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Abstract: Heusler alloys are promising ferromagnets to develop next generation digital memories
and other electronic devices, with Co2FeSi being one of the most interesting. This report describes
the measurement of several magnetic properties of a thin film of this alloy, such as saturation
magnetization, anisotropy field and Gilbert damping parameter, using the Ferromagnetic Resonance
(FMR) technique.

I. INTRODUCTION

Digital technology is based on the processing of binary
information by switching devices, like MOSFET or bipo-
lar transistors, connected in a circuit. The binary data
(‘0’ and ‘1’) are materialized by the presence or absence
of electrical charge stored in the circuit capacitances. Al-
ternatively, the spintronics approach consists in using the
intrinsic feature of the electron spin to have two possi-
ble values to replace the charge-based digital technology
by a spin-based digital technology in the implementation
of processing and storage functions. The latter presents
certain advantages over the former, such as greater in-
tegration density, better processing speed, non-volatility
or less power consumption [1].

Heusler alloys are promising materials for spintronic
devices [2], such as spin transistors, magnetic RAMs or
reading heads for hard disks, because of their good mag-
netoresistance characteristics. Among Co-based Heusler
alloys, Co2FeSi have attracted much interest due to
its small Gilbert damping parameter and its compat-
ibility with conventional fabrication processes in the
semiconductor-based microelectronics industry [3].

The main technique to study the magnetic properties
of such materials is Ferromagnetic Resonance (FMR).
This technique consists to expose the samples to a static

magnetic field B⃗. Under the action of this field, the ele-
mentary magnetic moments of the material (spins) start

to oscillate, precessing around the axis defined by B⃗ with
the so called Larmor frequency fL = (γ/2π)B, where γ is
a constant (gyromagnetic ratio) coupling the angular and
magnetic moments of the oscillating spin. Unavoidable
damping mechanisms extract energy from the oscillation
and reduce the precession amplitude with time. There-
fore, after a short time, the spins become aligned parallel
to the external applied field and the magnetization of the
material is completed. However, if a time periodic small

magnetic field perpendicular to B⃗ is applied and its fre-
quency coincides with the precession frequency (that is,
at the resonant frequency), it supplies the energy lost due
to damping and the spin precession remains indefinitely.
In this way, by analyzing the energy absorbed by the ma-

terial as a function of frequency and B⃗, it is possible to
measure many of its magnetic characteristics. This is the

purpose of this report for the Heusler alloy Co2FeSi.
It is divided in the following Sections: next Section is

devoted to describe FMR with some detail. Section III
shows the experimental setup and results, and Section IV
discuss the findings of the work and extract conclusions.

II. FERROMAGNETIC RESONANCE

A. Free resonance

The magnetic moment µ⃗ of a charged microscopic par-

ticle is related with its total angular moment J⃗ by the

expression µ⃗ = −gµB J⃗ , where g is the Landé g−factor
and µB is the Bohr magneton. If µ⃗ is not aligned with

an external field B⃗ = µ0H⃗ (where µ0 is the permeability

of free space), a torque given by T⃗ = µ⃗ × B⃗ applies to
the particle. Because of the coupling between magnetic

moment, µ⃗, and angular moment, ℏJ⃗ , the latter changes

at a rate ℏdJ⃗/dt = T⃗ . Then, by combining all these
equations we obtain

dµ⃗

dt
= −γµ⃗× B⃗, γ =

gµB

ℏ
(1)

Now, by defining the magnetization vector, M⃗ , as the
magnetic moment per unit volume and using the relation

B⃗ = µ0(H⃗ + M⃗), equation (1) can be written as

dM⃗

dt
= −γµ0M⃗ × H⃗ (2)

If M⃗ does not have the same direction as H⃗, equation

(2) shows that M⃗ precesses about H⃗ at a constant an-
gle with a motion similar to that a gyroscope precessing

under the influence of gravity. If H⃗ = (0, 0, Hz), then

M⃗ = (mx,my,mz) where mx,my ≪ mz ≈ |M⃗ |. The
precession frequency is given by

f0 = (γ/2π)µ0H (3)

However, this free precession analysis neglects losses. In
reality, magnetic damping is always present and the pre-
cession amplitude decreases with time. The magnetiza-

tion falls in a spiral to the H⃗ direction until it reaches
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the equilibrium after a certain time period that depends
on the material magnetic properties.

The previous analysis is valid for the so called uniform
mode (with wavenumber k = 0) where all elementary
moments inside the material are parallel and precess to-
gether in phase [4].

B. Driven and damped resonance

Consider now applying a small time harmonic in-plane

magnetic field b⃗ with frequency f , perpendicular to the

static field B⃗ = µ0H⃗, with time dependence proportional

to exp (−i2πft) (see Fig. 1). If B⃗ = µ0(0, 0, Hz) and

b⃗ = µ0(hx, 0, 0), the transverse amplitudes of the result-
ing magnetization mx,my, increase when the applied fre-
quency f approximates the precession frequency f0. This

increase is at the expense of the energy supplied by b⃗,
thus indicating that some energy of this field is being
absorbed by the material. In absence of damping, the
absorption becomes infinite at f = f0; that is, a strong
resonant peak of absorption appears. In practice, the

amplitude increase of mx,my due to the field b⃗ compen-
sates for losses, and the resonant peak has a finite height
when f = f0.

The dynamics of the described process is well repre-
sented by the Landau-Lifshitz-Gilbert (LLG) equation:

dM⃗

dt
= −γµ0M⃗ × H⃗eff +

α

M
M⃗ × dM⃗

dt
(4)

where the first term on the right side is the same as equa-

tion (2), with H⃗eff being the total effective field acting
on the magnetization produced by all the spin interac-
tions, and the second term being a phenomenological ex-
pression to consider a viscous damping controlled by the
dimensionless Gilbert damping parameter α.

As said above, H⃗eff is the sum of multiple interactions,
like demagnetizing field or anisotropy field, in addition to

the external applied field H⃗. Thus, equation (3) must be
modified to take into account these extra interactions.
For thin films and external field B⃗ = µ0(0, 0, Hz) parallel
to the sample plane (see Fig. 1), it transforms into the
following Kittel equation [4]:

f0 = (γ/2π)µ0

√
(H +Hk)(H +Hk +M) (5)

where H = Hz is the external field and Hk and M≈ Ms

(Ms is the saturation magnetization of the material) are
the contributions of the anisotropy and demagnetizing
fields, respectively. If these contributions are negligible,
equation (5) reduces to equation (3).

Additionally, parameter α is correlated with the half
linewidth ∆B of the resonant peak according to the fol-
lowing expression [5] :

∆B = (4πα/γ)f0 +∆B0 (6)

where the frequency independent second term on the
right side arises from the presence of magnetic inhomo-
geneities in the sample. This linear relationship between
linewidth and resonant frequency is what is expected if
only the viscous damping mechanism described by the
LLG equation exists.
Equations (5) and (6) enable f0 and α of a ferro-

magnetic material such as Co2FeSi to be experimentally
known.
If instead of being parallel, B⃗ is perpendicular to the

sample plane, then the Kittel equation (5) changes to

f0 = (γ/2π)µ0(H −M) (7)

where the linear dependence of f0 on H is valid if
M≈ Ms [4].

III. EXPERIMENTAL SETUP AND RESULTS

A. Experimental FMR setup

To perform the FMR experiment it is necessary to con-

trol the intensity of the external static field B⃗, and the

frequency f and intensity of the driven magnetic field b⃗.
Fig. 1 shows a sketch of the required equipment.

FIG. 1: Sketch of experimental setup. TL: transmission line,
VNA: Vector Network Analyzer, |S21|= power received at
port2 divided by power send by port 1.

A 21 nm thick rectangular monocrystaline Co2FeSi
film (sample) grown on a GaAs substrate, is placed
on top of a transmission line (TL) parallel to the xz
plane. The sample is immersed in a static magnetic

field B⃗ = µ0(0, 0, Hz) generated by an electromagnet.
A power supply (not shown in Fig. 1) supplies the re-
quired current to electromagnet. Ports 1 and 2 of a Vec-
tor Network Analyzer (VNA) are connected to the left
and right ends of the TL, respectively. The VNA sup-
plies microwave power at a given frequency through port
1, P1(f), and receives the power arriving at port 2, P2(f).
In this way the sample is also exposed to the small RF

Treball de Fi de Grau 2 Barcelona, January 2022



Ferromagnetic resonance in a thin film of Heusler alloy Co2FeSi Josep Rius Vázquez

magnetic field b⃗ = µ0(hx, 0, 0) perpendicular to B⃗. Ra-
tio |S21|(f) = |P2(f)/P1(f)| is measured by the VNA,
normalized (and identified as ∆S21) and registered. The
power supply and the VNA itself are controlled by a PC
through a LabView program to sweep B and frequency
f in the desired ranges.

B. Results

In our experiments f is swept in two ranges: 0.1-15
GHz and 20.1-23 GHz. The field intensity of B is swept

in the range ±0.5 T and the b⃗ power is fixed to 0 dBm.
The measurements were made with two orientations

for the long edge of sample, i.e. parallel to the z axis
(expressed as 0 degrees in this report) and at 45 degrees
from this axis. Both orientations correspond to symme-
try planes of the sample. Fig. 2 shows the results as a
projection of ∆S21 (codified in color) on the B-f plane
for sample orientations 00 (Fig. 2a) and 450 (Fig. 2b).

A third measurement was made by applying B⃗ perpen-
dicular to the sample plane (Fig. 2c). In this case, the
B intensity is swept from 1.0 to 1.8 T and f was in the
range 1-15 GHz.

C. Extracting the field at resonance, B0

The following step involved extracting the value of the
field at resonance, B0, at each of the about 180 frequen-
cies of the graphs in Fig. 2 from the raw results. This
was achieved by writing a MATLAB script that fits ∆S21

vs. B with an analytic function (a Lorentzian plus its
derivative) at each frequency, as shown in red lines in
the example insets of Fig. 2. From the fitting, it is pos-
sible to find the field of the resonant peak, B0, at each
frequency. The results are shown in Fig. 3 for both sam-

ple orientations, 00, 450, and for B⃗ perpendicular to the
sample plane.

The good agreement between equation (5) (dashed
lines in Fig. 3) and the experimental points, which allow
the anisotropy field µ0Hk and saturation magnetization
µ0Ms values of the sample to be calculated. These values
are shown in Table I.

µ0Hk [mT] µ0Ms [T]

00 5.6±0.4 1.49±0.01

450 3.96±0.06 1.457±0.001

TABLE I: Co2FeSi anisotropy field and saturation magneti-
zation for 00 and 450 sample orientations.

For the case of B⃗ perpendicular to the sample plane,
B0 values are given in Fig. 3c, and Table II shows the
µ0Hk and µ0Ms fitted values extracted from the fitting
line of Fig. 3c in the high frequency range (f > 9 GHz),
where M ≈ Ms.

FIG. 2: Lines of FMR for sample orientation at (a): 00, (b):

450 (see text), and (c): B⃗ perpendicular to sample plane.
Insets show examples of absorption peak profiles at 10 GHz
(in blue, experimental points, in red, fitting line).

µ0Hk [mT] µ0Ms [T]

139.7±0.4 1.48±0.02

TABLE II: Anisotropy field and saturation magnetization for
B⃗ perpendicular to the sample plane.

As can be seen in Fig. 3a, for 00, two very close reso-
nance peaks not present at the 450 orientation appear for
f in the range of 13 to 15 GHz. This can be the result of

inhomogeneities of the RF field b⃗ inside the sample excit-
ing non-uniform modes of precession with wavenumbers
k > 0 [6], [9].
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FIG. 3: Fields and frequencies of resonance peaks for sample
orientations 00, (a), 450, (b) and field B⃗ perpendicular to the
sample, (c). The error bars are too small to be seen at this
scale. Dashed lines are obtained by fitting from equation (5)
and (7).

D. Extracting line width ∆B at resonance

The fitting of S21 as a function of B also enables
linewidth ∆B of the resonant peak to be determined as
a function of frequency f in order to verify the accuracy
of equation (6), and calculate α as the slope of a straight
line. Fig. 4 shows the 00 results when f ranges from 3
to 13 GHz and 20 to 23 GHz with positive B. For 450,
the responses for positive and negative fields are super-
imposed when f ranges from 3 to 15 GHz and 20 to 23
GHz.

FIG. 4: Line width for sample orientation 00 and 450 as a
function of frequency. For 00 only is shown the case B > 0.

As mentioned above, if the only existing damping
mechanism is that represented by the second term of LLG
equation, a linear dependence of ∆B on frequency (equa-
tion (6)) is expected. Figure 4 shows that this is not the
case. There clearly exists an additional damping mecha-
nism. A possible explanation is described in [7] and [8].
According to the authors, the additional damping mech-
anism is due to two-magnon scattering caused by lattice
defects or dislocations. As a consequence, they propose
a modified equation (6) as

∆B = (4πα/γ)f0 +∆B0 +∆B0TMS (8)

where the first two terms represents the normal Gilbert
damping (equation (6)) and ∆B0TMS is due to the two-
magnon scattering.

For the perpendicular to the sample B⃗ case, normal
Gilbert damping is observed in the range of frequencies
where the frequency has a linear dependence on field (ap-
proximately from 9 GHz to 13 GHz in Fig. 3c), and the
values of ∆B0 and α can be determined from equation
(6) . The results are shown in Table III and Fig. 5.

α ∆B0 [mT]

(1.3±0.9)× 10−3 1.4±0.7

TABLE III: Gilbert damping parameter and remaining field
for perpendicular to the sample B⃗.

IV. CONCLUSIONS

FMR experiments were performed to extract magnetic
characteristics (resonant field, anisotropy, damping pa-
rameter) of the Heusler alloy Co2FeSi at its three sym-
metry axis, by applying an external static field in [1 0
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FIG. 5: Line width for B⃗ perpendicular to the sample as a
function of frequency. Dashed line is obtained by fitting from
equation (6).

0] (00) and [1 1 0] (450) in-plane directions and the out-
of-plane [0 0 1] (perpendicular) direction, and a small
transverse RF magnetic field. Postprocessing of raw re-
sults showed a good agreement of the field at resonance,
B0, with theory (Fig. 3a, b and c), in all cases. Ad-
ditionally, anisotropy field and magnetization saturation

(Tables I and II), and the damping parameter α for the
perpendicular to the sample field case (Table III), are
found.

A significant difference on how the linewidth of the
resonance peak depends on frequency was found when:

a) B⃗ was parallel to the sample plane (Fig. 4), where

equation (6) fails; and b) when B⃗ was perpendicular to
the sample plane (Fig. 5), where equation (6) is satisfied.
This dissimilarity is attributed to the presence of two-
magnon scattering as an additional damping mechanism
in the sample in-plane orientations [7], [8].

In the 00 sample orientation, a double resonant peak
was observed in one range of the external field, which is
attributed [6], [9] to the presence of an additional mode
of precession with k > 0, in addition to the uniform mode
analyzed in this report.
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