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Abstract: Cells are capable of responding to external stimuli manifesting different dynamical
behaviors. An interesting case is the perfect adaptation response, which means that when the
amount of stimulus is changed abruptly and permanently, the response is only transient and returns
to its previous levels of activity. The aim of this work is to analyse three different models, two of
them previously reported, and study if they show perfect adaptation and in what conditions. Using
numerical methods and through mathematical analysis, we reproduce known results and characterize
new scenarios.

I. INTRODUCTION

Response mechanisms of cells are an open problem due
to the complexity of the interactions of proteins within
signaling pathways. However, recent studies have been
successful in coming up with mathematical models that
gets us closer to solutions that can be contrasted exper-
imentally. We have to take into account that we have
to solve a 4D problem with the intervention of the spa-
tial and temporal coordinates but here we will only focus
on the temporal dynamics because this is what has been
studied most, although new experimental techniques al-
lows the exploration of the complete problem [1].

In this work we study perfect adaptation in three dif-
ferent models. Perfect adaptation is interesting because
we can find it in human senses, i.e smell, this is why
perfect adaptation is also known as ”sniffer” [2]. Math-
ematically, perfect adaptation requires the steady state
of the response element to be independent of the stim-
ulus and for a change in stimulus to cause a change in
response: these will be the main conditions that we will
demand our systems to fulfill. We will do that by de-
scribing the dynamics of the models through the law of
mass action.

The structure of this work is as follows. In the first
model we study a system that will not be able to exhibit
perfect adaptation. In the second one we add a new
variable, ”x”, that regulates the response levels when a
change in stimulus is applied, therefore exhibiting perfect
adaptation. The model obtained has been presented in
[2]. At last, we adapt the work made in [3]. We sim-
plify the model in [3] by making some assumptions that
will be commented further on in the text. This model is
based on TGF-β pathway that contains receptors and lig-
ands. These ligands are present in the extracellular space
but they can bind a receptor and form a ligand-receptor
complex. Then, they ultimately drive a transcriptional
response in the cell nucleus. As there are many types
of ligands and receptors, this gives a variety of possible
combinations that can trigger different cell processes such
as, cell proliferation, cell growth, cell differentiation etc.
[3]. The study of biological processes that are possible is
beyond the aim of this work and our only focus is on the

dynamics of the ligand-receptor complex that leads to a
perfectly-adapted response.

II. SINGLE VARIABLE MODEL

We start with a simple case, purely theoretical, that
does not correspond to a known biologic element. Our
system receives a stimulus concentration, [S], and the
velocity of the change in concentration of the response
element, [R], is given by the next rate equation:

d[R]

dt
= k1[S]− k2[S][R] (1)

where k1 and k2 correspond to rate constants. The stim-
ulus is creating a response at the same time that it de-
stroys it. An stationary state solution is easily obtainable
by equating Eq. (1) to 0 which results in

[Rss] ≡ Rss =
k1
k2

(2)

From Fig. 1 we can see that perfect adaptation is not
achieved, although the steady state is independent of the
signal input. A mathematical demonstration as to why
this model is not perfectly adapted is herein proposed.
Consider the system in the stationary state with stimu-
lus concentration [S] and an instantaneous change in the
stimulus [∆S] that causes a change [∆R] in the response
[R]. Introducing these terms in Eq. (1), and by eliminat-
ing some equal terms of the stationary initial state, we
obtain:

d[∆R]

dt
= (k1−k2[Rss])[∆S]−k2 ([S] + [∆S]) [∆R] (3)

The first term cancels by substituting Eq. (2) in Eq.
(3) and finally:

d[∆R]

dt
= −k2 ([S] + [∆S]) [∆R] (4)

This model cannot exhibit perfect adaptation because
even if we have found a steady state independent of the
stimulus, there is nothing that produces [∆R] (Eq. (4)).
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FIG. 1: Evolution of the response ([R], violet) when the con-
centration of stimulus ([S], green) changes abruptly every 20
minutes. Results from the single variable model. Parameter
values are k1 = 1min−1 and k2 = 2min−1. Adimensional
concentrations are used.

III. SNIFFER MODEL

An extension of the first model is analysed here by
adding a new species, x, which evolves according to a
new equation. The model used here has been presented
in [2]. We assume that [R] and [x] are being synthesized
and degraded [2, 4]:

d[R]

dt
= k1[S]− k2[x][R] (5)

d[x]

dt
= k3[S]− k4[x] (6)

Once again, the steady state solution is independent
of [S], as seen by equating Eq. (5) and Eq. (6) to 0:

[Rss] ≡ Rss =
k1k4
k2k3

(7)

Fig. 2 shows that an abrupt increase of the stimulus
causes an abrupt increase in the response that decays in
time to previous levels: it exhibits perfect adaptation.
Every time the stimulus increases, there is a transient
and weaker response (Fig. 2).

Valuable information of the model dynamics is ob-
tained by plotting the phase space ([R], [x]).

The phase portrait is understood in the following way:
each nullcline represents Eq. (5) or Eq. (6) equal to
0, its intersection describes the stationary solution [5].
The vector field is simply the time derivative for each
variable. With these notions, it is easy to see that a
change in stimulus concentration will cause a trajectory

FIG. 2: Evolution of the response ([R], violet) and species x
([x], green) when the concentration of the stimulus ([S], blue)
increases an amount [∆S] = 1 every 20 minutes. Results
from the sniffer model. Parameter values: k1 = 1min−1,
k2 = 1min−1, k3 = 0.5min−1, k4 = 0.5min−1.

FIG. 3: Phase portrait for the sniffer model. Arrows corre-
spond to the vector field when [S] = 2. Nullclines of each
variable and trajectory for [S] = 2 (from the stationary state
of [S] = 1) are also shown. Parameters are those of Fig. 2.

to the stationary point. This is another way of describing
perfect adaptation.
To explain why this model becomes perfectly-adapted,

we make a similar approach as the one made in the single
variable model, and additionally consider changes in [x]
to be slow, so in small time scales [x] ≈ [xss] and only a
change in [R], [∆R], is noticeable, yielding:

d[∆R]

dt
= k1[∆S]− k2[xss][∆R] (8)

By replacing the value of [xss] (Eq. (6) equal to 0) in
Eq. (8), we obtain:
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FIG. 4: Evolution of the response ([R], violet), species x
([x], green) when the concentration of the stimulus ([S], blue)
changes a constant relative amount [∆S]/[S] = 2 every 20
minutes. Results from the sniffer model. Parameter values:
k1 = 1min−1, k2 = 1min−1, k3 = 0.5min−1, k4 = 0.5min−1.
The amplitude of response is nearly constant, in contrast with
Fig. 3.

d[∆R]

dt
= k1[∆S]− k2k3

k4
[S][∆R] (9)

Therefore, we can see that in the sniffer model, both
conditions for perfect adaptation are satisfied. The
steady state response is independent of the signal (Eq.
(7)), and there is a change of response when a stimulus
change is applied. Moreover, if we consider the response
element to be sufficiently fast (d[R]/dt ≈ 0, that means

Eq. (8) equal to 0), the result is [∆R] = k1k4

k2k3

[∆S]
[S] . Thus,

the amplitude in response depends on [∆S]/[S]. We have
checked through simulations that this prediction holds
(see Fig. 4).

IV. TWO-COMPARTMENT MODEL

At last, we explore the signaling mechanism for the
TGF-β pathway. The model proposed in [3] is sim-
plified, such that we consider only one type of recep-
tor (whether it is type I or II will be irrelevant for
the final results), while all the other considerations are
mantained, i.e receptor-ligand complexes can traffick be-
tween the plasma membrane and the endosomes: re-
ceptors and ligand-receptor complexes are internalized
into the endosome and recycled to the plasma mem-
brane continuously; receptor degradation has a consti-
tutive and ligand-induced contribution and internalized
ligand-receptor complexes concentration determine the
concentration of the response [3]:

d[ST ]

dt
= ka[S][T ]− (kcd + klid + ki)[ST ] (10)

d[T ]

dt
= PT−ka[S][T ]−(kcd+ki)[T ]+kr[T ]+αkr[R] (11)

d[R]

dt
= ki[ST ]− kr[R] (12)

d[T ]

dt
= ki[T ]− kr[T ] (13)

[S] corresponds to the ligand (i.e stimulus) concen-
tration, [T ] is the TGF-β receptor and it can bind to
form the ligand-receptor complex [ST ]. The variables [T ]
and [ST ] are the receptor and ligand-receptor complex
once they are internalized. ka characterizes the ligand-
receptor complex formation, kcd is the rate of constitu-
tive degradation, klid is the ligand-induced degradation
rate constant, ki is the internalization rate constant, PT

is the rate of receptor production. Both sound (active)
and unsound receptors are recycled with rate kr, how-
ever, only the active ones do so with an efficiency α ≤ 1.
The model is dominated by the competition between two
rate constants: kcd and klid which are combined in the

CIR ratio
(
CIR = kcd

klid

)
[3]. The constitutive degrada-

tion constant, kcd, affects receptors and ligand-receptor
complexes that have not been internalized, therefore it
will eliminate them. The ligand-induced degradation
constant, klid, affects the active receptors (i.e those that
are bound to a ligand), also eliminating them.
Fig. 5 shows perfect adaptation. We are in the limit

of low CIR (klid ≫ kcd) [3]: ligand-receptor complexes
are degraded continuously, causing the attenuation of the
activity and the return to previous activity levels.
The opposite case is when the CIR ratio is high

(kcd ≫ klid) [3], we expect the transient response to dis-
appear (Fig. 6) because although the constitutive degra-
dation induces the elimination of receptors and plasma
membrane ligand-receptors, this does not affect the inter-
nalized complexes, which are already producing activity.
It is interesting to change other parameter values, from

which we have obtained the following cases.
If the recycling mechanism from the active receptors is

suppressed (i.e α = 0), active receptors that have bound
and are internalized cannot return to the plasma mem-
brane and repeat the binding and trafficking processes,
but because they are strongly degraded (low CIR limit)
we would expect the same result as in Fig. 5 (see Fig.
7).
Fig. 8 shows that the response is capable of exhibit-

ing perfect adaptation within the high CIR limit [3].
This happens when not all receptors bound to the lig-
and (stimulus) are recycled back (i.e α < 1).
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FIG. 5: Response concentration, [R], as a function of time
for low CIR. Results from the two-compartment model. Pa-
rameter values: ka = 10min−1, kcd = 1

36×3
min−1, klid =

3/4min−1, ki = 1/3min−1, PR = 8min−1, α = 1, kr =
1/30min−1, [S] = 3 × 10−5. A change in signal concentra-
tion, [S] = 0.01, is applied at t = 30min and [S] = 0.05 at
t = 1500min.

FIG. 6: Response concentration, [R], as a function of time for
high CIR. Results from the two-compartment model. Param-
eter values: same as in Fig. 5 with the same stimulus changes
but klid = 0min−1.

In Fig. 9, by eliminating the terms associated with
the recycling mechanism but working within the low CIR
limit, we obtain a transient response and adaptation.
Nevertheless, the activity is very low due to the ligand-
receptor complexes not being able to return to the plasma
membrane. Receptors will run low in the plasma mem-
brane and ligands will not be able to bind them and in-
ternalize, so the perturbations of the system will decrease
in time until they will not be detected anymore.

Ultimately, we find the stationary state of the two-
compartment model by equating to 0 all the equations of

FIG. 7: Response concentration, [R], as a function of time for
low CIR. Results from the two-compartment model. Parame-
ter values: same as in Fig. 5 with the same stimulus changes
but with α = 0.

FIG. 8: Response concentration, [R], as a function of time.
Results from the two-compartment model. Parameter values:
same as in Fig. 5 with the same stimulus changes but with
klid = 0min−1, α = 0.5. (i.e as in Fig. 6 but with α = 0.5).

the model [3]:

[Rss] =
ki
kr

PR

kcd + klid + (1− α) kika

c[S]

1 + c[S]
(14)

where the variable c[S] carries all the dependence on
the stimulus and will dictate the system’s behavior. It
takes the following form

c[S] =
kcd + klid (1− α)

kcd + klid + ki

kika
kcd

[S] (15)

From Eq. (15), we can see that the only way to have a
stationary state independent of the stimulus, is for high
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FIG. 9: Response concentration, [R], as a function of time.
Results from the two-compartment model when the recycling
mechanism is totally suppressed. Parameter values: same as
in Fig. 5, but with a stimulus change of [S] = 0.01 at t = 30
min, another one of [S] = 0.02 at t = 60min and a last one
of [S] = 0.05 at t = 1500min.

values of c[S]. This happens for low values of kcd and
therefore, within the low CIR limit. Also, to produce a
change in [Rss] when a stimulus change ([∆S]) is applied,
we must assume that [ST ] is a fastly changing variable
and that T +[ST ] changes slowly [3]. After some algebra
we arrive to [3]:

d[∆ST ]

dt
= ka[∆S]Tss − (ka[S] + kcd + klid + ki)[∆ST ]

(16)
Taking into account the previous assumptions, we con-

clude that the system is able to respond to a stimulus
change in the steady state, satisfying both requirements
for perfect adaptation.

V. CONCLUSIONS

Firstly, we have been able to reproduce some of the
work done in [2] and [3] (with a simplified model) and we

have extended them to wider scenarios.

• For the single variable model, we have been able
to conclude that even though it accomplishes the
requirement of having a steady state independent
of the stimulus, it cannot show perfect adaptation
because there is not a mechanism to lead it there.

• In the sniffer model, Fig. 2 reproduces the re-
sults made in [2]. Perfect adaptation is reached
because the steady state response is independent
of the stimulus and the system is able to answer to
a change in stimulus. In addition, we have found
that the amplitude of the change in response is de-
pendent on the relative change in stimulus.

• For the two compartment model, we have verified
the results in [3], although in a much simpler way.
Perfect adaptation is reached when we are working
within the LOW CIR limit (klid ≫ kcd) or within
the HIGH CIR limit (kcd ≫ klid) but reducing the
effectiveness of recycling [3]. We also extend the
study to a system with no recycling mechanism and
the model exhibits adaptation. We see how the
ability to recycle receptors for rebinding is an im-
portant feature for the TGF-β pathway to exhibit
perfect adaptation.
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