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Abstract: Maghemite multi-core nanoparticles have been modelled to better understand their
magnetic properties and the collective interactions from where they arise. Micromagnetic simulations
with different values of the relevant parameters have been performed to reproduce the experimental
results. The role of the exchange interaction between cores is studied. An analysis of the resulting
magnetisation hysteresis loops is done, as well as the vorticity and topological properties of the
magnetisation configuration.

I. INTRODUCTION

Multi-core iron oxide nanoparticles, such as nanoflow-
ers (NF), have been thoroughly investigated in the last
years due to their promising applications. In bio-
medicine, their size is comparable or smaller than cells
[1], and hence can interact with them. They can be used
for magnetic hyperthermia [2] when applying an alter-
nating magnetic field, or drug delivery [3] when coated
with a drug. They can also be used for non medical
applications, such as water remediation [4]. One of the
properties that make these applications possible is that
they are relatively big nanoparticles, which yields a high
saturation magnetisation. Moreover, they have a very
low remanence despite their size compared to single-core
nanoparticles or bulk materials. This leads to the fact
that they do not form aggregates in a colloidal suspen-
sion. They have a very big initial magnetic susceptibility
and can be saturated with a relatively low applied mag-
netic field. In order to optimise these properties for their
applications, knowledge of the interactions between cores
and the magnetic variables at play is needed.

This work will focus on maghemite (γFe2O3) NFs, and
we will call each core a nanopetal (NP) to maintain the
metaphor. Maghemite has a cubic crystalline structure
and is ferrimagnetic in bulk. Some experimental results
from a typical NF sample are shown in Fig. 1, extracted
from [5]. A high resolution transmission electronic mi-
croscopy (HRTEM) image of a NF is shown in Fig. 1a.
HRTEM images and micro-diffraction experiments (see
Fig. 1b) show that there is an important level of crys-
talline correlation among NPs, known as crystalline tex-
ture. That is, the crystal axes of each NP are correlated
to the rest of the NPs, and have a deviation of around
10° from each other, as shown by the small arcs in the
diffraction pattern. This crystalline correlation among
the cores produces a certain magnetic interaction among
NPs, which is important for the magnetic configuration.
These particles are not uniform in size, but the size dis-
tribution is relatively narrow as shown in Fig. 1c. An ex-
perimental hysteresis loop for these samples is also shown
in Fig. 1d, which exhibits the aforementioned magnetic
properties. Our aim is to reproduce the main magnetic
properties using the experimental knowledge of the NFs.

FIG. 1: (a) HRTEM image of a NF. (b) Micro-diffraction
pattern showing the crystalline texture of the NPs within the
NF. (c) Size distribution of the NFs (red) and the NPs (blue).
(d) Experimental hysteresis loop at T = 5 K.

II. MICROMAGNETIC APPROXIMATION

Micromagnetics (MM) is a quasi-classical theory de-
veloped to describe phenomena in the nanometer to mi-
crometer scale [6], where it is not necessary to carry out
detailed atomistic calculations to account for the mag-
netic properties of materials. At the micrometer scale,
simulations using quantum theory are not computation-
ally efficient, and they can only be used for systems on
the nanometer scale. On the contrary, classical models
do not reproduce the desired physical properties which
are relevant at the micrometer scale.
In micromagnetism, it is assumed that the local mag-

netisation vector M⃗(r⃗) is a continuous function in space.
It replaces the discrete atomic spins with mesoscopic
size elements, whose magnetisation can be treated with
a semi-classical Hamiltonian. The magnetisation has a

constant magnitude |M⃗ | = Ms, the saturation magneti-
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sation, and can only rotate. Hence, we can consider the

magnetisation unit vector m⃗ = M⃗/Ms.
There are a few energy terms that come into play in

MM, and in particular in our system. The exchange en-
ergy between two spins is given by the Heisenberg Hamil-
tonian. After considering the MM framework and inte-
grating in a volume V , it becomes

Eex =

∫
V

A
(
(∇mx)

2 + (∇my)
2 + (∇mz)

2
)
dV, (1)

where A is the exchange constant (EC) which depends
on the material and its crystal structure. In NFs, we will
have two ECs, one between points in the same NP, Aw,
and a smaller one between points in neighbouring NPs,
Ai.

If µ⃗ is a magnetic dipole, its energy in an external

magnetic field H⃗ is E = µ⃗ · H⃗. In the continuum, we can
integrate over the volume to get its Zeeman energy:

EZ = −µ0Ms

∫
V

m⃗ · H⃗dV. (2)

In the crystal, every dipole is exposed to the field cre-
ated by the other dipoles. Considering the magnetic field
created by a dipole and integrating over approximately
the whole volume, the demagnetising field at each point
is

H⃗demag(r⃗) =
Ms

4π

∫
V

(
3
[m⃗(r⃗ ′) · (r⃗ − r⃗ ′)](r⃗ − r⃗ ′)

|r⃗ − r⃗ ′|5

− m⃗(r⃗ ′)

|r⃗ − r⃗ ′|3
)
dV. (3)

Thus, the total energy due to the demagnetisation is

Edemag = −µ0Ms

2

∫
V

m⃗ · H⃗demagdV, (4)

where the 1/2 factor appears to count each pair of dipoles
only once.

The axes in the cubic crystalline structure of
maghemite introduce anisotropies, which are intrinsic to
the material. If u⃗1, u⃗2, u⃗3 are the cubic anisotropy (CA)
axes, the CA energy can be calculated as

ECA = Kc

∫
V

∑
j ̸=k

(m⃗ · u⃗j)
2(m⃗ · u⃗k)

2dV. (5)

The shape and the surface of each NP produces an
effective uniaxial anisotropy (UA) which has a random
direction for each NP. Its energy can be calculated as

EUA = −Ku

∫
V

(m⃗ · u⃗)2dV, (6)

where u⃗ is the anisotropy axis. The total energy is

Etot = Eex + EZ + Edemag + EUA + ECA, (7)

and the magnetisation configuration results from min-
imising this energy. This energy can be considered as a
result of an effective magnetic field

H⃗eff = − 1

µ0Ms

δEtot

δm⃗
. (8)

The dynamics of the magnetisation processes are gov-
erned by the Landau–Lifshitz–Gilbert (LLG) equation

∂m⃗

∂t
= −γµ0m⃗× H⃗eff + αm⃗× ∂m⃗

∂t
, (9)

where γ and α are constants. The first term in the right-
hand side represents the precession of the magnetisation
produced by the magnetic torque, and the second one is a
damping term, which directs the magnetisation towards
the effective field.
Solving the LLG equation analytically is impossible for

complex systems, thus different simulation environments
have been built to solve it numerically. OOMMF (Object
Oriented MicroMagnetic Framework) [7] is the software
used in this paper, which uses a finite differences method
to solve LLG. A regular rectangular grid divides the space
into a discrete mesh with spacing h. The size of the mesh
has to be smaller than the magnetostatic exchange length
[6],

ℓex =

√
2A

µ0M2
s

. (10)

Roughly, it is the length scale at which the exchange en-
ergy is a relevant term compared to the magnetostatic
energy, hence, the range of the exchange interaction be-
tween points in the mesh. The magnetisation is evaluated
at the center points of the mesh, and all the energy terms
in Eq. (7) are calculated using discrete approximations.

III. SYSTEM AND MICROMAGNETIC
SIMULATIONS

The approximation of the real system is done by build-
ing a sphere with cubes, as shown in Fig. 2, where each
cube represents a different petal in the NF. The sphere
has a diameter of 160 nm and each cube has a side length
of 16 nm, where a cube is part of the sphere if its cen-
ter is at a distance smaller than 80 nm from the center
of the sphere. We will use a mesh size of h = 4 nm,

FIG. 2: System set up

Treball de Fi de Grau 2 Barcelona, January 2022



Magnetic properties of iron oxide nanoflowers Iker Garćıa González

which allows greater detail in the magnetisation configu-
ration and to assign different properties to the surface of
each NP and its inside. A different pairwise EC is used
for cells belonging to the same or different cubes, which
mimics the weaker interaction between NPs in the real
NF. The EC is Aw = 7× 10−12 J/m [8] for neighbouring
cells within the same NP, and for neighbouring cells in
different cubes it will be a percentage of that value. The
saturation magnetisation for maghemite isMs = 4.8×105

A/m [8]. Hence, the value of h is smaller or, at most, the
same order of magnitude as ℓex in Eq. (10) using the
previous parameters. This validates the use of the MM
framework.

Each NP has a slightly different shape, thus each one
of them has a different UA axis. The axis for the UA
for each NP is defined via an external file, which is in
turn created using a custom C++ script which generates
uniformly randomly oriented unit vectors. For the CA,
two vectors are generated using a C++ script. Given that
the NPs present an important crystalline texture, one
vector has a normal distribution around the z axis with a
standard deviation of 5°, and the other is perpendicular
to it with a uniform distribution of orientations. The
values for the CA and UA constants for maghemite are
Kc = −1.3 × 104 J/m3 [8] and Ku = −5 × 103 J/m3,
respectively, where the UA constant is a reasonable value
for particles of this size. Also, a simulated temperature is
used. This is not a real temperature, since MM does not
account for it, but an approximation to introduce noise
and reduce the possibility of the system getting stuck in
local minima. After some tests, the value of T = 10 K
was decided as a balance between noise and detail. A
variation of a simple first order Euler method will be used
to solve Eq. (9), which accounts for this temperature.

IV. SIMULATION RESULTS

Our aim is to study the changes in the local magneti-
sation when a magnetic field is applied in the z direction.
This external field is applied following discrete time steps,
and various convergence criteria can be used to decide
when to initiate the next step. A common criterion is an
upper bound on |dm⃗/dt|, but when using it at T = 0K,
the system gets stuck in metastable states yielding non-
physical hysteresis loops, like crossings between the paths
(see Fig. 3a). When adding a non-zero temperature, cri-
teria based on the convergence of |dm⃗/dt| were discarded
as the fluctuations in the magnetisation were greater than
any reasonable upper bound for |dm⃗/dt|. Hence, time
criteria were used. Given that the path of a hysteresis
loop follows metastable states, the results depend on the
observation time and the steps taken when varying the
applied field. Thus, different stopping times were used,
as shown in Fig. 3, for a total number of 320 field steps.
The bigger the stopping time, the more detail shown in
the hysteresis loop, but also the longer total simulation
run time. Hence, a stopping time of 5 × 10−9 s will be

FIG. 3: Hysteresis loop (a) without temperature for
|dm⃗/dt| < 0.5 ns−1; and with T = 10 K for stopping time
of (b) 5 · 10−11 s, (c) 5 · 10−10 s and (d) 5 · 10−9 s.

used for the following simulations, which is a compromise
for both factors.

One of the unknown parameters in a NF is the inter-
action between NPs, so various simulations were done
varying the EC between cells in neighbouring petals Ai,
namely 1%, 10%, 50%, and 100% of Aw. The results
are presented in Fig. 4. The hysteresis loops become
more square-like, have bigger jumps as well as bigger
remanence and coercivity with an increasing EC. This
behaviour is expected since, when increasing the Ai, the
NF becomes more ferrimagnetic overall and the magnetic
correlation within the system increases.

An important remark is that the same random
anisotropies were used in all the simulations, and hence,
the results are dependent on the particular realization of
the system. Thus, the detail in the non-reversible part
in the hysteresis loops in Fig. 4 is the result of this par-
ticular configuration of anisotropies. Nevertheless, some
preliminary simulations with other random anisotropies
yield similar global behaviour.

At a low magnetic field, a vortex-like arrangement of
the magnetisation is found. This is due to the effect of
the demagnetising field [9] and the low interaction be-
tween NPs. This type of complex structure is what gives
the system its low remanence and coercivity, and it is
overridden as a stronger field is applied, since the mag-
netisation tends to align along it. Various stages of the
vortex structure are shown in Fig. 5. The first snap-
shot (Fig. 5a) shows the system with no field applied
(remnant state), after magnetic saturation in the posi-
tive direction. At this stage, there is little remanence in

Treball de Fi de Grau 3 Barcelona, January 2022



Magnetic properties of iron oxide nanoflowers Iker Garćıa González

FIG. 4: Hysteresis loop for inter-petal EC of (a) 1%, (b) 10%,
(c) 50% and (d) 100% of Aw.

the magnetisation due to the vortex configuration. The
second one (Fig. 5b) is at Hz = −1.269 kOe after 5a.
Notice the inversion in the spin direction of the magneti-
sation between Fig. 5b and Fig. 5c after saturation. Also
note that the magnetisation near the center of the vortex
tends to align with the magnetic field and even goes out
of plane at remanence, conferring a certain polarity to
the vortex.

V. VORTICITY AND TOPOLOGICAL NUMBER

One can define the vorticity v⃗ of the magnetisation as

its curl v⃗ = ∇⃗ × m⃗. Since the magnetisation is a dis-
crete field, a discrete approximation is taken when cal-
culating the vorticity. Plotting the average z component
of the vorticity against the applied field, we can get an
idea of the vorticity at each field step (Fig. 6). One
can see that the sudden changes in magnetisation are
highly correlated with changes in the vorticity, as these
changes are the result of reconfigurations of the magneti-
sation. Also, one can see that the chirality of the vortex
is reversed when the system is saturated and then de-
saturated. When the system is at saturation, there is
no vorticity, and when the applied field is reduced, the
vortex starts to form in the chirality that lowers the en-
ergy according to the random anisotropies present in the
system, which is at opposite directions whether the ap-
plied field is positive or negative. At low magnetic fields,
the vorticity is lower than expected because at this point
the anisotropies have a more dominant effect in the sys-
tem, and thus the magnetisation does not align with a
perfect vortex. In particular, the jumps seen in Fig. 6a
between Hz = ±0.8 kOe are the result of the specific

anisotropies used in this simulation and are expected to
change should another configuration be used. In Fig.
6b, one can see that this effect is increased with a lower
Ai, since there is less correlation between neighbouring
NPs and more disturbances in the vortex arrangement
are expected. There may even be domains in which the
magnetisation does not align with the rest. With big-
ger Ai, there is a greater vorticity and the effects of the
anisotropies are reduced.

FIG. 6: (a) Normalised vorticity and normalised magnetisa-
tion for different applied fields for the case Ai = 0.1Aw. (b)
Vorticity for the different Ai.

Another point of view from which we can study the
magnetisation configuration is topology, which lets us
classify these types of vortex structures. The magneti-
sation m⃗(r⃗) is a unit vector, and so it can be viewed as
a point on the sphere S2. Hence we can map a cross sec-
tion to the sphere via the stereographic projection, and in
turn, we can think of m⃗(r⃗) as a mapping from the sphere
to the sphere. This lets us use the following fact derived
from algebraic topology: the mappings from the sphere
to the sphere can be classified according to how many
times it “wraps” around itself [10], which is analogous to
the winding number for curves in the plane. In our case,
we can classify magnetisation configurations according to
this number, which we will call W . One can derive [11]
that

W =
1

4π

∫∫
m⃗ ·

(
∂m⃗

∂x
× ∂m⃗

∂y

)
dxdy. (11)

Calculating W for each step in the z = 0 cross section,
we can plot its hysteresis loop. The case for Ai = 0.1Aw

is plotted in Fig. 7. Note that the changes in W are also
correlated with the changes in the magnetisation, and
there is only a non-zero value in the non-reversible parts
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FIG. 5: Magnetisation field in the z = 0 plane for different applied fields and Ai = 0.1Aw. The cell colour represents the sign
of the mz component, and the arrow colour is the inverse colour map. (a) Hz = 0 kOe, (b) Hz = −1.269 kOe, (c) Hz = −1.269
kOe, (d) Hz = 0 kOe.

FIG. 7: Topological number W and normalised magnetisation
as a function of Hz.

of the hysteresis loop. The value of W and its behaviour
with respect to the applied field varies greatly depending
on the value of Ai. Its maximum value is attained for
Ai = 0.1Aw, and the maximum values for the rest of the
studied Ai are less than 0.2. This means that the most
stable magnetic structure from the topological point of
view is for Ai = 0.1Aw.

Notice from Eq. (11) that W is a product of two num-
bers, the magnetisation direction and the magnetisation
winding number. The jump from a negative to a positive
W in Fig. 7 at Hz = ±0.55 kOe is explained by this
product, since the magnetisation around the central axis
changes sign at this point.

It is worth noting that W does not attain an inte-
ger value, and its maximum value is around 0.5. Hence,
there is no protected topological structure created like a
skyrmion for any value of the applied field.

VI. CONCLUSIONS

We have been able to reproduce the main phenomenol-
ogy of the phyiscal system and simulate a hysteresis loop
similar to the experimental data. We have shown that
the magnetic exchange between NPs is a relevant param-
eter explaining the behaviour of the NFs. We have also
shown that the vorticity produced by the demagnetis-
ing field causes the low remanence, and we have studied
its changes with the applied field. Lastly, the winding
number can reach high values in some cases, which may
explain the certain stability of the vortex configuration.
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