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Introduction

Throughout history, mathematicians have had to deal with infinity, always considering it in the
“potential” sense, rather than an actual object. It was not until the late nineteenth century that
actual infinity was the subject matter. In 1874 George Cantor published “On a Property of the
Collection of All Real Algebraic Numbers”. From the results he proved in that paper, he concluded
that there were larger infinites than others, giving birth in this way to Set Theory, the study of
infinite sets and the set-theoretic foundations of mathematics.

The study of infinite sets, and in particular their combinatorial properties, is not only of interest
in itself, but it has numerous applications in areas such as analysis, algebra and topology (see e.g.
[1; 2; 3]). Even possible applications to mathematical biology have being studied [4]. Combinatorics
is always concerned about sizes, and when dealing with infinite sets there are different ways to
capture the idea of how large a set is. For example, the notion of “filter” on a set A corresponds to
“big” subsets of A, while positive subsets in the sense of a given filter corresponds to the notion
of “not small”. Stationary subsets of a cardinal  are those that are not small in the sense of the
closed and unbounded filter of .

The study of stationary subsets of cardinals of uncountable cofinality, and of stationary reflection,
has a long history ( see [5; 6; 7; 8; 9] ) and it has found many applications in other areas such
e.g., Abelian groups and modules ( see [1] ). This study has been developed very recently with the
new notion of hyperstationarity [10; 11; 12], namely an iterated recursive definition of reflection
of stationary sets. Its interest lays in its connection with the study of derived topologies on the
ordinal numbers, as well as in its potential applications to other areas, such as proof theory and
modal logic.

While the consistency strength of hyperstationarity is rather low in the large-cardinal hierarchy
(below a measurable cardinal), its generalization to P� promises to be much stronger, possibly
close to the level of supercompactness. Thus, the formulation of the appropriate generalization
of hyperstationarity for P� and the development of its theory, in analogy with the notion of
hyperstationarity for cardinals should allow for more interesting applications at a much higher level,
in terms of consistency strength.

In the present work, we study the notion of n-stationarity in P(�) proposed by Sakai in his
presentation “On generalized notions of hyperstationarity” [13] and a slight modification of the
same. We develop some of the consequences of this definitions and we look at which of the results
obtained by Bagaria in his article “Derived Topologies on Ordinals and Stationary Reflection” [12]
can be obtained within the context of P(�).

In Chapter 1 we provide the reader with the necessary framework to understand the following
chapters. All of these notions and results are elementary and can be found in almost any text book
on set theory, e.g. [6; 14].

Chapter 2 is a review of [12]. We expose, however the results and definitions in [12] in such a
way that our results on their generalisation can be easily shown as such.
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InChapter 3 we face our main objective; Section 3.1 places us in the context of combinatorics
in P(�) [7; 15; 16]. Sections 3.2 and 3.3 contain our main results, e.g., Theorems 3.2.6, 3.2.10 ,
3.2.12 and 3.2.14. In Section 3.4 we aim to establish some of the conjectures and to cite the known
work concerning ⇧1

n
-indescribability in P(�) and its possible relation with n-stationary subsets of

P(�), [13; 17; 18; 24].

Finally, in Chapter 4 we summarise the most important results, making clear at which point we
achieve our objective of translating the results of [12] to P(�). We also comment on those results
we could not obtain, and possible ways of sorting them out. We also conclude our work with a list
of open questions for further research on this topic, some of them already proposed in [13], and
some of them being the result of our work.
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Chapter 1

Preliminaries

The aim of this chapter is to do a compendium of the set theoretic background we use along
the main chapters of this work, as well as fixing the notation we will use from now on. We assume
the reader is familiar with the standard notions of first-order logic and basic set theory. In order to
avoid this chapter to be unnecessaryly long, we omit most of the proofs. Nevertheless, everything
we expose in here can be found in almost any book of set theory, in particular in [6; 14; 20; 21].

1.1 Models of ZFC

In the early twentieth century Ernst Zermelo and Abraham Fraenkel proposed an axiomatic
system (ZF ) in order to formulate the theory of sets and along with that all formal mathematics.
When adding the axiom of choice to ZF we obtained the axiomatic system ZFC, which has been
the standard axiomatic theory in which almost all modern mathematics are framed out. In the
present work we also work in ZFC.

Definition 1.1.1. A model of (a fragment of) ZFC is a pair hM,Ei, where M is a non-empty
set or a proper class and E is a binary relation on M such that hM,Ei satisfies the (fragment of)
ZFC axioms (we write hM,Ei |= ZFC).

Definition 1.1.2. Let hM,Ei be a model of (a fragment of) ZFC

1. hM,Ei is called standard if E is 2, that is, the membership relation between sets. More
precisely, E =2 \(M ⇥M). If hM,Ei is standard, then we usually write 2 instead of E.

2. M = hM,Ei is transitive if the relation E is transitive. This is, if for every a, b, c 2 M ,
aEb and bEc implies that aEc.

3. M = hM,Ei is well-founded if

(a) E is well-founded. This is, there is no infinite descending E-chain . . . xn+1Exn . . . x2Ex1

Ex0 of elements of M,

(b) E is set-like. This is, for every x 2 M , the class {y 2 M : yEx} is a set.

Recall that the language of Set Theory is the language of first order logic with equality plus the
binary relation 2. Suppose that hM,2i is a model of (a fragment of) ZFC, and R ✓ M , then we
use the notation hM,2, Ri when referring to the same model hM,2i, but in which the language
has been expanded by adding R as a new predicate symbol.

Levy hierarchy of formulas: A formula in a language that contains the language of set theory is ⌃0

if has only bounded quantifiers 8x 2 y and 9x 2 y. A formula is ⌃n for n � 1 if it is of the form

9x0, . . . , 9xk'(x0, . . . , xk, y0, . . . yl)
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where '(x0, . . . , xk, y0, . . . yl) is ⇧n�1. And a formula is ⇧n for n � 1 if it is of the form

8x0, . . . , 8xk'(x0, . . . , xk, y0, . . . yl)

where '(x0, . . . , xk, y0, . . . yl) is ⌃n�1.
More in general for every m, a formula in a language that contains the m+ 1- order language

of set theory is ⌃m
0 (or ⇧m

0 ) if it does not have quantifiers of m+ 1-order, but it may have any
number of quantifiers of order  m, and free variables of m+ 1-order. A formula is ⌃m

n
for n � 1 if

it is of the form
9X0, . . . , 9Xk'(X0, . . . , Xk, Y0, . . . Yl)

where X0, . . . , Xk are variables of order m+1 and '(X0, . . . , Xk, Y0, . . . Yl) is ⇧n�1. And a formula
is ⇧n for n � 1 if it is of the form

8x0, . . . , 8xk'(X0, . . . , Xk, Y0, . . . Yl)

where X0, . . . , Xk are variables of order m+ 1 and '(X0, . . . , Xk, Y0, . . . Yl) is ⌃n�1.

Definition 1.1.3. Let hM,2i and hN,2i be two models of (a fragment of) ZFC. A function
j : M ! N is an elementary embedding if for every formula '(x0, . . . , xn) of the language of set
theory and every a1, ..., an 2 M ,

hM,2i |= '(a0, . . . , an) if and only if hN,2i |= '(j(a0), . . . , j(an).

1.2 Ordinals and Cardinals

Definition 1.2.1. An ordinal is a transitive set well-ordered by 2. This is, a set containing all
elements of its elements and such that every non-empty subset of it has an 2-minimal element. We
denote by On the class of all ordinals.

If ↵ is an ordinal, then the set ↵ [ {↵} is the least ordinal greater than ↵, and we define
↵ + 1 := ↵ [ {↵}. An ordinal ↵ > 0 is called a successor ordinal whenever ↵ = � + 1 for some
ordinal �, and is called a limit ordinal otherwise. If ↵ is a limit ordinal, then for every � < ↵ there
is some � < ↵ such that � < �.

A model hM,2i of ZF is said to be an inner model whenever On ✓ M and M is transitive. As
in the case of the natural numbers the set “On” of all ordinals, also satisfies a form of induction
principle and recursion theorem.

Theorem 1.2.2. (Transfinite Induction) Given a formula '(x) in the language of set theory, if

1. '(0),

2. for every ordinal ↵, if '(↵), then '(↵+ 1),

3. for every ordinal ↵, if for each � < ↵ it holds that '(�), then '(↵).

Then, for all ↵ ordinal it holds that '(↵).

Theorem 1.2.3. (Transfinite Recursion) If G is a set-theoretic operation, there exists a unique
set-theoretic operation F , such that for every ordinal ↵,

F (↵) = G(F � ↵)
Definition 1.2.4. We say that  is a cardinal if it is an ordinal and it is not bijectable with any
ordinal smaller than .

As in the case of ordinals, the successor cardinal of a given a cardinal  is the least cardinal
greater than , and is denoted by +. If  > 0 is not a successor cardinal, then we say it is a limit
cardinal. And If  is a limit cardinal, for every � <  there is some µ cardinal less than  such that
� < µ.

It follows from the Principle of Well Ordering that every set A is bijectable with a unique
cardinal. Given A, this unique cardinal is denoted by |A|. Moreover if A ✓ B, then |A|  |B|. And
if A,B are infinite sets, |A [B| = max{|A|, |B|}.
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Definition 1.2.5. Let ↵ be a limit ordinal. If A ✓ ↵, we say that A is cofinal in ↵ if supA = ↵.
In particular, an increasing sequence h↵⇠ : ⇠ < �i where � is a limit ordinal, is cofinal in ↵ if
sup{↵⇠ : ⇠ < �} = ↵. If ↵ is infinite, we define the the cofinality of ↵ as follows,

cof(↵) = the least ordinal � such that there is an increasing sequence

h↵⇠ : ⇠ < �i such that sup{↵⇠ : ⇠ < �} = ↵.

Intuitively, the concept of cofinality is telling us how long is the the shortest path to reach an
ordinal. It is clear from the definition that for every ↵ limit ordinal, cof(↵) is a cardinal and that
cof(↵)  ↵. Notice for example that cof(!) = !. And for @! the increasing sequence h@n : n < !i
is such that sup{@n : n < !} = @!, therefore cof(@!) = ! < @!.

Definition 1.2.6. A limit ordinal ↵ is regular if and only if cof(↵) = ↵, and it is singular if
cof(↵) < ↵.

Given ↵ limit ordinal cof(↵) is always a regular cardinal. Note that cof(!) = !, so ! is a
regular ordinal (in fact it is the least regular ordinal). Also since cof(@!) = !, we have that @! is
a singular ordinal.

Although we will study formally this in detail in the next chapter, let us informally introduce the
following concepts concerning to the subsets of a given limit cardinal. Let  be a limit ordinal of
uncountable cofinality

- T ✓  is unbounded in  iff for any � <  there is some � 2 T such that �  �.

- C ✓  is closed in  iff for any {�⇠ : ⇠ < �} ✓ C such that �⇠ < �⇣ for ⇠ < ⇣  �, then,
sup{�⇠ : ⇠ < �} 2 C whenever sup{�⇠ : ⇠ < �} < .

- C ✓  is a club subset of  iff it is closed and unbounded in .

- S ✓  is stationary in  iff for any C club in , S \ C 6= ?.

Definition 1.2.7. A cardinal  is said to be a weakly inaccessible cardinal if it is a regular
uncountable limit cardinal.

We know that ! = @0 is a regular limit cardinal but it is clearly not countable. !1 = @1 is an
uncountable regular cardinal, but it is not a limit cardinal. @! is an uncountable limit cardinal, but
it is not regular. In general, we do not have an example of a weakly inaccessible cardinal. In fact,
assuming ZFC is consistent from the axioms of ZFC it cannot be proved that weakly inaccessible
cardinals exist.

Next proposition is a very useful characterisation of infinite regular cardinals that we will use along
this work.

Proposition 1.2.8. The following conditions are equivalent for an infinite cardinal .

1.  is regular.

2. Every subset of  of cardinality less than  is bounded in .

3. The union of every family of less than  sets each of cardinality less than  is a set of
cardinality less than .

Definition 1.2.9. Let ,� and µ be cardinals, and suppose A is a set such that |A| � . We define

�
 := |{f : ! � : f is a function }|

�
< := sup{�µ : µ is a cardinal and µ < }

P(A) = [A] := {X ✓ A : |X| < }
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It is easy to see that |P(A)| = |A|<. In particular we have that |P(�)| = �
<.

Theorem 1.2.10. (G. Cantor) For every set A, it holds that |A| < |P(A)| = 2|A|.

Proposition 1.2.11. Let ,� be infinite cardinals, and µ be any cardinal, then

1. If �  µ, then 
�  

µ.

2. If   �, then 
µ  �

µ.

3. If   �, then 2� = 
� = �

�.

Definition 1.2.12. A cardinal  is a strong limit cardinal if 2� <  for every � < .

Notice that every strong limit cardinal is a limit cardinal, and the converse holds under the
GCH, this is, under the Generalised Continuum Hypothesis stating that for all cardinal , 2 = 

+.
@0 is the least strong limit cardinal. It follows from Cantor’s Theorem (1.2.10) that every strong
limit cardinal is indeed a limit cardinal.

Definition 1.2.13. A cardinal  is (strongly) inaccessible if it is uncountable, regular, and strong
limit.

Every inaccessible cardinal is weakly inaccessible. Moreover, if GCH holds,  is weakly inacces-
sible and � < , then 2� = �

+
<  and so  cardinal is inaccessible.

Definition 1.2.14. (The cumulative hierarchy of well-founded sets)

V0 = ?

V↵+1 = P(V↵) for all ↵

V↵ =
[

�<↵

V� for all limit ↵

Since we are working in ZFC, one can prove that the universe of all sets is in fact the proper
class V =

S
↵2OR

V↵.

1.3 Filters and Ideals

One of the most recurrent notions in all branches of mathematics is the notion of an ideal and
the one of a filter. In all branches these concepts play a rather important role, for example the
ideals in algebra or the filters in topology. The importance of these notions is that they capture the
intuitive idea of smallness and bigness respectively, and these turn out to be extremely useful when
studying the subsets of a given set.

Definition 1.3.1. Let A be a non-empty set. A filter on A is a set F of subsets of A such that:

1. A 2 F and ? /2 F .

2. If X,Y 2 F , then X \ Y 2 F .

3. If X 2 F and X ✓ Y ✓ A, then Y 2 F .

Definition 1.3.2. Let A be a non-empty set. An ideal on A is a set I of subsets of A such that:

1. ? 2 I.

2. If X,Y 2 I, then X [ Y 2 I.

3. If X 2 i and Y ✓ X, then Y 2 I.
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The sets {A} and {?} are, respectively, trivial examples of filter an ideal on A. Moreover, the set
F = {Y ✓ A : X ✓ Y } of all subsets of A extending a non-empty given subset X of A constitutes
a filter. A filter expressible in these terms is called a principal filter. Another interesting example
of a filter is the Fréchet filter on a given cardinal , this is, the set {X ✓  : | \X| < }.

Proposition 1.3.3. If F is a filter on A, then F
⇤ := {A \X : X 2 F} is an ideal on A . And if

I is an ideal on A, then I
⇤ := {A \X : X 2 I} is a filter on A. Moreover, if F is a filter, then

(F ⇤)⇤ = F . And if I is an ideal, then (I⇤)⇤ = I.

The sets F
⇤ and I

⇤ given by Proposition 1.3.3 are respectively called the dual ideal of F and
the dual filter of I.

Let A be a set, and I be an ideal on A. We define the collection I
+ of I-positive subsets of A as

follows
I
+ := {X ✓ A : X /2 I}

If additionally, we have that I = F
⇤ for some filter F and X 2 I

+, we also say that X is F -positive.

Notice that the F -positive sets with respect to the Fréchet filter F on  are precisely the subsets of
 of cardinality .

Definition 1.3.4. A filter F on a set A is called an ultrafilter if for every X ✓ A, either X 2 F

or A \X 2 F .

Equivalently, a filter F is an ultrafilter if and only if F is maximal in the sense that there is
no proper filter G such that G ✓ F . From Zorn’s Lemma it can be easily proved the following
theorem.

Theorem 1.3.5. (A. Tarski.) Every filter can be extended to an ultrafilter.

Definition 1.3.6. Let  be an infinite cardinal. A filter F on a set A is called -complete if
for every family {X↵ : ↵ < �}, � < , of elements of F , the intersection

T
↵<�

X↵ belongs to F .
Dually, an ideal I on a set A is called -complete if for every family {X↵ : ↵ < �}, � < , of
elements of I, the union

S
↵<�

X↵ belongs to I

If F is a principal filter on A, say F = {Y ✓ A : X ✓ Y } for some X ✓ A, then any intersection
of elements of F will still contain the set X. Thus, any principal filter on A is  complete for every
. Therefore, in terms of combinatorics it is more interesting to consider non-principal filters on a
given set. Note that for every uncountable regukar  the Fréchet filter on  is -complete.

Definition 1.3.7. Let F be a filter over a set A. A set X ✓ A is said to be F -stationary (or
stationary with respect to the filter F ) if and only if X \ Y = ? for all Z 2 F . (See [14]).

1.4 Large Cardinals

Intuitively, a large cardinal is a cardinal that is so large that we cannot prove its existence within
ZFC. In this sense, the first kind of large cardinal we mentioned was weakly inaccessible cardinals.
As inaccessibility implies weakly inaccessibility, inaccessible cardinals are also large cardinals. We
will state in here a list of large cardinals we will use in the next chapters. Usually large cardinals
have several equivalent definitions, so we shall use the one that we find more useful for our purposes.

Definition 1.4.1. A cardinal  is called weakly Mahlo if and only if the set {µ <  : µ is regular}
is stationary in .

If  is weakly Mahlo, then it is clearly a limit uncountable cardinal. It is easy to see that  is
also regular. Hence every weakly Mahlo cardinal is in particular a weakly inaccessible cardinal.

Definition 1.4.2. Let  be an ordinal

1.  is 0-weakly Mahlo if and only if  is regular.
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2.  is ↵+ 1-weakly Mahlo if and only if the set {µ <  : µ is ↵ Mahlo} is stationary in .

3.  is ↵-weakly Mahlo for ↵ limit, if and only if,  is �-weakly Mahlo for all � < ↵.

Notice that  is 1-weakly Mahlo if and only if it is weakly Mahlo. Moreover it can be proven by
induction that if ↵ < � and  is a �-weakly Mahlo cardinal, then  is also is an ↵-weakly Mahlo
cardinal.

Definition 1.4.3. A cardinal  is called Mahlo if and only is the set {µ <  : µ is inaccessible}
is stationary in .

Proposition 1.4.4. If  is a Mahlo cardinal, then  is inaccessible.

Definition 1.4.5. Let n < !, cardinal  is ⇧1
n
-indescribable if for all subsets A ✓ V and every

⇧1
n

sentence ', if hV,2, Ai |= ', then there is some � <  such that

hV�,2, A \ V�i |= '.

Proposition 1.4.6. If  is a ⇧1
n
-indescribable cardinal, then  is ⇧1

m
-indescribable for all m < n

Proposition 1.4.7.  is a ⇧1
0 indescribable cardinal if and only if  is inaccessible.

A cardinal  is called weakly compact if it is ⇧1
1 indescribable. Every weakly compact cardinal

is a Mahlo cardinal.

Definition 1.4.8. An uncountable cardinal  is called measurable if there exists a -complete
non-principal ultrafilter U on .

Proposition 1.4.9. If  is a measurable cardinal, then  is weakly compact.

Proposition 1.4.10. If  is a measurable cardinal, U a -complete ultrafilter on  and j an
elementary embedding from V to an inner model M , then 

M ✓ M .

Definition 1.4.11. Let   �.  is �-supercompact if and only if there is an elementary
embedding j : V ! M such that crit(j) = , �  j() and �

M ✓ M.

Proposition 1.4.12. If  is -supercompact, then  is measurable.

Definition 1.4.13.  is supercompact if and only if  is �-supercompact for every � � .
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Chapter 2

Hyperstationary subsets of .

The aim of this chapter is to introduce some basic aspects of combinatorics on ordinals, to
exhibit the concept of hyperstationarity and to show some of the results obtained by Bagaria in
his article “Derived Topologies On Ordinals and Stationary Reflection” [12]. Basic definitions and
results can be found in [6; 14]. Further sections are focused on the definitions and results published
in [12]. Nevertheless, we present all of them in a rather different order, our objective being to make
explicit the way we want to traslate what happens in  to P(�).

2.1 Stationary subsets of .

Definition 2.1.1. Let  be a limit ordinal of uncountable cofinality

1. T ✓  is unbounded in  iff for any � <  there is some � 2 T such that �  �.

2. C ✓  is closed in  iff for any {�⇠ : ⇠ < �} ✓ C such that �⇠ < �⇣ for ⇠ < ⇣ < �, then,
sup{�⇠ : ⇠ < �} 2 C whenever sup{�⇠ : ⇠ < �} < .

3. C ✓  is a club subset of  iff it is closed and unbounded in .

4. S ✓  is stationary in  iff for any C club in , S \ C 6= ?.

It is easy to proof that the intersection of two club subsets of  is again a club subset of .
Thus, if C is a club subset of , C is stationary. Similarly, from the fact that for each ↵ <  the set
{� <  : ↵ < �} is closed, we conclude that if S is a stationary subset of , then S is unbounded.
It is also well easily seen that if  has uncountable cofinality, the set of limit ordinals smaller than
 is a club. And that if S is stationary in  and C is closed in , then S \ C is stationary in .
Proofs of these facts may be found in [6; 14].

Proposition 2.1.2. Let  be a limit ordinal of uncountable cofinality. S is a stationary subset of
 if and only if for all unbounded subset T of  there is some � 2 S such that T \ � is unbounded
in �.

Proof : ()) Suppose S ✓  is stationary, and let T ✓  be unbounded. Let T
0 be the set

consisting of limit points of elements of T . Clearly T
0 is closed, moreover, as  has uncountable

cofinality, T 0 is also unbounded. As S is stationary, there must exists some � 2 S \ T
0. We claim

that T \� is unbounded in �; if � < �(2 T
0), then � < sup{�⇠ : ⇠ < ⇢} where �⇠ 2 T . Hence, there

is �⇠ 2 T such that � < �⇠ < �.
(() Suppose that for all unbounded subset T of  there is some ↵ 2 S such that T \� is unbounded
in �. Let C be a club subset of . In particular C is unbounded, so there is some � 2 S such that
C \ � is unbounded in �. This implies that � is a limit point of C, as C is club it contains its limit
points, and so, � 2 C. Hence � 2 S \ C 6= ?. ⇤
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Given an ordinal , the collection of all clubs of  gives rise to a filter. Precisely, the set
Club() := {X ✓  : C ✓ X for some club C} is a filter. Moreover if  is a regular uncount-
able cardinal, then Club() is a -complete filter.

Let  be a regular uncountable cardinal, and let hX↵ : ↵ < i be a sequence of subsets of .
The diagonal intersection �<X↵ of the family {X↵ : ↵ < } is defined by

�↵<X↵ := {⇠ <  : ⇠ 2
\

↵<⇠

X↵}.

While -completeness of Club() tell us about closure for intersections of < -many elements in
the filter, it is not always the case that the intersection of  many elements in the filter remains
in the filter. As an easy example of this fact, notice that

T
↵<

{� : ↵ < � < } = ? /2 Club().
However, we have that the club filter Club() is indeed closed under diagonal intersections of 
many elements. Filters with this property are called normal filters.

If N is an element of the dual ideal Club()⇤ then N =  \ C, for some C 2 Club(), whence
N \C = ? and so N in non-stationary. On the other hand, if N is non-stationary then N \C = ?
for some C 2 Club() and so N ✓ ( \C) 2 Club()⇤, whence N 2 Club()⇤. Hence the dual filter
Club()⇤ consists on all non-stationary subsets of , and it is denoted by NS. Notice that by
duality NS is also -complete and normal.

An ordinal function F on a set S is called regressive if f(↵) < ↵ for every ↵ 2 S with ↵ > 0. The
following proposition is a well known result, and it follows immediately from the fact that Club()
is normal.

Theorem 2.1.3. (Fodor’s theorem/Pressing-Down theorem) Let  be a regular uncountable cardinal.
If f is a regressive function on a stationary set S ✓ , then there is a stationary set T ✓ S and
some � <  such that f(↵) = � for all ↵ 2 T . (See [6; 14]).

Definition 2.1.4. Let  be an ordinal of uncountable cofinality

1. If S is a stationary subset of , then S reflects at � <  if S \ � is stationary at �.

2. If S is a stationary subset of , then S is reflecting if it reflects at some � < .

3.  is stationary-reflecting if every stationary subset of  is reflecting.

4.  is simultaneusly-stationary-reflecting or s-reflecting for short, if for every pair of
stationary subsets T1, T2 of , there is � <  such that T1 \ � and T2 \ � are stationary in �.

As a trivial example consider S :=  ✓ , it is trivially stationary. Moreover, for any limit
ordinal � <  we have that S\� = �, which is of course stationary in � whenever � has uncountable
cofinality. That is, S is reflecting and it reflects at any such � < . However, to find an ordinal 
such that every stationary subset reflects, this is, to find a stationary-reflecting ordinal, is much
harder and depends on combinatorial properties of .

Remark 1: If a cardinal  is stationary-reflecting, it cannot be the successor of a regular cardinal:
Towards a contradiction, suppose  is stationary-reflecting and  = �

+ for some regular �. Consider
the stationary set E



�
:= {� <  : cof(�) = �} ✓ . Then, there is some � <  such that E



�
\ � is

stationary in �. However C := { < � : cof() < �} 2 Club(�), but clearly C \ (E

�
\ �) = ?.

It is also easy to see that  is stationary-reflecting if and only if cof() is stationary-reflecting.
So, suppose  is the least stationary-reflecting cardinal, if it is a limit cardinal, then it has to be
regular and so weakly inaccessible. And if  is a successor, then, it must be the successor of a
singular cardinal.
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2.2 The ⇠-stationary subsets of .

The concept of n-stationarity in  or higher stationarity is a generalisation of being stationary in ,
in the sense of Proposition 2.1.2. This is, by 2.1.2 we know that a set is stationary if an only if it
“reflects” unbounded subsets of . A higher-order of stationarity, then, must be given by reflecting
stationary sets of “lower level” of stationarity.

Definition 2.2.1. Let � �  and S ✓ �

1. We say that S is 0-stationary in  if S \  is unbounded in .

2. For an ordinal ⇠ > 0, we say that S is ⇠-stationary in  if and only if for every ⇣ < ⇠ every
T ✓  that is ⇣-stationary in , ⇣-reflects to some � 2 S, i.e., T is ⇣-stationary in �.

3. We say that  is ⇠-reflecting if , as a subset of �, is ⇠-stationary in .

Proposition 2.2.2. S ✓  is ⇠-stationary implies that S is ⇣-stationary for all ⇣ < ⇠. ⇤

Proposition 2.2.2 follows immediately from Definition 2.2.1. Notice that if ⇠ is a limit ordinal
then the converse is also true. This is not the case when ⇠ is succesor, say ⇠ = � + 1. If S is
⇣-stationary for all ⇣ < � + 1 (i.e. ⇣  �), then we will have at most that S reflects all ⇣-stationary
sets for ⇣ < �. However, for S to be � + 1-stationary, we also need that S reflects �-stationary sets.

Also, it follows from Definition 2.2.1 and Proposition 2.1.2 that S ✓  is stationary if and only if it
is 1-stationary. Then, we have that

S ✓  club ! S stationary $ S 1-stationary ! S unbounded

Proposition 2.2.3.  is stationary-reflecting if and only if  is 2-reflecting if and only if  is
2-stationary in .

Proof :  is stationary-reflecting if every stationary subset of  is reflecting, if and only if for
all S stationary, or equivalently 1-stationary (2.1.2). S reflects at some � < , if and only if for all
S stationary there is � <  such that S \ � is stationary at �, if and only if  is 2-reflecting, if and
only if  is 2-stationary in . ⇤

Proposition 2.2.4. [12] For every ⇠ > 0, if S is ⇠-stationary in  and C is a club subset of
, then S \ C is also ⇠-stationary in . Hence if  is ⇠-reflecting, then every club subset of ↵ is
⇠-stationary.

Proof : We proceed by induction on ⇠. If ⇠ = 1 and S is 1-stationary, by 2.1.2 S is stationary
and so S \ C is stationary too, and again by 2.1.2 we get that S \ C is 1-stationary. If ↵ is limit,
the result follows from 2.2.2 and the induction hypothesis. So suppose it is true for ⇠, and suppose
S is ⇠ + 1-stationary and C is club. We shall prove that S \ C is ⇠ + 1-stationary. From 2.2.2 and
the induction hypothesis, we get that S \ C is ⇠-stationary. Moreover if T ✓  is ⇠-stationary in ,
by the induction hypothesis T \ C is ⇠-stationary in . Then, there is � 2 S such that (T \ C) \ �
is ⇠-stationary in �. In particular � is a limit point of (T \C)\� and so a limit point of C, whence
� 2 C. Therefore, � 2 S \ C is such that (T \ C) \ � is ⇠-stationary in �. ⇤

Then, if  is ⇠-reflecting,

S ✓  club ! S ⇠-stationary ! S ⇣-stationary for all ⇣ < ⇠

Definition 2.2.5. Let � �  and S ✓ �

1. We say that S is 0-simultaneously-stationary in  ( 0-s-stationary for short) if S \  is
unbounded in .
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2. For an ordinal ⇠ > 0, we say that S is ⇠-simultaneously-stationary in  (⇠-s-stationary

for short) if and only if for every ⇣ < ⇠, every pair of subsets T1, T2 ✓  that are ⇣-s-stationary
in  simultaneously ⇣-s-reflect to some � 2 S, i.e., S, T are both ⇣-stationary in the same
�.

3. We say that an ordinal  is ⇠-s-reflecting if , as a subset of �, is ⇠-s-stationary in .

Proposition 2.2.6. S ✓  is ⇠-s-stationary implies that S is ⇣-s-stationary for all ⇣ < ⇠. ⇤

As in the case of 2.2.2, Proposition 2.2.6 follows immediately from Definition 2.2.5. Similarly, if
⇠ is a limit ordinal, then, the converse is also true. And if ⇠ is a successor, then, the converse is not
necessarily true.

Proposition 2.2.7. S ✓  is 0-s-stationary in  if and only if S is 0-stationary in . And S ✓ 

is 1-s-stationary in  if and only if S is 1-stationary in .

Proof : The first part is trivial from 2.2.5 and 2.2.1. The left to right implication of the
second part is also trivial. Now suppose S ✓  is 1-stationary in , and let T1, T2 be 0-stationary
subsets of . As in the proof of 2.1.2 we get that T

0
1, T

0
2 are clubs, and so is T

0
1 \ T

0
2. Then there is

� 2 S \ (T 0
1 \ T

0
2). We claim that T1 \ T2 \ � is 0-stationary in �. Let � < �. Since � 2 T

0
1 \ T

0
2,

� = sup{�1
⇠
: ⇠ < ⇢

1} = sup{�2
⇠
: ⇠ < ⇢

2}, where �1
⇠
2 T1, �2

⇠
2 T2 and ⇢

1
, ⇢

2
< �. Hence, there

is �1
⇠1

2 T1 and �
2
⇠2

2 T2 for some ⇠1, ⇠2 such that � < �
1
⇠
,�

2
⇠
< �. This is T1 \ � and T2 \ � are

0-stationary in �. ⇤

Remark. The content of Proposition 2.2.7 does not necessarily extend to higher levels of s-
stationarity. In fact, the existence of a 2-s-reflecting cardinal has higher consistency strength than
the existence of a 2-reflecting cardinal [9].

Proposition 2.2.8. [12] For every ⇠ > 0, if S is ⇠-s-stationary in  and C is a club subset of ,
then S \ C is also ⇠-s-stationary in . Hence if  is ⇠-s-reflecting, then every club subset of ↵ is
⇠-s-stationary.

The proof of proposition 2.2.8 is completely analogous to the proof of 2.2.4. Notice also that for
all ⇠ > 0, if S is ⇠-s-stationary in , then S is ⇠-stationary in  (take T1 = T2 in the definition of
⇠-s-stationary). Then, if  is ⇠-s-reflecting, it is in particular ⇠-reflecting and so

S ✓  club ! S ⇠-s-stationary ! S ⇠-stationary ! S ⇣-stationary for all ⇣ < ⇠

2.3 The ideal of non-⇠-stationary subsets of 

Until now we have avoided the definition of iterated topologies on ordinals, and with this some
of the primary results of [12]. The reason for that is that when generalising the results to P(�)
it is not immediately clear how to provide P(�) with a topology such that its isolated points
correspond in some sense to a notion of higher stationarity in P(�). However, as we will see in
this section, there is a characterisation of certain sets determining the topologies on , given in [12],
which can be extended to P(�) and which will allow to define the corresponding topologies on
P(�).

Definition 2.3.1. Let � be a limit ordinal. We shall define a transfinite sequence h⌧⇠ : ⇠ 2 ORi of
topologies on � as follows

1. Let ⌧0 be the interval topology on �. Let d0 := P(�) ! P(�) be such that d0(S) := { < � :
 is a limit point of S in the ⌧0-topology}.

2. Given ⌧⇠ and having defined d⇠, let ⌧⇠+1 be the topology generated by B⇠+1 := B⇠ [ {d⇠(S) :
S ✓ �}. And let d⇠+1 := P(�) ! P(�) be such that d⇠+1(S) := { < � :  is a limit point of
S in the ⌧⇠+1-topology}.
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3. If ⇠ is a limit ordinal, let ⌧⇠ be the topology generated by B⇠ :=
S

⇣<⇠
B.

Notice that  is a limit point in � in the order topology ⌧0 if and only if  is a limit ordinal below �.
Then, limit ordinals that are smaller than  are exactly the elements of d0().

Proposition 2.3.2. [12] Let ⇠ > 0 and S ✓ �. Then, the set d⇠(S) is a closed subset of � in the
topology ⌧⇠.

Proof : We will prove that given ⇠ > 0 and S ✓ �, the set � \ d⇠(S) is open in the topology
⌧⇠. Let ↵ 2 � \ d⇠(S), then ↵ is not a limit point of S in the topology ⌧⇠. Then, there is an
open set U 2 ⌧⇠ such that ↵ 2 U and (U \ {↵}) \ S = ?. Moreover, U \ d⇠(S) = ?, for suppose
� 2 U \ d⇠(S), then � 6= ↵ and it is a limit point of S. Then, for the open set U \ {↵} we have
([U \ {↵}] \ {�}) \ S 6= ?. But this caontradict the fact that (U \ {↵}) \ S = ?. Therefore
U \ d⇠(S) = ?, and so U ✓ � \ d⇠(S), this is, � \ d⇠(S) is open in ⌧⇠. ⇤

Bagaria proves that in fact B1 constitutes a base for the topology ⌧1 (See Proposition 2.3. in [12]).
Then, any open subset of ⌧1 is a union of sets of the form I \ d0(S1) \ · · · \ d0(Sn), using this fact
we can prove the following

Lemma 2.3.3. If  is an ordinal of uncountable cofinality and  2 U 2 ⌧1, there is a club subset
C of  such that C ✓ U .

Proof Suppose cof() > ! and  2 U 2 ⌧1. Then, there is a basic open set I \ d0(S1) \ · · · \
d0(Sn) ✓ U such that  2 I \ d0(S1) \ · · · \ d0(Sn). We shall prove that I \ d0(S1) \ · · · \ d0(Sn)
is a club. I must be of the form I = (�, �0) for some � <  < �

0  �, then I \  = (�,) which
is a tail subset of  and so a club subset of . Now, for any i  n the set d0(Si) contains its
limit points and therefore is closed. Moreover, d0(Si) is unbounded in  for any i  n. Take
� < , as  2 d0(Si), there is �0 2 Si \ (�,). And for each m < !, let �m 2 Si \ (�m�1,).
Then �! = sup{�m : m < !} is a limit point of elements of Si, i.e., �! 2 d0(Si). Finally, since
cof() > !, we have that � < �! < .

Proposition 2.3.4. [12] ⌧1 is non-discrete if and only if there is  < � such that cof() > !.

Proof : ()) By contraposition, suppose for all  < � such that cof()  !. If  is successor or 0,
clearly {} 2 ⌧0 ✓ ⌧1. If  is limit then take {x� : � < !} cofinal, then {} = d0({x� : � < !}) 2 ⌧1.
This is, for all  < �, {} 2 ⌧1 and so ⌧1 is the discrete topology.

(() Suppose there is  < � such that cof() > ! such that cof() > !. We claim that {} /2 ⌧1.
Towards a contradiction, suppose that {} 2 ⌧1, but then, by lemma 2.3.3 there is a club C of 
such that C ✓ {} and this is nonsense.

Proposition 2.3.5. [12] For every S ✓ �, d1(S) = { : S is stationary in }

Proof : (✓) Let  2 d1(S), this is,  is a limit point of S in the ⌧1 topology. If cof() = !,
there is some cofinal sequence {x� : � < !} such that d0({x� : � < !}) = {}, and so {} 2 ⌧1.
Then,  is an ordinal of uncountable cofinality. Let C be a club subset of . Then C contains its
limit points, this is d0(C) ✓ C. But d0(C) 2 B1, and so d0(C) 2 ⌧1. Since  is limit point of S we
have that S \ (d0(C) \ {}) 6= ?. Hence S \ C ◆ S \ (d0(C) \ {}) is non-empty.

(◆) Suppose S is stationary in . Then  is an ordinal of uncountable cofinality. Let U 2 ⌧1 be
such that  2 U . By lemma 2.3.3 there is a a club subset C of  such that C ✓ U . Then S \C 6= ?.
As  /2 C we also have that S \ (U \ {}) ◆ S \ (C \ {}) 6= ?, and therefore  is a limit point of
S in the ⌧1 topology. ⇤

Then to say that S is stationary in  is equivalent to saying that  2 d1(S). Using 2.3.5 we can
reinterpret Definition 2.1.4 as follows

• Let S be such that  2 d1(S). S reflects at � <  iff � 2 d1(S).

• Let S be such that  2 d1(S). S is reflecting iff d1(S) \ {} 6= ? .
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•  is stationary-reflecting iff for all S,  2 d1(S) implies d1(S) \ {} 6= ? .

•  is s-reflecting iff for every pair of sets T1, T2, if  2 d1(T1) \ d1(T2), then there is � < 

such that � 2 d1(T1) \ d1(T2).

From Proposition 2.3.4 we know that the necessary and sufficient condition for ⌧1 to be non-
discrete is the existence of an ordinal of uncountable cofinality in �. This is, the existence of
a 1-stationary (equivalently a 1-reflecting) ordinal below �. However, Bagaria showed that the
non-discreetness of ⌧2 requires more than the existence of a 2-stationary (equivalently 2-reflecting
or stationary-reflecting 2.2.3) ordinal.

Proposition 2.3.6. ([12]).

1. An ordinal  < � is not isolated in the ⌧2 topology on � if and only if  is s-reflecting. Thus,
B2 generates a non-discrete topology on � if and only if some  < � is s-reflecting.

2. B2 is a base for the ⌧2 topology on � if and only if every stationary-reflecting  < � is
s-reflecting.

In order to generalise the result obtained in Proposition 2.3.6 to topologies ⌧⇠ with ⇠ > 2, Bagaria
uses the following

Proposition 2.3.7. ([12]).

1. For every ⇠, d⇠(S) = { : S is ⇠-s-stationary in }.

2. For every ⇠ and , S is ⇠ + 1-s-stationary in  if and only if S \ d⇣(T1) \ d⇣(T1) \  6= ?
(equivalently, if and only if S \ d⇣(T1) \ d⇣(T1)) is ⇣-s-stationary in ) for every ⇣  ⇠ and
every pair T1, T2 of subsets of  that are ⇣-s- stationary in .

3. For every ⇠ and , if S is ⇠-s-stationary in  and Ti is ⇣i-s-stationary in  for some ⇣i < ⇠

all i < n, then S \ d⇣1(T1) \ · · · \ d⇣n(Tn)) is ⇠-s-stationary in .

Proposition 2.3.8. Suppose that � is ⇠ + 1-stationary, and let S ✓ � be ⇠-stationary. Then,
d⇠(S) = { < � : S ⇠-s-reflects to }.

Proof : Let � be ⇠+1-stationary, and let S ✓ � be ⇠-stationary. Then, from Definition 2.2.5 that
S is ⇠-s-stationary in  < � if and only if S ⇠-s-reflects to . moreover, by Proposition 2.3.7 we know
that d⇠(S)) = { < � : S is ⇠-s-stationary in }. Therefore d⇠(S) = { < � : S ⇠-s-reflects to }.

From Propositions 2.3.7, 2.3.6 and 2.2.8 it follows one of the main results of [12], which characterises
the topologies ⌧⇠ in terms of stationary reflection. Namely

Theorem 2.3.9. ([12]). For every ⇠, an ordinal  < � is not isolated in the ⌧⇠ topology on � if
and only if  is ⇠-s-reflecting. Thus B⇠ generates a non-discrete topology on � if and only if some
 < � is ⇠-s-reflecting.

Now, to study the open sets d⇣(S) for ⇣ < ⇠ it is also useful to characterise the dual filter of the
ideal of non-⇠-s stationary subsets of  in terms of the d⇠ operator.

Definition 2.3.10. For every ordinal ⇠, I⇠

:= {X ✓  : X is not n-s-stationary in }.

As stationary sets are equivalent to 1-stationary sets. And for the cases ⇠ 2 {0, 1}, to be
⇠-sattionary is equivalent to be ⇠-s-statioanry. Then, if ⇠ = 1 then I⇠


= NS.

Lemma 2.3.11. If T1, T2 are both not unbounded subsets of , then T1 [ T2 is not unbounded
either.

Proof : T1 and T2 are both bounded for some �1,�2 <  respectively. Take � = max{�1,�2},
then T1 [ T2 is bounded by � and so T1 [ T2 is not unbounded. ⇤
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Definition 2.3.12. We denote by F
⇠


the dual filter associated to I⇠

, this is F

⇠

:= (I⇠


)⇤.

Proposition 2.3.13. ([12]). Let X ✓ , then X 2 F
⇠


if and only if there is some ⇣ < ⇠ and some
⇣-s-stationary sets T1, T2 ✓  such that d⇣(T1) \ d⇣(T2) \  ✓ X.

Then, from Proposition 2.3.13 we conclude that

F
⇠


= {X ✓  : 9⇣ < ⇠ and T1, T2 ✓  ⇣-s-stationary such that d⇣(T1) \ d⇣(T2) \  ✓ X}.

Proposition 2.3.14. S ✓  is ⇠-s-stationary if and only if S is F
⇠

-stationary.

Proof : ()) Let S be ⇠-s-stationary in , and let X 2 F
⇠

, this is, X is such that there is ⇣ < ⇠

and T1, T2 ✓  ⇣-s-stationary such thatd⇣(T1) \ d⇣(T2) \  ✓ X. Since S is ⇠-stationary, for T1, T2

there is � 2 S such that T1\� and T2\� are ⇣-s-stationary in �. Then � 2 d⇣(T1)\d⇣(T2)\ ✓ X

and so � 2 S \X.

(() Suppose that S is F
⇠

-stationary, and take T1, T2 ✓  ⇣-s-stationary subsets of . Notice

that d⇣(T1) \ d⇣(T2) \  trivially belongs to F
⇠

, then, there is some � 2 S \ d⇣(T1) \ d⇣(T2) \ .

This is, there is � 2 S such that T1 \ � and T2 \ � are both ⇣-stationary in �. Hence S ✓  is
⇠-s-stationary.⇤

In Section 1 we gave the standard definition of a stationary subset of , this definition correspond
to the definition of being F -stationary 1.3.7 with respect to the filter F = Club(). However, the
definition of ⇠-s-stationary subsets of  we presented in section 2 was given regardless of any filter.
Proposition 2.3.14 is telling us that ⇠-s-stationary subsets of  are indeed stationary with respect
to some filter, the filter F

⇠

.

Theorem 2.3.15. ([12]). For every ⇠, an ordinal  is ⇠-s-reflecting if and only if I⇠


is a proper
ideal, hence if and only if F ⇠


is a proper filter.

2.4 ⇧1
⇠
-indescribability in .

In chapter 1 we review the well known definitions of ⇧1
n

and ⌃1
n

formulas for n < !. As well as
the concept of ⇧n

1 indescribable cardinals. In 1972 R. Jensen related the notion of indescribability
with the fact of simultaneously reflecting stationary sets in L. More precisely he proved that
in the constructible universe L, a regular cardinal is simultaneously-reflecting if and only if it is
⇧1

1-indescribable (See [22]). Recently, Bagaria, Magidor and Sakai proved that in the constructible
universe L, a regular cardinal is n+ 1-simultaneously-reflecting if and only if it is ⇧1

n
-indescribable

(See [25]). Finally, in [12] Bagaria obtained and even more general result when extending this
definitions of ⇧1

n
formulas and ⇧1

n
-indescribability to the case ⇠ � !.

Definition 2.4.1. ([12]). Let ⇠ � �. A formula is ⌃1
⇠+1 if it is of the form

9X0, . . . , Xk'(X0, . . . , Xk)

where '(X0, . . . , Xk) is ⇧1
⇠
. And a formula is ⇧1

⇠+1 if it is of the form

8X0, . . . , Xk'(X0, . . . , Xk)

where '(X0, . . . , Xk) is ⌃1
⇠
. If ⇠ is a limit ordinal, then we say that a formula is ⇧1

⇠
if it is of the

form ^

⇣<⇠

'⇣

where '⇣ is ⇧1
⇣

for all ⇣ < ⇠, and the infinite conjunction has only finitely-many free second-order
variables. And we say that a formula is ⌃1

⇠
if it is of the form

_

⇣<⇠

'⇣
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where '⇣ is ⌃1
⇣

for all ⇣ < ⇠, and the infinite disjunction has only finitely-many free second-order
variables.

Definition 2.4.2. ([12]). A cardinal  is ⇧1
⇠
-indescribable if for all subsets A ✓ V and every ⇧1

⇠

sentence ', if hV,2, Ai |= ', then there is some � <  such that

hV�,2, A \ V�i |= '.

Proposition 2.4.3. ([12]). Every ⇧1
⇠
-indescribable cardinal is (⇠ + 1)-s-reflecting. Hence, if ⇠ is a

limit ordinal and a cardinal  is ⇧1
⇣
-indescribable for all ⇣ < ⇠, then  is ⇠-s-reflecting.

The converse of Proposition 2.4.3 is also true whenever V = L, and it is proved in the general case
⇠ 2 OR with the Theorem 2.4.5 that constitutes the second main result of [12].

Proposition 2.4.4. Suppose  is ⇧1
⇠
-indescribable, then  is ⇧1

⇠
-indescribable in the constructible

universe L

Proof of of proposition 2.4.4 can be found in Chapter 6 of [14] for the case ⇠ = n < !. And as
pointed out by Bagaria in [12], its generalisation to the case ⇠ � ! is straightforward.

Theorem 2.4.5. ([12]). Assume V = L. Suppose ⇠ > 0 and  is a regular (⇠ + 1)-s-reflecting
cardinal. Then  is ⇧1

⇠
-indescribable.

Thus, together with Theorem 2.3.9 and Theorem 2.4.5 Bagaria obtained in [12] a complete char-
acterisation in L of the reflection of ⇠ stationary sets, in terms of ⇧1

⇠
-indescribability and of the

non-discretness of the topologies ⌧⇠.
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Chapter 3

Hyperstationary subsets of P(A).

3.1 Stationary subsets of P(A)

In 1971 Thomas Jech presented a generalisation of the concepts of closed unbounded and station-
ary set [16]. He considered the set hP(�),⇢i instead of h, <i, and the connection between them
occurs when � = . This is, properties defining these concepts remain when passing from h, <i to
hP(),⇢i. As we will see, definitions for the case P(�) are straightforward, and their convenience
lays on the fact that results such as Fodor’s Theorem remain true under this generalisation.

Definition 3.1.1. Let  be an uncountable regular cardinal and let A be a set of ordinals such that
|A| � .

1. S ✓ P(A) is unbounded in P(A) iff for any X 2 P(A) there is some Y 2 S such that
X ✓ Y .

2. S ✓ P(A) is closed in P(A) iff for any {X⇠ : ⇠ < �} ✓ S with � <  and X⇠ ✓ X⇣ for
⇠  ⇣ < �,

S
⇠<�

X⇠ 2 S.

3. S ✓ P(A) is club of P(A) iff S is closed and unbounded in P(A),.

4. S ✓ P(A) is stationary in P(A) iff for any C club in P(A), S \ C 6= ?.

Notice that for every X 2 P(A), the set {Y 2 P(A) : X ✓ Y } is closed and unbounded. That
it is unbounded is immediate, and since arbitrary increasing unions of subsets containing X do
contain X, this set is also closed.

It follows immediately from Definition 3.1.1 that P(A) is stationary in P(A) for all . Also the
following result follows directly from the definition.

Proposition 3.1.2. If S ✓ P(A) is club in P(A), then it is stationary in P(A). And if
S ✓ P(A) is stationary in P(A), then it is unbounded in P(A).

Proof : Let S be be a club of P(A), and pick any club C of P(A). It is clear that S \ C is
closed, so we will prove that it is unbounded in P(A). Let X0 2 P(A), as S,C are unbounded in
P(A), we may construct the following !-sequence

X0 ( X1 ( X2 ( · · · ( Xn ( Xn+1 ( · · ·

Where Xi 2 S if i > 0 is even and Xi 2 C otherwise. Then,
S

i<!
X2i 2 S and

S
i<!

X2i+1 2 C,
but

S
i<!

X2i =
S

i<!
X2i+1, therefore

S
i<!

Xi 2 S \ C.

For the second statement take X 2 S, consider the club subset C = {Y 2 P(A) : X ✓ Y }. Pick
Z 2 S \ C, then Z 2 S and X ✓ Z, this is S is stationary in P(A). ⇤
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Proposition 3.1.3. C ✓ P(A) is closed if and only if for every 2-directed set X ✓ C of cardinality
< ,

S
X 2 C.

Proof : ()) We prove this direction by induction on |X| = �. Suppose that X = {A↵ : ↵ < �}.
If � = !, choose n0 < n1 < · · · such that n0 = 0 and Ani+1 ◆ Ai [Ani . So that An0 ✓ An1 ✓ · · ·
is an increasing sequence with union A0 [A1 [ · · · . If � > !, notice that if X is a directed system
and Y ✓ X, there is a directed subsystem Y ✓ Z ✓ X such that |Y |  max{|Z|,!}. Then, we can
see X as an increasing, union X =

S
{X↵ : ↵ < �} of directed systems X↵ of smaller cardinality.

By our inductive hypothesis we get
S
X↵ 2 C for every ↵ < �, so finally this holds for X becauseC

is closed and {X↵ : ↵ < �} is increasing.
(() Let C be a closed set of P(A), and suppose {X⇠ : ⇠ < �} ✓ C whit � <  and X⇠ ✓ X⇣

for ⇠  ⇣ < �. Let X⇠1 , X⇠2 2 {X⇠ : ⇠ < �}, then w.l.g. we may assume X⇠1 ✓ X⇠2 , then
X⇠1 [X⇠2 ✓ X⇠2 . This is, {X⇠ : ⇠ < �} is a 2-directed subset of C of cardinality � < , then by
hypothesis we have that

S
⇠<�

X⇠ 2 S.

If |A| = |B|, then hP(A),✓i is isomorphic to hP(B),✓i. Thus considering the case P(A) is
equivalent to considering the case P(�), where |A| = � � . Now, every ordinal <  is identified
with an element of P(�) determined by itself, so that  ✓ P().

Proposition 3.1.4. A set S ✓  is unbounded (or closed, or stationary) in the sense of  if and
only if, it is unbounded (or closed, or stationary) in the sense of P().

Proof : Suppose S ✓  is unbounded in . Let X 2 P() and take ↵ = supX. Then
X ✓ ↵ < . So there is � 2 S such that ↵ < � < . But then X ✓ � 2 S. Now suppose that S ✓ 

is unbounded in P(). Let ↵ < , then ↵ 2 P(), and so, there is X 2 S such that ↵ ✓ X. Since
X 2 S ✓ , X = � for some � 2 . Then there is � <  such that ↵  � < .

Suppose S ✓  is closed in , and take {X⇠ : ⇠ < �} ✓ S with � <  and X⇠ ✓ X⇣ for
⇠  ⇣ < �. As S ✓ , each element in the sequence is in fact an ordinal less than , namely
{X⇠ : ⇠ < �} = {↵⇠ : ⇠ < �}. Then

S
⇠<�

X⇠ =
S

⇠<�
↵⇠ 2 S. Now suppose that S ✓  is closed in

P(), and {↵⇠ : ⇠ < �} is an increasing sequence of ordinals less than . Clearly {↵⇠ : ⇠ < �} is
also an increasing sequence of elements of P(). Then

S
⇠<�

↵⇠ 2 S. Moreover ↵ :=
S

⇠<�
↵⇠ is an

ordinal, and so ↵ = sup⇠<� ↵⇠.

Suppose S ✓  is stationary in , and take C a club subset of P(). We claim that the set
C \  ✓  is a club of , if so, then ? 6= (C \ ) \ S ✓ C \ S and we are done. Closure is trivial,
so we are left to prove unboundedness. Let ↵ < , then, there is X0 2 C such that ↵ ✓ X0. For
each i 2 {1, . . . , n}, let Xi be an element of C such that supXi�1 ✓ Xi. Then

S
n<!

Xn 2 C is an
ordinal less than , and ↵ ✓

S
n<!

Xn. This is, for ↵ <  there is � :=
S

n<!
Xn 2 C \  such that

↵  �. hence C \  is unbounded in . Now suppose S ✓  is stationary in P(), and take C a
club subset of . As C ✓  we may apply previous items obtaining that C is also closed unbounded
in P(), and so S \ C 6= ?. ⇤

Proposition 3.1.4 is the reason why we say that, considering definitions in 3.1.1, hP(�),⇢i is indeed
a generalisation of h, <i. Also, notice that as in the case of h, <i, the union of less than  many
bounded subsets of P(�) is bounded in P(�).

The closed unbounded filter on P(A) is the filter generated by the closed unbounded sets. In
the case A = , the set  ✓ P() is a club of P() and so Club() is the restriction of the club
filter on P(A) to P(). Thus, there is a dual ideal corresponding to Club(), we sat that it is the
ideal of non-stationary subsets of P(A) and it is denoted by NS,A.

Proposition 3.1.5. The intersection of � <  many club subsets of P(�) is again a club subset
of P(�). Hence the club filter on P(�) is -complete. (See [6; 14].)

20



Let hXa : a 2 Ai be a sequence of subsets of P(A), its diagonal intersection is defined by

�a2AXa := {X 2 P(A) : X 2
\

a2X

Xa}.

Proposition 3.1.6. If hCa : a 2 Ai is a sequence of club subsets of P(A), then its diagonal
intersection �a2ACa is a club subset of P(A). (See [6].)

Last proposition is the key to prove the generalisation of Fodor’s theorem to P(�) given by
Jech in [16]. He considered choice functions instead of regressive functions.

Theorem 3.1.7. (T. Jech) If f is a function on a stationary set S ✓ P(�) and if f(x) 2 x for
every nonempty x 2 S, then there exists a stationary set T ✓ S and some a 2 A such that f(x) = a

for all a 2 T .

Proof : Follows from Proposition 3.1.6 analogously to the case of . (See [6; 7].) ⇤

3.2 The n-stationary subsets of P(�).

The main objective of this work is to investigate the most suitable approach to a concept of
hyperstationarity in P(�) in such a way that the results obtained by Bagaria in [12] may be
extended to the case of P(�). The primary incentive for doing this is that we expect the consistency
strength of hyperstationarity in P(�) to be much stronger than the one for , possibly close to the
level of supercompactness.

As far as we are concerned, the unique attempt to define n-stationary sets in P(�) was made
for Hiroshi Sakai, Sakaé Fuchino and Hazel Brickhil as exposed the talk “ On generalised notion of
higher stationarity ” [13]. We take this definition as a starting point.

Definition 3.2.1. (H. Sakai) Let  be a regular cardinal,  ✓ A, and n < !.

1. S ✓ P(A) is 0-stationary in P(A) iff S is unbounded in P(A).

2. S ✓ P(A) is n-stationary in P(A) iff for all m < n and for all T ✓ P(A) m-stationary
in P(A), there is B 2 S such that

- µ := B \  is a regular cardinal.

- T \ Pµ(B) is m-stationary in Pµ(B)

3. P(A) is n-stationary if it is n-stationary in P(A) as a subset of P(A).

For the sake of readability, whenever the context is clear we will say “S is n-stationary” instead
of “S is n-stationary in P(A)”.

Proposition 3.2.2. S ✓ P(A) being 1-stationary implies S is unbounded.

Proof : Suppose that S ✓ P(A) 1-stationary and let X 2 P(A). The set UX := {Y 2 P(A) :
X ✓ Y } is clearly unbounded in P(A). Then there is B 2 S such that µ := B \  is regular
and UX \ Pµ(B) is unbounded in Pµ(B). Note that

S
(UX \ Pµ(B)) = B, because if b 2 B, then

{b} 2 Pµ(B) and so there is Y 2 UX \ Pµ(B) such that {b} ✓ Y . Thus, b 2 Y 2 UX \ Pµ(B) and
b 2

S
(UX \Pµ(B)) = B. Now we will see that X ✓ B. Let x 2 X. Then x 2 Y for all Y 2 UX , in

particular x 2 Y for all Y 2 UX \ Pµ(B). Hence x 2
S
(UX \ Pµ(B)) = B. ⇤

Next Proposition is the analogous of 2.2.2 in the case of h, <i, so it is a good sign that 3.2.1
behaves well as a generalisation to the hP(A),⇢i case.
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Proposition 3.2.3. S ✓ P(A) being n-stationary implies S is m-stationary for all m < n.

Proof : We proceed by induction. The case n = 0 is precisely Proposition 3.2.2. Suppose we
have the result for all k < n, and that S ✓ P(A) n-stationary. Let m < n and take T ✓ P(A) to
be l-stationary for some l < m. As S is n-stationary, there is some B 2 S such that µ := B \  is
regular and T \ Pµ(B) is l-stationary in Pµ(B). Therefore, S is m-stationary. ⇤

It is straightforward that if S0 ✓ S ✓ P(A) and S
0 is n-stationary, then S is n-stationary as

well. So the least condition for the existence of a n-stationary subset of P(A) is to ask P(A) to
be n-stationary itself. In the previous chapter we saw that the fact that  being 1-stationary in ,
is due to the fact that cof() > !. For P(A) to be 1-stationary we also have a necessary condition
on the largeness of .

Proposition 3.2.4. If P(A) is 1-stationary in P(A), then  is weakly Mahlo.

Proof : Suppose that P(A) is 1-stationary in P(A). is regular uncountable cardinal,
in order to prove that  is weakly Mahlo, it is enough to prove that the set E := {µ <  :
µ is a regular cardinal} is stationary in .

Let C be a club subset of  and consider the set T := {X 2 P(A) : 9↵ 2 C s.t. X \  ( ↵ 
|X|}.

T is unbounded in P(A) : Suppose Y 2 P(A) and let ↵ 2 C be such that Y \ ( ↵. Consider
e↵ := {� \{0} : � 2 ↵}, clearly e↵\ = {?}. Now Z := Y [{e↵} is such that Z \ = (Y [{e↵})\ =
(Y \ ) [ ({e↵} \ ) = Y \  ( ↵. Moreover ↵  |↵| = |e↵|  |Y [ e↵| = |Z|, whence Z 2 T . Hence,
for every Y 2 P(A) there is Z 2 T such that Y ✓ Z.

Since P(A) is 1-stationary in P(A), and T is unbounded in P(A), there is B 2 P(A) such that

- µ := B \  is a regular cardinal.

- T \ Pµ(B) is 0-stationary in Pµ(B).

We claim that µ 2 C, to see this we shall prove that C \ µ is unbounded in µ < . As C is
closed, that would imply that µ 2 C.

- C \ µ is unbounded in µ : Let � < µ, then � 2 µ = B [  ✓ B, and so � 2 Pµ(B). Then, there is
X 2 T \ Pµ(B) such that � ✓ X (and so � ✓ X \ ). As X 2 T , there is some ↵ 2 C such that
X \  ( ↵  |X|. But then � ( X \  ( ↵  |X| < µ. This is ↵ 2 C \ µ and � < ↵.

Therefore µ 2 C \ E, this shows that the set E = {µ <  : µ is a regular cardinal} is stationary in
. Hence  is weakly Mahlo. ⇤

In h, <i, the condition cof() > ! was also a sufficient condition for  to be 1-stationary in . So
it is natural to ask if “ weakly Mahlo” is also a sufficient condition for P(A) to be 1-stationary.
Unfortunately, for Sakai’s definition as given in 3.2.1 we do not have an answer. The main obstacle
is that the conditions µ := B \  regular and T \ Pµ(B) 0-stationary in Pµ(B) seem difficult to be
satisfied simultaneously. However, a slight modification of 3.2.1 yields that “ weakly Mahlo” is
also a sufficient condition.

Definition 3.2.5. Let  be a regular cardinal,  ✓ A and n < !.

1. S ✓ P(A) is 0-stationary in P(A) iff S is unbounded in P(A).

2. S ✓ P(A) is n-stationary in P(A) iff for all m < n and for all T ✓ P(A) m-stationary
in P(A), there is B 2 S and µ <  regular cardinal such that

- µ ✓ B \ ,
- T \ Pµ(B) is m-stationary in Pµ(B)

3. P(A) is n-stationary if it is n-stationary in P(A) as a subset of P(A).
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A very simple but useful fact is that if S ✓ P(A) is n-stationary in P(A) and S ✓ S
0 ✓ P(A),

then S
0 is also n-stationary in P(A). To prove this, suppose S ✓ P(A). If S is n-stationary in

P(A) , then for all m < n and all T ✓ P(A) m-stationary there is B 2 S ✓ S
0 (and so there is

B 2 S
0) and µ regular such that µ ✓ B \  and T \ Pµ(B) is m-stationary in Pµ(B). But this is

precisely to say that S
0 is n-stationary in P(A).

Remark. Since the conditions of Definition 3.2.5 are weaker than the ones of Definition 3.2.1, it is
immediate to see that 3.2.2, 3.2.3 and 3.2.4 remain true under the new definition.

From now on, when talking about n-stationarity of a subset of P(A) we will refer to this new
definition. However, we will have still in mind 3.2.1, to justify why we think 3.2.5 is more suitable
to our purposes. And we will clarify whenever a result is also valid with 3.2.1.

Theorem 3.2.6. If  is weakly Mahlo, then P(A) is 1-stationary in P(A).

Proof : Suppose that  is weakly Mahlo. Then, the set E = {µ <  : µ is a regular cardinal}
is stationary in . Let T ✓ P(A) be 0-stationary in P(A), and construct the following transfinite
sequence

X0 2 T .
X↵+1 2 T is such that X↵+1 ) X↵ [ ↵.
X� 2 T is such that X� )

S
↵<�

[X↵ [ ↵], for � <  limit.

This sequence is well defined. The successor step may be performed since T is unbounded,
|X↵|, |↵| <  and so X↵ [ ↵ 2 P(A). And limit step because T is unbounded,  is regular andS

↵<�
[X↵ [ ↵] 2 P(A). So defined {X↵ : ↵ < } ✓ T is an strict ascending chain. Now, consider

the set U := {↵ <  : 9� <  s.t. |X� | = ↵}.

Claim. U is unbounded in  : Let � < . As  is a regular limit cardinal |�|+ < . Then
X|�|++1 ◆ X|�|+ [ |�|+. Note that � < |�|+  |X|�|++1| < . Then, for ↵ := |X|�|++1| < , there
exists � := |�|+ + 1 <  such that |X� | = ↵ > �. Thus ↵ 2 U and � < ↵ < .

Now, since E is stationary in , from the claim above we get that, there is µ 2 E such that U \ µ

is unbounded in µ. We may now construct the following subsequence:

Pick � < µ. Then, there is �0 2 U \ µ such that � < �0, and so there is �0 <  such that
|X�0 | = �0 < µ. Given X�↵ let X�↵+1 be such that |X�↵ | < |X�↵+1 | < µ; and for ↵ < µ limit,
let X�↵ be such that |

S
⇠<↵

X�⇠ | < |X�↵| < µ. Notice that �↵ 6= �↵0 for ↵ 6= ↵
0 and since

{X�↵ : ↵ < µ} ✓ {X↵ : ↵ < }, we have that {X�↵ : ↵ < µ} is also a chain. Since |X�↵ | < , for
all ↵ < µ <  and  is regular,

S
↵<µ

X�↵ 2 P(A).

Let B :=
S

↵<µ
X�↵ , and notice that since {X�↵ : ↵ < µ} forms a strictly ascending chain, |B| � µ.

Moreover, B is the union of at most µ many sets of cardinality less than µ, so that |B| = µ. To
conclude the proof we will show that B is as we wanted, this is, there is µ <  regular such that

(i) µ ✓ B \  : First notice that, if ↵ < ↵
0 then X�↵ ( X�↵0 , and since {X↵ : ↵ < } is strict

ascending, this implies �↵ < �↵0 . Now, we claim that
(a) �↵ ✓ B for all ↵ < µ : let ↵ < µ, as µ is limit ↵ + 1 < µ, and so there is �↵+1, and
�↵ ✓ X�↵+1 ✓ B.
(b) ↵  �↵ for all ↵ < µ : by induction, 0  �0. If ↵  �↵ we have that ↵  �↵ < �↵+1,
whence ↵ + 1  �↵+1. For ↵ < µ limit, given that � < �� for all � < ↵, we have ↵ =
sup�<↵ �  sup�<↵ ��. Also, for all � < ↵ we have that �� < �↵ and so sup�<↵ ��  �↵. Thus
↵  sup�<↵ ��  �↵.
From (a) we have that sup↵<µ �↵ =

S
�<↵

�� ✓ B. From (b) we conclude that µ = sup↵<µ ↵ 
sup↵<µ �↵. Therefore µ  sup↵<µ �↵ ✓ B.
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(ii) T \ Pµ(B) is unbounded in Pµ(B) : Let X 2 Pµ(B). Then X ✓
S

↵<µ
X�↵ and |X| < µ.

As |B| = µ is regular, we get that X is not unbounded in B. Then X ✓ X�↵ for some
↵ < µ. But X�↵ ✓

S
↵<µ

X�↵ = B and |X�↵ | < µ. So, there is X�↵ 2 T \ Pµ(B) such that
X ✓ X�↵ . ⇤

It is worth noting a couple of things about the proof of Theorem 3.2.6. For every T unbounded
subset of P(A), we needed a set B 2 P(A) and a regular µ witnessing the reflection of T . We
construct B and µ simultaneously and they are strongly related, however we could no guarantee
that µ = B \ , as in Sakai’s original definition (Def. 3.2.1). The problem is that despite the
condition |X�↵ | < µ, it could perfectly be the case that for some � > µ, � 2 X�↵ , so that � 2 B\\µ.

It is also interesting that in the proof of Theorem 3.2.6, we actually proved a little bit more
than required. We proved an extra condition for B, namely |B| = µ. That was due to the fact that
B is the union of at most µ many sets of cardinality less than µ.

Therefore, from Proposition 3.2.4 and Theorem 3.2.6, we get a complete characterisation of 1-
stationarity for P(A), namely

Corollary. P(A) is 1-stationary in P(A) if and only if  is weakly Mahlo. ⇤

Thus, stationary subsets of P(A) exists only in the case that  is weakly Mahlo. Moreover, for
higher level of stationary subsets of P(A), we need to require stronger conditions over . For
instance, if  is the least weakly Mahlo cardinal, then P(A) does not contain 2-stationary subsets.

Proposition 3.2.7. Let  be the least weakly Mahlo cardinal, then P(A) is not 2-stationary.

Proof :Towards a contradiction, suppose that P(A) is 2-stationary. As  is weakly Mahlo, by
Theorem 3.2.6 we have that P(A) is 1-stationary. Then, there is B 2 P(A) and µ ✓ B \  such
that P(A) \ Pµ(B) is 1-stationary in Pµ(B). From B 2 P(A) and µ ✓ B \  we get that µ < .
But P(A) \ Pµ(B) = Pµ(B), and then Pµ(B) is 1-stationary in Pµ(B), but again by Proposition
3.2.4 this implies µ weakly Mahlo. ⇤

Recall that for h, <i, we have

S ✓  club ! S stationary $ S 1-stationary ! S unbounded (3.1)

In the case of hP(A), <i by Proposition 3.1.2, we have that

S ✓ P(A) club ! S stationary ! S unbounded .

We would like to have in the case P(A), a similar diagram, as in Eq. 3.1, relating in this way
1-stationarity and stationarity in P(A). Unfortunately, it is not that immediate to see how these
concepts are linked in P(A). However, for 1-stationarity we do have the following result

Proposition 3.2.8. If  is weakly Mahlo, then C ✓ P(A) club implies C is 1-stationary.

Proof : Suppose that  is weakly Mahlo, we may then perform a quite similar construction of
what we did in 3.2.6. For each unbounded T of P(A), we will however, construct the sequence of
elements X↵ inside T̄ \ C. In this way we may guarantee B 2 C.

Since  is weakly Mahlo, the set E = {µ <  : µ is regular} is stationary in . Let T ✓ P(A)
be 0-stationary in P(A), then T̄ \C is a club of P(A). Construct the following transfinite sequence

X0 2 T . And Y0 2 C such that X0 ✓ Y0

X↵+1 2 T is such that X↵+1 ) X↵ [ ↵ [ Y↵. And Y↵+1 2 C such that X↵+1 ✓ Y↵+1

X� 2 T is such that X� )
S

↵<�
[X↵ [ ↵ [ Y↵] for � <  limit.
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As in the proof of 3.2.6 this sequence is well defined. In fact, the justification of this is com-
pletely analogous. We also may use exactly the same reasoning as in 3.2.6 to prove that the set
U = {↵ <  : 9� <  s.t. |X� | = ↵} is unbounded in .

Now, since E is stationary and U is unbounded in , there is µ 2 E such that U \µ is unbounded in
µ. We may now construct an analogous subsequence as in 3.2.6. This is, a sequence {X�↵ : ↵ < µ}
such that |X�↵ | < |X�↵+1 | < µ for each ↵ < µ. Thus B :=

S
↵<µ

X�↵ 2 P(A), and |B| = µ.

(i) µ ✓ B \  : as in 3.2.6

(ii) T \ Pµ(B) is unbounded in Pµ(B) : Let X 2 Pµ(B). Then X ✓
S

↵<µ
X�↵ and |X| < µ. As

|B| = µ is regular, we get that X is not unbounded in B. Then X ✓ X�↵ for some ↵ < µ.
But X�↵ ✓

S
↵<µ

X�↵ = B and |X�↵ | < µ. So, there is X�↵ 2 T \Pµ(B) such that X ✓ X�↵ .

To conclude the proof it is enough to show that B 2 C. We claim that
S

↵<µ
X�↵ =

S
↵<µ

Y�↵ .
Let z 2

S
↵<µ

X�↵ , this is z 2 X�↵ for some ↵ < µ. But by construction X�↵ ✓ Y�↵ , then
z 2 Y�↵ ✓

S
↵<µ

Y�↵ . Conversely, if z 2
S

↵<µ
Y�↵ then z 2 Y�↵ for some ↵ < µ. Notice that for all

↵ < µ, X�↵ ( X�↵+1 , hence X�↵+1 ✓ X�↵+1 . Moreover, by construction (successor step) we have
that Y�↵ ✓ X�↵+1 ✓ X�↵+1 . Whence z 2 X�↵+1 and so z 2

S
↵<µ

X�↵ .

Now {Y�↵ : ↵ < µ} is clearly an ascending sequence of element of C. Then, as C is closed, we get
that

S
↵<µ

Y�↵ 2 C. But B =
S

↵<µ
X�↵ =

S
↵<µ

Y�↵ , then B 2 C. ⇤

Hence, by propositions 3.2.2 and 3.2.8, for  weakly Mahlo we have

S ✓ P(A) club ! S 1-stationary ! S unbounded .

We shall also prove that the 1-stationarity of P(A) is at least a stronger notion than stationarity
of P(A). The converse seems not to be true though. We may however, modify a bit more our
definition of n-stationarity in order to have the equivalence. We will introduce this definition in the
final chapter, since for us, having the equivalence between 1-stationarity and stationarity appears
to be less important than having a definition of n-stationarity for P(A) as close as possible to the
definition of n-stationarity in ordinals [12].

Proposition 3.2.9. If S ✓ P(A) is 1-stationary in P(A), then S is stationary in P(A).

Proof : Suppose that S is 1-stationary in P(A), and let C be a club subset of P(A). In
particular C is unbounded in P(A) and so, there is some B 2 S such that

- µ ✓ B \  is a regular cardinal.

- C \ Pµ(B) is 0-stationary in Pµ(B)

Then, for each x 2 B, there is some Yx 2 C \ Pµ(B) such that {x} ✓ Yx. As well, for each
couple Z = {Y, Y 0} of elements of C, there is an element W 2 C \ Pµ(B) such that Y, Y

0 ✓ W .
Using axiom of choice, we may pick one of these W for each pair Z. We will denote this choice by YZ .

We construct a sequence of subsets of P(A). Let T0 := {Yx : x 2 B}, then |T0| = |B| < .
T1 := T0 [ {YZ : Z 2 [T0]2}, then |T1| = max{|T0|, |{YZ : Z 2 [T0]2}|} = max{|B|, |[T0]2|} =
max{|B|, |B|} = |B| < . Suppose that for each i 2 0, . . . , n� 1 the set Ti+1 = Ti [ {YZ : Z 2 [Ti]}
is such that |Ti+1| < . Then Tn := {YZ : Z 2 [Tn�1]} and clearly |Tn| = max{|Tn�1|, |{YZ : Z 2
[Tn�1]2}|} = max{|Tn�1|, |[Tn�1]2|} = |Tn�1| < .

Now, consider T :=
S

n<!
Tn, then |T | = sup{|Tn| : n < !}. Since each |Tn| <  and  has

uncountable cofinality, we conclude that |T | < . Moreover by the way we constructed T it is
straightforward that it is finitely directed. Since C is a closed subset of P(A) and T is finitely
directed, by Proposition 3.1.3 we have that

S
T 2 C.
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We claim that
S
T = B. If x 2

S
T , then x 2 YZ for some YZ 2 Tn and n < !. But since

YZ 2 Pµ(B), x 2 YZ ✓ B. Also, if x 2 B, there is Yx 2 T0 ✓ T such that {x} ✓ Yx, this is,
x 2

S
T . Therefore B 2 S \ C and so S \ C 6= ?. ⇤

Remark. Notice that in the proof of Proposition 3.2.9 we do not use the particular condition
“µ ✓ B \ ”, then, this result is also valid for Definition 3.2.1 in which “µ = B \ ”.

What can we say about higher levels of stationarity in P(A)? In the case of h, <i, Proposition
2.2.3 tells us that ↵ is a 2-stationary set if and only ↵ is stationary reflecting, and we also saw that
this fact implies that ↵ is not the successor of a regular cardinal. Does 2-stationarity over P(A)
implies some condition over ?

Theorem 3.2.10. If P(A) is 2-stationary in P(A), then  is 2-weakly Mahlo i.e. the set
{↵ <  : ↵ is weakly mahlo } is stationary in .

Proof : Suppose that P(A) is 2-stationary in P(A), we shall prove that the set E := {µ <

 : µ is weakly mahlo} is stationary in . By Proposition 3.2.3 the fact that P(A) is 2-stationary
implies P(A) is 1-stationary and so  is weakly Mahlo. Let C be a club subset of  and consider
the set T := {X 2 P(A) : 9↵ 2 C s.t. X \  ✓ ↵  |X|}.

- T is unbounded in P(A): Suppose Y 2 P(A). Let ↵ 2 C be such that Y \  ✓ ↵. Consider
e↵ := {� \{0} : � 2 ↵}, clearly e↵\ = {?}. Now Z := Y [{e↵} is such that Z \ = (Y [{e↵})\ =
(Y \ ) [ ({e↵} \ ) = Y \  ✓ ↵. Moreover ↵  |↵| = |e↵|  |Y [ e↵| = |Z|, whence Z 2 T . Hence,
for Y 2 P(A) there is Z 2 T such that Y ✓ Z.

- T is closed in P(A): Let {X� : � < µ} be an ascending sequence of elements of T . Notice that,
for each X� there is some ↵� such that X� \  ✓ ↵�  |X|. Consider ↵ := sup{↵� : � < µ}. As C

is closed, ↵ 2 C. Moreover, from X� \ ✓ ↵ for each � < µ, we get that (
S

�<µ
X�)\ ✓ sup{↵� :

� < µ} = ↵. Also from ↵�  |X� | for each � < µ, we get that ↵  sup{|X� | : � < µ} = | sup{X� :
� < µ}| = |

S
�<µ

X� |. This is, (
S

�<µ
X�) \  ✓ ↵  |

S
�<µ

X� |, so that
S

�<µ
X� 2 T .

Hence T is a club subset of P(A), and so it is 1-stationary (3.2.8,). Now, since P(A) is 2-stationary,
there are B 2 P(A) and µ regular such that

- µ✓B \  is a regular cardinal.

- T \ Pµ(B) is 1-stationary in Pµ(B).

But T \ Pµ(B) being 1-stationary in Pµ(B) implies Pµ(B) 1-stationary in Pµ(B) and so µ is
weakly Mahlo ( 3.2.4 ). Moreover, we claim that µ 2 C. To see that, we shall prove that C \ µ is
unbounded in µ < . As C is closed, that will imply µ 2 C.

- C \ µ is unbounded in µ : Let � < µ, then � 2 Pµ(B). So, there is X 2 T \ Pµ(B) such that
� ✓ X (and so � ✓ X \ ). As X 2 T , there is some ↵ 2 C such that X \  ✓ ↵  |X|. But then
� ✓ X \  ✓ ↵  |X| < µ. This is, ↵ 2 C \ µ and �  ↵.

Therefore µ 2 C \ E, whence E is stationary in . This shows  is 2-weakly Mahlo. ⇤

So we have that  being 2-weakly Mahlo is a necessary condition whenever P(�) is 2-stationary.
Is this also a sufficient condition? In other words, do we have an analogous of Theorem 3.2.6 ? The
fact of having a sufficient condition over  for P(A) to be 2-stationary, is equivalent to having a
sufficient condition over  to guarantee the existence of 2-stationary subsets of P(A). Recall that
in the case of , we get the existence of 1-stationary and 2-stationary sets respectively, jumping
from the condition cof() � !1 to the condition of  being simultaneous-reflecting. This suggests
that the condition of  being 2-weakly-Mahlo is too weak as a sufficient condition for 2-stationarity.
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In general, we are interested in the conditions we have to ask of  in order that P(�) reflects
m-stationary sets for all m < n. In fact, we would like to know the least such condition, as in
Theorem 3.2.6 . We will slowly approach this question by first considering what happens in P(),
and then with a general but probably too strong answer in the general case P(�).

Lemma 3.2.11. Let  be regular and let µ < . Then the formula 'n(S) : “S ✓ P() is
n-stationary in P()” is ⇧1

n
over hV,2, Si. Moreover, if B 2 P(), then '0

n
(T ) : “T ✓ Pµ(B) is

n-stationary in Pµ(B)” is a ⇧1
0 sentence over hV,2i, in the parameters T, µ,B.

Proof : First we will show that P() 2 V+1 \V and Pµ(B) 2 V. If X 2 P(), then X ✓ ↵

for some ↵ < . So we have rank(X)  rank(↵) < rank() = , this is X 2 {z : rank(z) < } = V,
whence P() ✓ V and so P() 2 V+1. Since  ✓ P(),  = rank()  rank(P()), and
this implies P() /2 V. Moreover, if B 2 S ✓ P() ✓ V, B 2 V↵ for some ↵ < . So that
P(B) 2 V↵+1 ✓ V, and so Pµ(B) 2 V.

Notice that X 2 P() if and only if hV,2i |=  (X) where  (X) : 9↵(OR(↵)^X ✓ ↵). So defined
 (X) is a ⇧1

0 formula. In fact,  (X) is a ⌃1 formula with X as a free variable.

We will now prove the lemma by simultaneous induction. Let n = 0. S ✓ P() is 0-stationary in
P() if and only if hV,2i |= '0(S) where

'0(S) : 8X ( (X) ! 9Y 2 S (X ✓ Y ) )

X is a first-order variable, because it ranges over elements of P() ✓ V. Thus '0(S) is first
order, i.e., ⇧1

0.

Given µ <  and B 2 P(), we have that T ✓ Pµ(B) is 0-startionary in Pµ(B) if and only if
hV,2i |= '

0
0(T, µ,B) where

'
0
0(T, µ,B) : 8X (X 2 Pµ(B) ! 9Y 2 T (X ✓ Y ) )

Since T ✓ Pµ(B) 2 V and X 2 Pµ(B) 2 V, '0
0(T ;µ,B) is a ⇧1 formula, and so it is ⇧1

0 in the
parameters T, µ,B.

For n = 1, S ✓ P() is 1-stationary in P() if and only if hV,2i |= '1(S) where

'1(S) : 8X �1(S,X)

�1(S,X) : (8Z(Z 2 X !  (Z)) ^ '0(S)) ! �1(S,X)

�1(S,X) : 9B9µ(B 2 S ^Reg(µ) ^ µ ✓ B ^ '0
0(X \ Pµ(B)))

X is a second order variable because its possible values are subsets of P(). Note that Z

ranges over elements of V (X 2 V+1 and Z 2 X implies Z 2 V). Then, as '0
0(X \ Pµ(B)) is

⇧1
0, so is �1(S,X). Together with the fact that  (Z) and '0(S) are also ⇧1

0, we get that '1(S) is ⇧1
1.

Given µ <  and B 2 P(), we have that T ✓ Pµ(B) is 1-stationary in Pµ(B) if and only if
hV,2i |= '

0
1(T ;µ,B) where

'
0
1(T ;µ,B) : 8X �

0
1(X,T ;µ,B)

�
0
1(T ;µ,B) : (X ✓ Pµ(B) ^ '0

0(X;µ,B)) ! �
0
1(T,X)

�
0
1(T,X) : 9B09µ0(B0 2 T ^Reg(µ0) ^ µ

0 ✓ B ^ '0
0(X \ Pµ0(B0);µ0

, B
0))

Here X is a first-order variable because its possible values are subsets of Pµ(B) 2 V, and
'
0
0(X;µ,B),'0

0(X \ Pµ0(B0);µ0
, B

0) are ⇧1 formulas. Then, �0
1(T,X) is a ⌃2 formula, whence

'
0
1(T ;µ,B) is a ⇧3 formula and so a ⇧1

0 formula .

Suppose now, that S ✓ P() is m-stationary in P() if and only if hV,2i |= 'm(S), where 'm(S)
is a ⇧1

m
formula for all m < n. Then 'm(S) is of the form 8Ym

1 9Ym
2 . . . QYm

m
�m(S,Ym

1 , . . . ,Ym
m
)
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where Q = 8 if m is odd, Q = 9 if m is even, Ym

j
= Y1, . . . , Ykj for j 2 {1, . . . , n} and

�m(S,Ym
1 , . . . ,Ym

m
) is a ⇧1

0 formula.

Let us prove the result for n. We have S ✓ P() is n-stationary in P() if and only if
hV,2i |= 'n(S) where

'n(S) : 'n�1(S) ^ 8X((8Z(Z 2 X !  (Z)) ^ 'n�1(S)) ! �n(S,X) )

From the inductive hypothesis, we know that 'n�1(S) is of the form 8 Yn�1
1 9 Yn�1

2 . . . Q Yn�1
n�1

�n�1(S,Y
n�1
1 , . . . ,Yn�1

n�1), and so we have that

8X((8Z(Z 2 X !  (Z)) ^ 'n�1(S)) ! �n(S,X) ) ⌘ 8X 9 Yn�1
1 8 Yn�1

2 · · ·

Q̄ Yn�1
n�1((8Z(Z 2 X !  (Z)) ^ �n�1(S,Y

n�1
1 , . . . ,Yn�1

n�1)) ! �n(S,X) )

where Q̄ = 8 if Q = 9 and Q̄ = 9 if Q = 8. And the first order formula

�n(S,X) : 9B9µ(B 2 S ^Reg(µ) ^ µ ✓ B ^ '0
n�1(X \ Pµ(B)))

Therefore, if (X1 := X,Y1
1, . . . ,Y

n�1
1 ), . . . , (Xi := Yi

i
, . . . ,Yn�1

i
,Yn�1

i�1 ), . . . , (Xn := Yn�1
n�1),

we may write 'n(S) in the following form

'n(S) ⌘ 8X1 9 X2 8 X3 . . . Q̄ Xn(�1(S,Y1) ^ �2(S,Y1,Y2) ^ · · · ^ �n�1(S,Y1, . . . ,Yn�1)

^ ((8Z(Z 2 X !  (Z)) ^ �n�1(S,Y1, . . . ,Yn�1)) ! �n(S,X)) )

Since �j(S,Y1, . . . ,Yi) and �n(S,X) are ⇧1
0 formulas for j 2 {1, . . . , n� 1}, we get that 'n(S)

is a ⇧1
n

formula.

Suppose now, that for µ <  and B 2 P(), T ✓ Pµ(B) is m-stationary in Pµ(B) if and only if
hV,2i |= '

0
m
(T, µ,B), where '0

m
(T, µ,B) is a ⇧1

0 formula for all m < n.

T ✓ Pµ(B) is n-stationary in Pµ(B) if and only if hV,2i |= '
0
n
(T, µ,B), where

'
0
n
(T, µ,B) : '0

n�1(T, µ,B) ^ 8X((X ✓ Pµ(B) ^ '0
n�1(X,µ,B)) ! �

0
n
(T,X) )

and where

�
0
n
(T,X) : 9B09µ0(B0 2 T ^Reg(µ0) ^ µ

0 ✓ B ^ '0
n�1(X \ Pµ0(B0);µ0

, B
0)).

Here, X is a first-order variable because its possible values are subsets of Pµ(B) 2 V, and
'
0
n�1(X \ Pµ(B), µ0

, B
0) and �

0
n
(T,X) are first-order formulas. Then '

0
n
(T, µ,B) is a first-order

formula and so it is ⇧1
0. ⇤

Theorem 3.2.12. Let n < !. If  is ⇧1
n

indescribable, then P() is n+ 1 stationary.

Proof : Suppose  is ⇧1
n

indescribable. Let S ✓ P() be m-stationary, some m < n + 1.
Consider the ⇧1

m
sentence in hV,2, Si. Then, we have

hV,2, Si |= 'm(S)

As  is ⇧1
n

indescribable and m  n, there is some µ <  such that

hVµ,2, S \ Vµi |= 'm(S \ Vµ).

Now, note that P() \ Vµ = Pµ(µ). For if X 2 P() \ Vµ then X ✓  \ Vµ = µ. Also |X| < µ,
otherwise rank(X) = µ and so X /2 Vµ. Hence X 2 Pµ(µ).

Thus, since S = S \P(), we have that S \ Vµ = S \P()\ Vµ = S \Pµ(µ). Therefore, we have
hVµ,2, S \ Pµ(µ)i |= 'm(S \ Pµ(µ)), and so S \ Pµ(µ) is m-stationary in Pµ(µ). ⇤
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Remark. Notice that Lemma 3.2.11 is also valid when considering Definition 3.2.1. To do this, in
every formula we used, we should; quit µ as a parameter and replace the condition “µ ✓ B” by the
condition “µ = B \On (= B \ )”. It is straightforward to check that everything else still works
after doing this. Therefore, Theorem 3.2.12 is also true for definition 3.2.1.

Corollary. If  is totally indescribable, then P() is n-stationary for any n 2 N.

Now,  is ⇧1
1-indescribable if and only if it is weakly compact (See [14]). Then, if  is weakly

compact, P() is 2-stationary.

Lemma 3.2.13. Let f be an isomorphism between P(�) and P(�), then, S ✓ P(�) is m-
stationary in P(�) if and only if f [S] is m-stationary in P(�).

Theorem 3.2.14. If  is �-supercompact and �< = � then P(�) is n-stationary for any n 2 N.

Proof : Let n < ! and take S ✓ P(�) be m-stationary for a given m < n. Suppose that 
is �-supercompact, this is, there is an elementary embedding j : V � M such that crit(j) = ,
� < j() and �

M ✓ M , where M is transitive.

Recall that j“x = {j(y) : y 2 x}, we claim that j“↵ 2 M , for all ↵  �. We prove
this by induction on OR, j“0 = 0 2 M because j| = Id|. If j“↵ 2 M for ↵ < �, then
j“(↵ + 1) = j“↵ [ {j(↵)} 2 M . And if ↵  � limit and j“� 2 M for all � < ↵ then
j“↵ = {j“� : � < ↵} which is a sequence of ↵  � elements of M , whence j“↵ 2�

M ✓ M .

Since j �= Id �, we have that, j“ = {j(↵) : ↵ < } = {↵ : ↵ < } =  2 M . Then, it follows
that Pj“(j“�) = P(j“�) ✓ M . Moreover, as |j“�| = |�|, then |P(j“�)| = |j“�|< = �

< = �,
and so P(j“�) 2 M . Now, notice that there is an isomorphism f between P(�) and P(j00�)
given by X 7! j

00
X.

By hypothesis, we have that S ✓ P(�) is m-stationary in P(�), so applying Lemma 3.2.13 we get
that, f [S] = j“S ✓ P(j“�) is m-stationary in P(j“�). Therefore, as j

00
S ✓ j(S) we have that

V |= “ j(S) \ P(j“�) is m-stationary in P(j“�) ”

Since P(j“�) 2 M , we have that P(P(j“�)) ✓ M . So, since being m-stationary depends only
on the subsets of P(j“�).

M |= “ j(S) \ P(j“�) is m-stationary in P(j“�) ”.

In M we have that  is regular and such that  < j(). If we define B := j“�, then  = j“ ✓
j“� = B, and so  ✓ B \ j(). In fact  = B \ j() because if ↵ 2 (B \ j()) \ , then ↵ = j(�)
for some  < � < � and ↵ < j(), but  < � implies j() < j(�) = ↵, and this is a contradiction.
Besides, as |j“�| = � < j(), we have that B 2 Pj()(j(�)). Hence the following holds, witnessed
by µ =  and B = j“�

M |= 9µ, 9B( Reg(µ)^B 2 Pj()(j(�))^µ = B\j()^“j(S)\Pµ(B) is m-stationary in Pµ(B)” ).

As j is an elementary embedding we get that

V |= 9µ, 9B( Reg(µ) ^B 2 Pj�1(j())(j
�1(j(�))) ^ µ = B \ j

�1(j()) ^

“j�1(j(S)) \ Pµ(B) is m-stationary in Pµ(B)” ).

and since j
�1(j()) = , j�1(j(�)) = � and j

�1(j(S)) = S,

V |= 9µ, 9B( Reg(µ) ^B 2 P(�) ^ µ = B \  ^ “S \ Pµ(B) is m-stationary in Pµ(B)” ).

This is, for each m < n if S ✓ P(�) is m-stationary, there is B 2 P(�) and µ <  regular such
that
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- µ ✓ B \ .

- S \ Pµ(B) is m-stationary in Pµ(B)

and this is precisely to say that P(�) is n-stationary. ⇤

Remark. Notice that in the previous proof the B we obtained is such that µ = B \ . Then, the
theorem 3.2.14 also holds when considering the original definition of Sakai 3.2.1.

3.3 The ideal of non-n-stationary subsets of P(�).

In the previous chapter we reviewed how in [12] Bagaria defined an increasing sequence of
topologies on � in such a way that the non-discreteness of each topology ⌧⇠ corresponds to the
existence of a ⇠ simultaneously reflecting cardinal (See Theorem 2.3.15). Each one of the topologies
defined in 2.3.1 depends on an operator d⇠ acting on subsets of �, which take the limit points of
each set in each topology. Defining an analogous sequence of topologies in P(A) is however not
that immediate, and the main obstacle is precisely to determine which points from P(A) will we
consider as the limit points.

In [12], Bagaria obtained a characterisation of limit points in ⌧⇠ in terms of the points where a
given set is ⇠-s-stationarity (See Proposition 2.3.7), which for the case ⇠ 2 {1, 0} is equivalent to
⇠-stationarity. And by Proposition 2.3.8, when � is ⇠ + 1-s-stationary this characterisation extends
to the points in which a given set ⇠-s-reflect. These suggest a possible way of defining the operator
dn and so the adequate topologies in P(A).

Definition 3.3.1. We say that an n-stationary subset X ✓ P(A) n-reflects at B 2 P(A) iff
there is µ <  regular such that µ ✓ B \  and X \ Pµ(B) is n-stationary in Pµ(B).

Remark. We also may perform a similar definition, asking the stronger condition “µ = B \  and
X \ Pµ(B) is n-stationary in Pµ(B)”, instead of, “there is µ <  regular such that µ ✓ B \  and
X \ Pµ(B) is n-stationary in Pµ(B)”. So it is convenient to bear in mind that the results and
definitions in these chapter can also be done with Definition 3.2.1.

Notice that if  is weakly Mahlo, then every unbounded subset T of P(A) 0-reflects to some
element of P(A). More in general, if P(A) is n-stationary, then every m-stationary subset S of
P(A) for m < n, m-reflects to some B 2 P(A).

Definition 3.3.2. Let P(A) be n-stationary. Given an m-stationary subset S ✓ P(A) with
m < n, let

dm(S) := {X 2 P(A) : S m-reflects at X}.

This definition, gives an example of a nontrivial n-stationary subset of P(A). More precisely, we
have that

Proposition 3.3.3. Suppose that P(A) is n-stationary, then dm(P(A)) is an n-stationary proper
subset of P(A).

Proof : To see that dm(P(A)) 6= P(A), it is enough to take X 2 P(A) such that X \  < !.
Now, let S be m-stationary for some m < n. As P(A) is n-stationary, there is B 2 P(A) and
µ <  regular such that µ ✓ B \  and S \ Pµ(B) is m-stationary in Pµ(B). But this is exactly to
say that S m-reflects to B, and so B 2 dm(P(A)). ⇤

Proposition 3.3.4. Let S be an n-stationary subset of P(A) and let m < n, then dn(S) ✓ dm(S).

Proof: Follows immediately from the definition 3.3.2. ⇤

Definition 3.3.5. Let NS
n

,A
be the set of non n-stationary subsets of P(A) , this is NS

n

,A
:=

{S ✓ P(A) : S is not n-stationary in P(A)}. Moreover let Fn

,A
:= {P(A) \X : X 2 NS

n

,A
}.
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Notice that whenever NS
n

,A
is an ideal Fn

,A
is in fact the dual filter associated to NS

n

,A
, this

is F
n

,A
:= (NS

n

,A
)⇤.

Proposition 3.3.6. Let P(A) be n-stationary and let X 2 P(A). Then X 2 F
n

,A
if and only if

there is TX ✓ P(�) m-stationary for some m < n such that dm(TX) ✓ X.

Proof : ()) Let X 2 F
n

,A
. Then X = P(A) \ Y for some Y 2 NS

n

,A
. Since Y is not

n-stationary, there is TX ✓ P() m-stationary with m < n such that, for all B 2 Y and all
µ ✓ B \  regular, TX \ Pµ(B) is not m-stationary in Pµ(B) (*).

We claim that dm(TX) ✓ X. To see this it is enough to prove that dm(TX) \ Y = ?. Towards a
contradiction, suppose that W 2 dm(TX) \ Y . Then, W 2 Y and TX m-reflects at W . This is,
W 2 Y and there is µ <  regular such that µ ✓ W \ and TX \Pµ(W ) is m-stationary in Pµ(W ),
but this is a contradiction to (*).

(() Suppose that X 2 P(A) is such that there is TX ✓ P(�) m-stationary for some m < n

such that dm(TX) ✓ X. Let us consider Y := P(A) \X. We shall prove that Y 2 NS
n

,�
. By

contradiction, suppose Y is n-stationary. Then, for the m-stationary set TX ✓ P(A), there is
B 2 Y and µ ✓ B \ such that TX \Pµ(B)is m-stationary in Pµ(B). From the latter, we conclude
that B 2 dm(TX) ✓ X. But B is also an element of Y , this is B 2 P(�) \X, contradicting the
fact that B 2 X. ⇤

From 3.3.6, we conclude that in analogy with the case h, zi (Proposition 2.3.13), whenever P(A)
is n-stationary,

F
n

,A
= {X ✓ P(A) : 9TX ✓ P(�) m-stationary for some m < n, such that dm(TX) ✓ X}.

Notice that if S is an m-stationary subset of P(A) for m < n, then dm(S) 2 F
n

,A
.

Lemma 3.3.7. If T1, T2 are both not unbounded subsets of P(A), then T1 [ T2 is not unbounded
either.

Proof : Suppose Ti ✓ P(A) is not unbounded for i 2 {1, 2}, then, there is Xi 2 P(A) such
that for all Y 2 Ti, Xi 6✓ Y . Towards a contradiction, suppose that T1 [ T2 is unbounded in P(A).
Then, there is Y1 2 T1 [ T2 such that X1 ✓ Y1. Notice that Y1 /2 T1. Also, there is Y2 2 T1 [ T2

such that Y1 [X2 ✓ Y2. Then X1 ✓ Y1 [X2 ✓ Y2. So, if Y2 2 T1 then X1 ✓ Y2 contradicts that
for all Y 2 T1, X1 6✓ Y . Similarly if Y2 2 T2 then X2 ✓ Y2 contradicts that for all Y 2 T2, X2 6✓ Y .
Hence Y2 /2 T1 [ T2, which is a contradiction. ⇤

Proposition 3.3.8. If P(A) has the property that for all T1, T2 m
⇤-stationary, there is some T

m-stationary such that dm(T ) ✓ dm⇤(T1) \ dm⇤(T2), where m  m
⇤. Then, the set NS

n

,A
is an

ideal over P(A). Moreover P(A) is n-stationary if and only if NS
n

,A
is a proper ideal.

Proof : To prove that NS
n

,A
is an ideal we need to show; (i) ? 2 NS

n

,A
, (ii) X1, X2 2 NS

n

,A

implies X1 [X2 2 NS
n

,A
and (iii) X 2 NS

n

,A
and Y ✓ X then Y 2 NS

n

,A
. We will proceed by

induction on n:

(i) Suppose ? is n-stationary in P(A), then for the unbounded set P(A) it must exist some
element B 2 ? witnessing the requirements of the definition. However, B 2 ? is a contradiction.
Hence ? 2 NS

n

,A
.

(iii) Let X 2 NS
n

,A
and let Y 2 P(A) such that Y ✓ X. If Y is n-stationary in P(A), then X is

n-stationary in P(A), which is a contradiction, hence Y 2 NS
n

,A
.

⇤ (ii) The case n = 0 is precisely Lemma 3.3.7. Suppose that we have the result for all m < n,
and let X1, X2 2 NS

n

,A
. Then P(A) \X1,P(A) \X2 2 F

n

,A
, by Proposition 3.3.6, there are TX1

m1-stationary and TX2 m2-stationary with m1,m2 < n, such that dm1(TX1) ✓ P(A) \ X1 and
dm2(TX2) ✓ P(A)\X2. But dm1(TX1)\dm2(TX2) ✓ (P(A)\X1)\(P(A)\X2) = P(A)\(X1[X2).
And using 3.3.4 we get that dm⇤(TX1)\dm⇤(TX2) ✓ P(A)\(X1[X2). Now, applying the hypothesis
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we get that there is m  m
⇤
< n and T m-stationary such that dm(T ) ✓ dm⇤(TX1)\ dm⇤(TX2) but

this implies that dm(T ) ✓ P(A) \ (X1 [X2). By 3.3.6, we conclude that P(A) \ (X1 [X2) 2 F
n

,A

and so X1 [X2 2 NS
n

,A
.

Finally, suppose that P(A) is n-stationary , then P(A) /2 NS
n

,A
and so NS

n

,A
is non-trivial. ⇤

Proposition 3.3.9. The ideal of non-1-stationary subsets of P(A) is contained in the ideal of
non-stationary subsets of P(A). This is, NS,A ✓ NS

1
,A

.

Proof : Let X 2 NS,A, this is, X is not stationary in P(A). By contraposition of Proposition
3.2.9 we have that X is not 1-stationary in P(A), then X 2 NS

1
,A

. ⇤

Following proposition shows us that our definition of n-stationarity (3.2.5) does in fact correspond
to the common notion of stationarity with respect to a filter, in this case F

n

,A
.

Proposition 3.3.10. Let P(A) be n-stationary. Then S ✓ P(A) is n-stationary if and only if S
is F

n

,A
-stationary.

Proof : ()) Let S be n-stationary in P(�), and let X 2 F
n

,A
, this is, X is such that there is

TX ✓ P(�) m-stationary for some m < n such that dm(TX) ✓ X. Since S is n-stationary, for TX

there are B 2 S and µ ✓ B \  regular such that TX \ Pµ(B) is m-sationary in Pµ(B), whence
B 2 dm(S). Therefore B 2 S \ dm(S) ✓ S \X.

(() Suppose that S is F
n

,A
-stationary, and take T ✓ P(A) to be m-stationary for some m < n.

Recall that dm(T ) 2 F
n

,A
. Then, S \ dm(T ) 6= ?. Thus, there is B 2 S and µ ✓ B \  such that

T \ Pµ(B) is m-sationary in Pµ(B). Therefore S is n-stationary. ⇤

Recall that any filter is closed under finite intersections and arbitrary unions, therefore, when added
the empty set, any filter constitutes a topology. So we have now a way of defining topologies in
P(A) which is directly linked with the n-stationarity of P(A).

Definition 3.3.11. For each n < ! we define in P(A) the following topology ⌧n := F
n

,A
[ {?}.

Proposition 3.3.12. Let P(A) be n-stationary. If X /2 dm(P(A)) for no m < n, then, X is a
limit point in the topology ⌧n.

Proof : Suppose that P(A) is n-stationary, and X /2 dm(P(A)) for all m < n. We claim that
P(A) \ {X} is n-stationary in P(A). Let T be m-stationary in P(A) for some m < n, as P(A)
is n-stationary, T m-reflects to some B, this is B 2 dm(P(A)). But X /2 dm(P(A)), then B 6= X.
Then B 2 P(A) \ {X}. This is, for every m < n, T m-reflects to some point of P(A) \ {X}.
Hence P(A) \ {X} is n-stationary in P(A).

Therefore, P(A) \ {X} /2 NS
n

,A
and so {X} /2 F

n

,A
. Whence {X} /2 ⌧n, this is, X is not an

isolated point of ⌧n. That is equivalent to say that X is a limit point of P(A) of ⌧n. ⇤

3.4 ⇧1
n
-indescribability in P(�)

In his article “Derived Topologies on Ordinals and Stationary Reflection” [12], Bagaria proved
that in the constructible universe L, a regular cardinal in ⇠ + 1-simultaneusly-reflecting if and only
if it is ⇧1

⇠
-indescribable. Baumgartner in [23] defined a generalized notion of ⇧1

n
-indescribability in

P(A). In this section we will study how this notion is related w ith the notion of n-stationarity
3.2.5.

For a regular cardinal  and a set A ◆  we define V↵(, A) by induction on ↵ as follows

- V0(, A) := A,

- V↵+1(, A) := P(V↵(, A)) [ V↵(, A),
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- V↵(, A) :=
S

�<↵
V�(, A) for a limit ↵.

Definition 3.4.1. (Baumgartner) Suppose  is a regular cardinal , A ◆  and n < !. A set
S ✓ P(A) is ⇧1

n
-indescribable in P(A) if for all P ✓ V(, A) and all ⇧1

n
-sentence ' with

hV(, A),2, P i |= ', there is B 2 S such that B \  = µ and hVµ(µ,A),2, P \ Vµ(µ,A)i |= '

where µ := |B \ |.

In its presentation “On generalized notion of higher stationarity” [13], Sakai stated the following
proposition due to Donna Carr and Yoshihiro Abe.

Proposition 3.4.2. ([13]). P(2�
<

) is ⇧1
1-indescribable implies that  is �-supercompact.

Although we shall not get into the details of the proof, we will sketch how it is obtained from
the results in [17; 18; 24]. First, we need to define a very useful a combinatoric concept introduced
in [18] and inspired in works from Shelah and Carr [18; 19].

Definition 3.4.3. We say that S ✓ P(�) is Shelah if for every hfX : X ! X : X 2 P(�)i there
is f : �! � such that for every Y 2 P(�) the set {X 2 S \ {Z 2 P(�) : Y ( Z} : f �Y = fX � Y }
is unbounded in P(�). We say that  is �-Shelah if P(�) is Shelah.

Theorem 3.4.4. (Carr [18]). If  is 2�
<

-Shelah, then  is �-supercompact.

Theorem 3.4.5. (Carr [17]). If X ✓ P(�) is ⇧1
1-indescribable, then X is Shelah.

Then, if we have that P(2�
<

) is ⇧1
1-indescribable, then P(2�

<

) is Shelah. But by definition
3.4.3 this means that  is 2�

<

-Shelah. Then by 3.4.4 we get that  is �-supercompact.

Proposition 3.4.6. ([13]). If  is �-supercompact, then P(�) is ⇧1
n
-indescribable for all n 2 !.

Proposition 3.4.7. ([13]). If S is ⇧1
n
-indescribable in P(�), then S is n+ 1-stationary in P(�).
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Chapter 4

Conclusions and open questions

The present chapter is devoted to present the results obtained on this work, as well as the
questions that arise and that remains still unsolved to us.

We defined in P(A) two different notions of n-stationarity 3.2.1 and 3.2.5. Being 3.2.5 weaker than
3.2.1. Definition 3.2.1 was first proposed by Sakai et al. in [13], and it corresponds to the idea of
n-satationarity in h, <i in the following way :

1. S ✓ P(A) being n-stationary implies S is m-stationary for all m < n. See 2.2.2 and 3.2.3.

2. (Stated in [13]) The existence of 1-stationary subsets on P(A) demands a condition on ,
namely  weakly Mahlo 3.2.4. In h, <i we required  to have uncountable cofinality.

3. Being 1-stationary in P(A) is at least a stronger condition than being stationary in P(A).
See 2.1.2 and 3.2.9.

4. (Stated in [13]) The set formed by the n-stationary subsets of P(A) constitutes an ideal on
P(A). See 2.3.15 and 3.3.8.

5. For each n < !, there is an operator dn acting on subsets of P(A), taking out the points in
which some given set n-reflects. See 2.3.8 and 3.3.2.

6. There is a characterisation of the dual filter Fn

,A
in terms of the operators dm for m < n. See

2.3.13 and 3.3.6.

7. Under certain condition on P(A), we have that P(A) is n-stationary if and only if NS
n

,A

is a proper ideal and so if and only if Fn

,A
is a proper filter. See 2.3.15 and 3.3.8.

8. n-stationarity in P(A) is in fact stationarity with respect to a filter, namely F
n

,A
. See 2.3.14

and 3.3.10.

9. There is a natural ascending sequence of topologies h⌧n : n < !i in P(A) each of them
generated by the previous one and the operator dn. See 2.3.1 and 3.3.11.

10. (Stated in [13]) If S is ⇧1
n
-indescribable in P(�), then S is n+ 1-stationary in P(�). See

2.4.3 and 3.4.7.

However there are still some crucial questions concerning to this correspondence we still don’t have
the answer

Q.1. Is there a least condition to guarantee the existence of 1-stationary subsets on P(A). In
h, <i,  having uncountable cofinality was also sufficient.

Q.2. If C ✓ P(A) is a club subset of P(A), then, is C a 1-stationary subset of P(A)? Under
which conditions on  is this the answer affirmative? (See 2.2.4).
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Q.3. More in general, if C ✓ P(A) is a club subset of P(A), is then C an n-stationary subset of
P(A) for all n < !? Under which conditions on  is the answer affirmative? (See 2.2.4).

Q.4. Is 1-stationarity equivalent to stationarity in P(A), in other word does the converse of 3.2.9
hold? (See 3.2.9).

Q.5. Does the existence of 2-stationary subsets on P(A) demand some stronger condition on 

than in the case of 1-stationarity? (See Remark 1.)

Q.6. Given m < n and S ✓ P(A) n-stationary, is the set dm(S) closed? (See 2.3.2).

Q.7. How does discreteness of ⌧n in P(A) relate with reflection of n-stationary sets in P(A)?
(See 2.3.9).

Q.8. Does the converse of (11) holds in the constructible universe L? This is, if V = L, does
n+ 1-stationarity of S implies S is ⇧1

n
-indescribable? (See 2.3.9).

We defined a weaker version of n-stationarity (Definition 3.2.5). We in fact developed (3) to (11)
using 3.2.5 and just observing they remain true with 3.2.1. However, there are some answers to our
previous questions we could only solve with 3.2.5, namely

11. (Answer to Q.1.) If  weakly Mahlo, then P(A) is 1-stationary in P(A). (See 3.2.6).

12. (Answer to Q.2.) C ✓ P(A) being club implies C is 1-stationary, whenever  is weakly
Mahlo. (See 3.2.8).

13. (Answer to Q.5.) If there is a 2-stationary subset of P(A), then  is 2-weakly Mahlo. (See
3.2.10).

In correspondence with results in [12] we worked with both definitions. New interesting questions
arose. Inspired by the result we obtained in 3.2.6, we wonder what is the least condition we need
on  in order to guarantee the existence of n-stationary subsets. We found two partial answers that
work for both 3.2.1 and 3.2.5.

14. If  is ⇧1
n

indescribable, then P() is n+ 1 stationary. (See 3.2.12).

15. If  is �-supercompact and �< = � then P(�) is n-stationary for any n < !. (See 3.2.14).

Clearly, (14) provides a stronger answer than (15), however it refers to the particular case  = �.
In (15) we have a much general answer, and if it is the case that the converse also holds it would
give the exact consistency strength of n-stationarity in P(A).

Concerning the relation between indescribability and hyperstationary reflection in P(A), we stated
the following result, which is a consequence of works done by Carr ([17; 18]).

16. P(2�
<

) is ⇧1
1-indescribable implies that  is �-supercompact. (See 3.4.2).

Also, with respect to indescribability in P(A) we pointed out a pair of propositions stated by Sakai
in [12].

17. If  is �-supercompact, then P(�) is ⇧1
n
-indescribable for all n 2 !. (See 3.4.6).

18. If S is ⇧1
n
-indescribable in P(�), then S is n+ 1-stationary in P(�). (See 3.4.7).

We expect that further work in these topic will elucidate the answer to questions Q.2. to Q.4 and
Q.6. to Q.8. It should also make clear if it is 3.2.1 or 3.2.5, the right notion of n-stationarity that
corresponds to a natural sequence of topologies in P(A) as in [12]. That is, in a way such that
isolated points correspond exactly to points in which the entire set ⇠-reflects.
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Furthermore, work in this direction should also approach to following open questions proposed by
Sakai et. al. in [12]

• Is P(�) n-stationary for all n < ! assuming  is �-strongly compact?

• Is the following jointly consistent?

– For all regular , all � � , all S ✓ P(�), and all n < !, S is ⇧1
n
-indescribable iff S is

n+ 1-stationary in P(�).
– There is a supercompact cardinal

• For n � 3, is it consistent that there is a cardinal   2! such that P(�) is n-stationary for
all � � ?.
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