t 

resemble themselves (less than 0.2 autocovariance) (Fig. 9).  

 
Fig. 9: Autocovariance fMRI example 

 

In our case (Fig. 8), tau has been taken as 15 and a total of 200-time lags are calculated, following the 

former reasoning. This gives sufficient information to gather the model parameters. 

After that, the empirical FC0 and FCtau are computed from the normalized envelopes (Fig. 10: Stage 

5).  
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Fig. 10: Phases of processing (stages 5-8) 

Let 𝑠𝑖
𝑡 be the value from the normalized envelope of source 𝑖 at time 𝑡, then empirical FC0, renamed as 

𝑄
0
, and empirical FCtau, renamed as 𝑄

15
, can be calculated for each pair (i,j) of nodes as   

𝑄𝑖𝑗

0
=  

1

𝑇 −  2
 ∑ 𝑠𝑖

𝑡 ∗  𝑠𝑗
𝑡

𝑇−1

𝑡=1

 

𝑄𝑖𝑗

15
=  

1

𝑇 −  2
 ∑ 𝑠𝑖

𝑡 ∗  𝑠𝑗
𝑡 + 15

𝑇−1

𝑡=1

 

The activities of nodes in the multivariate Ornstein-Uhlenbeck process exponentially decay with a time 

constant and they evolve depending on the activity of other population, following the next formula: 

𝑑𝑥𝑖 = (
−𝑥𝑖

𝜏𝑥
+ ∑ 𝐶𝑖𝑗𝑥𝑗

𝑗 ≠ 𝑖

) 𝑑𝑡 + 𝑑𝐵𝑖 

where  𝜏𝑥 time constant, 𝐶𝑖𝑗 network effective connectivity (the aforementioned 𝐸𝐶𝑖𝑗) and 𝑑𝐵𝑖 Wiener 

process (or Brownian motion) with covariance matrix 𝛴𝑖. 

Due to the simplicity of the model, it is possible to have analytic estimations of the model covariances, 

defined as  𝑄𝑖𝑗
0  and 𝑄𝑖𝑗

15 , which reproduce 𝑄𝑖𝑗

0
 and 𝑄𝑖𝑗

15
, respectively. Let 𝐽𝑖𝑗  be the Jacobian of the 

dynamical system, calculated as  

𝐽𝑖𝑗 =  
−𝛿𝑖𝑗

𝜏𝑥
+  𝐶𝑖𝑗 , 

where 𝛿𝑖𝑗 is the Kronecker delta (𝛿𝑖𝑗 = 1 𝑖𝑓 𝑖 = 𝑗, 𝛿𝑖𝑗 = 0 𝑖𝑓 𝑖 ≠ 𝑗), then 𝑄𝑖𝑗
0  can be obtained by solving 

the Lyapunov equation  

𝐽𝑄0 +  𝑄0𝐽𝑇 +  𝛴 , 

and 𝑄𝑖𝑗
15 is then given by  

𝑄15 = 𝑄0𝑒15𝐽𝑇
 , 

(3) 

(2) 

(4) 

(5) 

(6) 



An EEG Based ‐ Stochastic Dynamical Systems Model of Brain Dynamics - IMPLEMENTATION AND METHODOLOGY 

 

11 
 

where 𝑒𝐽𝑇
 is a matrix exponential of transposed 𝐽. To do this, it is required to know the parameters 𝜏, 𝐶 

and 𝛴. 

The first parameter calculated is 𝜏  (Fig. 10: Stage 6). It helps “calibrate” the model before the 

optimization steps. It is calculated as: 

𝜏𝑥 =  
1

𝑁
 ∑

1

log(𝑄𝑖𝑖

0
) − log(𝑄𝑖𝑖

15
)

𝑁

𝑖=1

 

Note that because it only depends on 𝑄
0
 and 𝑄

15
, which are immutable, its value doesn’t change during 

the optimization process. 

After 𝜏𝑥 value has been set, an iterating optimization takes place (Fig. 10: Stage 7). The idea is that 

after each iteration 𝑄0 and 𝑄15 resemble more 𝑄
0
and 𝑄

15
, respectively, or what is the same, that the 

model error E defined as 

𝐸 =  
1

2
 
∑ (𝛥𝑄𝑖𝑗

0 )𝑖,𝑗

∑ (𝑄𝑖𝑗

0
)𝑖,𝑗

+
1

2
 
∑ (𝛥𝑄𝑖𝑗

15)𝑖,𝑗

∑ (𝑄𝑖𝑗

15
)𝑖,𝑗

  

where 𝛥𝑄0 =  𝑄
0

−  𝑄0  and 𝛥𝑄15 =  𝑄
15

− 𝑄15 , gets progressively smaller. To achieve this, the 

algorithm starts with 𝐶 = 0 and 𝛴 homogeneous and calculates the 𝑄0 and 𝑄15 for that iteration. Using 

them, it calculates that iteration model error and updates the Jacobian by  

𝛥𝐽𝑇 = (𝑄0)−1[𝛥𝑄0 + 𝛥𝑄15𝑒𝐽𝑇
] 

which decreases the model error E of the next step, similar to a gradient descent. The update in 𝐶 is 

𝛥𝐶 =  𝜂𝐶𝛥𝐽 

for the connections allowed by the SC; otherwise forced at 0. The update in  𝛴 is 

𝛥𝛴 =  −𝜂𝛴(𝐽𝛥𝑄0 +  𝛥𝑄0𝐽𝑇) 

for elements in the diagonal, otherwise forced at 0. The values of 𝜂𝐶 and 𝜂𝛴 have been left untouched 

with respect to Gilson et al., 2016, being 𝜂𝐶 = 0.0005 and 𝜂𝛴 = 0.05.  

Once the values of the parameters 𝜏, 𝐶 and 𝛴 been found, the model is able to generate signals with 

similar dynamics to the normalized envelopes. This is possible by using the tuned-in parameters 𝜏, 𝐶 

and 𝛴 and the formula in (3). To remove the effect of the initial conditions, the results of the process in 

a starting interval of time T0 are not recorded (Fig. 11).  

(7) 

(8) 

(9) 

(10) 

(11) 
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Fig. 11: Signals generated by the model for same conditions as in Fig. 2 

 

It is important to note that, since normalized envelopes were used to create 𝑄
0
 and 𝑄

15
, MOU cannot 

generate similar signals to those envelopes like it normally could if they were regular signals. It does 

still provide similar dynamics and the effective connectivity is computed correctly.  

 

2.4 Classification of motivations 

The effective connectivity parameter 𝐶 which gets tuned in by the MOU model optimisation, explained 

in previous stages, can be used to train a classifier the goal of which is distinguishing the three 

motivational levels solo, easy and hard. In order to feed the classifier, 𝐶 is to be calculated for every 

subject, motivation, band and trial, which means optimising the MOU model for the envelopes obtained 

for each of these circumstances. After that, the zscore of each 𝐶 are computed. The zscore provides 

the number of standard deviations a sample is shifted with respect to the mean of the group of samples. 

The formula to calculate the zscore z of a sample x is 

𝑧 = (𝑥 −  )/  

, where  and   are the mean and standard deviation of the group of samples, respectively. 

In this project, two classifiers are trained and tested with these zscores, which are multiple linear 

regression (MLR) and 1-nearest neighbour (1NN). The results obtained by the classifiers using this 

connectivity method are compared with other connectivities, like functional connectivity (FC) and partial 

correlations (PC), and with the corresponding chance level, which is the probability of obtaining these 

results by chance (in our case, one out of three because there are three motivational levels). 

 

 

 

 

 

(12) 
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3 RESULTS 

As stated previously in the data treatment section, source spaces had a dimension from 40 to 50 

sources after eliminating noisy and artefactual sources, but the remaining sources were not the same 

for all subjects. For this reason, it is interesting to separate the information into subject specific results 

and average subject results. 

 

3.1 Single-subject results 

In this section, the goal is to obtain how the band the signals are being filtered by and the motivational 

level affects the outcome of the fitting and the resemblance between empirical and model connectivity. 

Also, it is meaningful to see how the previous outcomes vary if instead of all the sources from the source 

space only common sources to all subjects are being considered. To simplify this section, only the 

results for a subject will be presented here, while other relevant subjects are presented at the annex. 

For subject 25, we obtained the following covariances matrices when considering all sources (see on 

next page). 
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  Motivational levels 
  SOLO EASY HARD 

F
re

q
u

e
n

c
y

 B
a
n

d
s

 

α 

   

β 

   

γ 
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The correlations between these pairs of matrices are: 

   Motivational levels  

  SOLO EASY HARD 

F
re

q
u

e
n

c
y

 B
a
n

d
s

 

α 

 
 

Correlation: 0.5633 

 
 

Correlation: 0.5065 

 
 

Correlation: 0.5408 

β 

 
 

Correlation: 0.5714 

 
 

Correlation: 0.5465 

 
 

Correlation: 0.6842 

γ 

 
 

Correlation: 0.6401 

 
 

Correlation: 0.5609 

 
 

Correlation: 0.5643 

 

The average correlation between covariance matrices is 0.5722. 

When only considering the common sources to all subjects for the same subject analysed previously, 

the resulting model covariances matrices resemble the empirical ones significantly better (see on next 

page). 
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The correlations between these closer-looking pairs of matrices are: 

   Motivational levels  

  SOLO EASY HARD 

F
re

q
u

e
n

c
y

 B
a
n

d
s

 

α 

 
 

Correlation: 0.8175 

 
 

Correlation: 0.7297 

 
 

Correlation: 0.7344 

β 

 
 

Correlation: 0.8664 

 
 

Correlation: 0.7296 

 
 

Correlation: 0.8255 

γ 

 
 

Correlation: 0.9111 

 
 

Correlation: 0.8000 

 
 

Correlation: 0.8450 

 

The average correlation between covariance matrices is 0.8065. 

 

3.2 Across-subjects results 

In this section, the goal is to show the average model error and correlation of all subjects for the different 

motivation states and frequency bands. These results are represented being 0 the solo mode, 1 the 

easy mode and 2 the hard mode (see on next page). 
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  Model Error Model fitting correlation 
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β 

  

γ 

  
 

Note: Model fitting correlation refers to the correlation between the empirical connectivity 𝑄
0
 and 𝑄

15
 

and the model connectivity 𝑄0 and 𝑄15, which is not to the same as the previous section correlation 

between covariance matrices of signals. 

 

3.3 Classification 

Accuracy of the classifiers for subject 25’s motivational levels are shown next, comparing the usage of 

all sources with the usage of only the common sources across subjects, side by side with blue colour 

representing MLR and orange 1NN (see on next page). 
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The previous accuracies for MLR and 1NN resulted into the following confusion matrices. 
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4 CONCLUSIONS AND FUTURE WORK 

The results show that it is possible for the multivariate Ornstein-Uhlenbeck to replicate the EEG 

dynamics for each subjects up to 60-65%, increasing when only considering the common sources which 

remained after filtering the source spaces for all subjects up to 80-85%. This could be because common 

sources are better at “tracking” each other activities, meaning they have an increased effect in each 

other. By considering only common sources some sources the activity of which may not be affected by 

others and not be affected by the arousal of subjects either, which would be harder to define using MOU 

formula (3), may have been excluded. 

It seems that using the zscores of the effective connectivity matrices obtained from the parameter 𝐶 of 

the MOU to train/test a 1NN classifier brings meaningful results, having higher accuracy than chance 

level for all subjects, but not as good as the other connectivity methods. This aftermath is even more 

pronounced in the MLR classifier, where accuracies for zscores are all above chance level but way 

lower than other connectivity metrics. In contrast with previous paragraph where better results were 

generated for common sources, the accuracies of classification using EC were closer to the accuracies 

of other metrics when considering all sources for each subject, being even better in some cases.  

Remarkably, the results in Cos et al., 2022 proved that classifiers obtained higher accuracies when 

filtering by the gamma band for functional connectivity and partial correlations, fact that is not presented 

in these results and should be looked into. 

Another possible improvement could arise by better selecting the time-shift of FCtau and number of 

time lags calculated discussed at section 2.3, personalizing them for every subject’s autocovariances. 

In the original MOU model prepared for fMRI data in Gilson et al., 2016, signals feed to the model were 

centred by removing their means, but the envelopes in this project were so reduced in amplitude after 

filtering by the bands that a stronger normalization had to be applied (otherwise the MOU model 

attempted to match extremely small covariance matrices and that raised high model errors and some 

classifiers didn’t even work). That being said, dividing the envelopes by their standard deviation may 

not have been the better practice and other alternatives should be investigated.  
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6 ANNEX 

Results for subject 31 (remarkable for having good results in all aspects). 
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The average correlation between covariance matrices is 0.5470. 
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The average correlation between covariance matrices is 0.7774. 
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Results for subject 34 (remarkable for having good fitting and being able to recreate the dynamics of 

the activity, but having accuracy at classifying near to chance level for all connectivities metrics) 
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The average correlation between covariance matrices is 0.5219. 
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The average correlation between covariance matrices is 0.7998. 
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