
Shannon entropy, order and image compression

Author: Marta Grasa Lainez
Facultat de F́ısica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.∗

Advisors: Alberto Fernandez-Nieves, Ramon Planet

Abstract: The identification of nontrivial manifestations of order is of great interest in the field of
image analysis. Here, we use image compression as a way to quantify this “order”. File compression
algorithms (as the ones used in .zip compression) produce smaller files the less disordered the original
file is. We apply this principle to various images of dots in disordered dispositions, square lattices
and iterations of the Sierpinski carpet, in order to capture a relation between order and image
compression. We find that, at least in some cases, we can use compression to quantify order.

I. INTRODUCTION

In condensed matter physics, particles often organize
themselves in patterns. However, these are often not easy
to detect. In [1], file compression is introduced as a pos-
sible method to find the order parameter of a system,
particularly as it goes through a phase transition where
the order suddenly changes.

Soft condensed matter is the part of condensed matter
studying materials that have larger-than-atomic charac-
teristic length scales. We can therefore have direct obser-
vations of these systems through optical microscopes and
digital cameras. This explains the importance that file
compression can have in the field, if any relevant physics
can be extracted in the process. An example could be
quantifying how ordered the structures observed are.

However, order is oftentimes hard to detect in these
images without sophisticated data analysis methodolo-
gies. Here, we introduce the concepts of Shannon en-
tropy, computable information density (CID), and the
Lempel-Ziv 77 compression algorithm; with the final goal
to quantify order in images containing randomly dis-
tributed dots, crystalline lattices and fractals.

A. Shannon entropy

In 1948, Claude E. Shannon postulated a way to mea-
sure the quantity of information contained in the signals
produced by a source. He defined the Shannon entropy
of a variable X, H(X), as follows [2]:

H(X) = −
∑
{xi}

p(xi) log2(p(xi)) , (1)

where {xi} is the set of possible values of X and p(xi)
the probability function of these values. The amount
of information is measured in bits, therefore base two
logarithms are used.

∗Electronic address: mgrasala53@alumnes.ub.edu

This entropy can be interpreted as the average number
of yes/no questions needed to determine the value xi of
an observation of the variable X, that is, the minimum
number of bits required to transmit an observation. It
relates to the thermodynamic entropy, if we take each
possible value of X to be a microstate and adjust for the
Boltzmann constant and the base of the logarithm.

To illustrate this a bit, let’s look at the case of a six-
sided dice. If the dice is not biased in any way, it has
a 1/6 probability of landing on each side, therefore its
Shannon entropy is H = −6 · 16 log2

1
6 = 2.585. That is,

we need 3 bits of information to transmit the result of
rolling a dice.

If the dice is biased, it has a higher probability of
landing on one side. Therefore, its Shannon entropy
decreases, as the average number of yes/no questions
needed to know the result is lower. In fact, for a probabil-
ity p for the dice to land on the biased side, it’s Shannon
entropy is H = −p log2 p−(1−p) log2

1−p
5 . By plotting H

as a function of p, we can see that H(loaded dice) has a
maximum at p = 1/6, which corresponds to the unbiased
dice; see Fig.1.

0.0 0.2 0.4 0.6 0.8 1.0

p

0.0

0.5

1.0

1.5

2.0

2.5

3.0

H
 (

b
it
s
)

Fig. 1. Shannon entropy H of a biased dice as a
function of the probability p of it landing on the biased
face. The dashed line indicates the maximum, which
corresponds to p = 1/6.



Shannon entropy, order and image compression Marta Grasa Lainez

B. Computable information density

The Shannon entropy is a very useful concept, but un-
less we consider a very large numbers of signals from a
given source, which would allow knowing the probability
functions, it may be hard to obtain. We will therefore
approximate it via the computable information density
(CID) instead, defined as [1]:

CID ≡ L(x)

L
, (2)

where L is the length of a sequence of events and L(x)
is the length of the binary compressed sequence using a
certain compression algorithm. The CID of a sequence
can never be smaller than the Shannon entropy of the
source. For the algorithm used in .zip compression, the
CID becomes the Shannon entropy in the thermodynamic
limit: for very long sequences the CID can be considered
a good approximation of H and therefore of the amount
of information encoded in the sequence [5].

As it is a measure of how much information per char-
acter a sequence contains, a random sequence of 0 and 1
will have a much greater CID than a repeating sequence
like 01010101... of the same length, as the second one
requires much less information to be transmitted.

When an alphabet of length |α| of a sequence con-
tains more than two elements, we must also take |α| into
account when studying the amount of information per
character. However, here we will only work with binary
sequences, and thus we will use the CID as a measure
of how compressible a sequence is. Note that when CID
≥ 1, the sequence is not worth compressing.The smaller
the CID, the more compressible the sequence is and the
less amount of information we need to give in order to
losslessly recover it.

C. The Lempel-Ziv 77 compression algorithm

The algorithm commonly used for .zip files is the
Lempel-Ziv 77 (LZ77) compression algorithm [3]. This
is a lossless compression algorithm, which means that
the compressed file can be decoded into the original file
without any errors or missing parts. It is also univer-
sal in that it compresses any file even without previous
knowledge.

It works by searching for repeating patterns in a se-
quence. It uses a cursor which starts before the first
character of the sequence, and searches for the longest
sequence beginning with the character to its right which
has already occurred. This information is saved as a pair
(i, `) where i is the position of the first character of the
first time the sequence occurred (or the character itself
when it’s observed for the first time) and ` is the length
of the repeated sequence.

As an example, let us compress step by step the se-
quence x1 = baababaa using the LZ77 algorithm. The

cursor starts on the first character. As this is a new
character, it will save (b, 0) and move the cursor to the
second character. This is also a new character, therefore
it saves (a, 0) and moves the cursor to the third charac-
ter. This is a repeated character, a (character 2). But
the sequence ab has not occurred before, so it will save
(2, 1) and move the cursor to the fourth character, where
it finds the already appeared sequence ba. This sequence
of two characters has appeared starting in character 1,
so the algorithm saves (1, 2) and moves the cursor on to
the sixth character. There it finds another repeating se-
quence of three characters, encoded as (1, 3). Sequence
x1 is therefore encoded as:

LZ77(x1) = {(b, 0), (a, 0), (2, 1), (1, 2), (1, 3)} . (3)

The binary code length of the compressed file L(x)
can be deduced from the number C of pairs (i, `) used to
compress the original sequence. Let α be the alphabet of
the original sequence, it takes log2(|α|+L) bits to save i
(a position in the sequence or a character of the alphabet)
and log2 `i +O(log2(log2 `i)) to specify the length of the
sequence starting on character i. Hence, assuming L �
|α| and using Jensen’s inequality for convex functions
applied to the case of the logarithm [5], we get:

LLZ77(x) ≤ C log2(|α|+ L) +

C∑
i=1

log2 `i+

+O

(
C∑
i=1

log2(log2 `i)

)

≤ C log2 C + 2C log2

L

C
+O

(
C log2 log2

L

C

)
.

(4)

We then take the following as a reasonable approxima-
tion for the binary compressed image using LZ77:

LLZ77(x) ≈ C log2 C + 2C log2

L

C
. (5)

For sequence x1, we have L(x1) = 8, C(x1) = 5 and
therefore:

LLZ77(x1) = 5 log2 5 + 10 log2

8

5
= 18.390

CID(x1) =
LLZ77(x1)

L(x1)
=

18.390

8
= 2.299 .

(6)

We then conclude that the sequence x1 is not worth
compressing. However, if we duplicate the sequence, ob-
taining x2 = x1x1 = baababaabaababaa, the length of
the sequence L(x2) = 16 is doubled, but only one ex-
tra pair is needed to recover the sequence. In this case
LZ77(x2) = {(b, 0), (a, 0), (2, 1), (1, 2), (1, 3), (1, 8)} and
C = 6. Therefore:

Treball de Fi de Grau 2 Barcelona, January 2022



Shannon entropy, order and image compression Marta Grasa Lainez

LLZ77(x2) = 16.245 and CID(x2) = 2.031 . (7)

This new sequence requires less information per char-
acter than x1, but still is not worth compressing. By
repeating the process of adding the same sequence at the
end, we can decrease the CID (Fig. 2) until we obtain a
sequence worth compressing with CID ≤ 1.

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

x
10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
ID

Fig. 2. CID of a sequence xi consisting on repeating i
times the sequence x1 = baababaa.

This first happens for x7 =

7 times︷ ︸︸ ︷
x1 . . . x1, which has L =

56, LZ77(x7) = {(b, 0), (a, 0), (2, 1), (1, 2), (1, 3), (1, 48)},
C = 6, therefore:

LLZ77(x7) = 7.744 and CID(x7) = 0.968 . (8)

This serves as an example of the fact that the more
regularity (repeating sequences) in a file, the better the
LZ77 compression algorithm works. Therefore, the more
ordered an image is, the better the algorithm will be able
to compress it.

This same process is used to compress and compute
the CID of 2D images. However, in this case, the 2D
image of pixels is converted to a 1D sequence. This can
be achieved in various ways. Here, we will use the so
called Hilbert scan, which preserves locality [4].

II. IMAGES WITH A FIXED NUMBER OF
DOTS

As a first case, we measure the CID of black images
with the same number of white dots, in different stages
of progression from a square lattice to a random spatial
distribution of dots. We expect the CID to be minimum
in the lattice (maximum order) and maximum in the im-
age of random dots (minimum order).

As a starting point, we generate 1000× 1000 pixel im-
ages with 10000 dots in a square lattice (plus an image
of only the background). We then generate a series of
images where sections of the lattice are substituted by

the same number of random dots; see Fig. 3 for three
representative examples. This images are identified by
it’s order parameter χ4, obtained as:

χ4 =
1

N

N∑
i=1

e4iθi , (9)

where N = 10000 is the total number of dots and θi is the
angle formed between the lines joining a dot and its two
nearest neighbouring dots. We see that a square lattice
has χ4 = 1, while a set of random dots has χ4 = 0.

Fig. 3. Sections of the images corresponding to order
parameter (from left to right) χ4 = 1, 0.5035 and 0

We then check that all images have the same size (5266
KB), and compress them to .zip format (which uses the
LZ77 compressing algorithm). We then subtract the size
of the compressed background from the size of the com-
pressed images to compute the CID of only the dots. The
resulting CID in terms of the order parameter is plotted
in Fig. 4.

0.0 0.2 0.4 0.6 0.8 1.0

Order parameter

0.0

1.0

2.0

3.0

4.0

C
ID

10
-3

Dissolution of the lattice

Fig. 4. Representation of the CID of a dissolving square
lattice in terms of its order parameter.

We see that, at least in this case, the CID is closely
related to the order parameter of a set of dots; in fact
the CID decreases linearly as the number of dots in the
ordered phase increases. Therefore the CID can be used
to monitor the order in a given image.

Treball de Fi de Grau 3 Barcelona, January 2022



Shannon entropy, order and image compression Marta Grasa Lainez

III. IMAGES WITH A VARYING NUMBER OF
DOTS

In this section we will study cases in which the number
of dots in the image does not remain constant. We will
compare how the CID of images with square lattices of
increasing density and multiple iterations of a 2D frac-
tal compare to images containing the same amount of
randomly distributed dots. In all three cases we gener-
ate square images with 243 pixels on each side, with an
increasing number of dots. We expect images with ran-
dom organization of dots to have the maximum CID, and
that the CID increases with the number of dots up to a
maximum corresponding to half the pixels in the image.

A. Square lattice

For this case, we generate images with an increasing
number of dots N in a square lattice. For each image
we also generate an image with the same number of ran-
dom dots. We then check that they have the same size,
compress them, and subtract the size of the compressed
background to compute the CID of the sets of dots.

We expect the evolution of the CID to follow a more or
less flat line, as the compressed size of a regular sequence
such as a square lattice should not depend on the density
of the lattice. We can however expect some irregularities
due to the fact that the compression algorithm has to
convert a 2D image to a 1D sequence.

We see in Fig. 5 that the CID of dots in a square lattice
increases for small N , but reaches a point where it does
stabilize into a more or less flat line, decreasing slightly
due to the fact that adding dots increases L in Eq. (2)
while maintaining L.

0 5000 10000 15000 20000 25000 30000

Number of dots

0.000

0.005

0.010

0.015

C
ID

Random dots

Sierpinski carpet

Square lattice

Fig. 5. CID of dots organized at random, in a square
lattice and in a Sierpinski carpet, as a function of the
number of dots.

We can better see how the square lattice compares to
the random set in terms of the CID by plotting the ra-
tio (CID of square lattice)/(CID of random dots) for sets
with the same number of dots, as seen in Fig. 6. Here we
see that after a maximum at small N , the ratio decreases.
This maximum is most likely due to the conversion from

the 2D image to a 1D sequence before applying the LZ77
algorithm, as it disappears when dealing with 1D square
lattices (section V, appendix). This fact illustrates that
the step of converting 2D images to 1D sequences is crit-
ical to optimally compress them.

0 5000 10000 15000 20000 25000 30000

Number of dots

0.0

0.2

0.4

0.6

C
ID

/C
ID

 o
f 
ra

n
d
o
m

 d
o
ts Square lattice

Sierpinski carpet

Fig. 6. Ratio CID/(CID of random dots) for sets with
the same number of dots, for square lattices and the
first five iterations of the Sierpinski carpet.

B. Fractal: Sierpinski carpet

Once checked how the CID varies in terms of N for a
regular square lattice, we ask weather this behavior re-
mains for more complex patterns, such as fractals, which
are also “ordered” in that they posses scale invariance.
In particular, we now study the case of the Sierpinski car-
pet, whose first three iterations are represented in Fig. 7.

Fig. 7. First three iterations of the Sierpinski carpet.

We generate for each iteration an image of the car-
pet and another image with the same number of random
dots, plus one background image. We then check that all
images have the same size, compress them to .zip format
and subtract the size of the compressed background to
compute the CID.

We first notice that the CID is lower for the dots in the
fractal than for the dots distributed at random (see Fig.
5). However, unlike for the square lattice, the CID for the
fractal set increases with N , and this seems to happen in
a potential manner. One can hypothesize that this is due
to the fact that, even if the dots are “ordered”, this order
becomes more complex with each iteration due to scale
invariance, and that therefore, the amount of information
per character increases in each iteration.

Treball de Fi de Grau 4 Barcelona, January 2022



Shannon entropy, order and image compression Marta Grasa Lainez

To better see how the CID of the fractal compares to
the CID of random dots, we plot their ratio for sets with
the same N . We find that the potential-like increase in
the CID for successive iterations of the Sierpinski carpet
is maintained; see Fig. 6. This suggests that the Hilbert
scan together with the LZ77 compression algorithm is
not effective for detecting scale invariance.

IV. CONCLUSIONS

• We have shown that the CID can be a good indi-
cator of the order parameter in a process in which
a set of randomly distributed dots orders itself into
a square lattice. In the case of a 2D square lattice,
the CID increases with the number of dots until it
reaches a point where it starts to decrease slowly.

• The observed increase is related to how we trans-
form the 2D image into a 1D sequence before com-
pression, highlighting the significance of this step.

• In the case of the Sierpinski carpet, which we have
taken as an example of a scale invariant fractal, the
CID increases with the number of dots, but never
reaching the CID of the same number of randomly
distributed dots. This distinguishes this case from
the periodic (such as 111111...), quasiperiodic (such
as the Fibonacci word) and pseudorandom (such as
the digits of π) sequences studied in the supplemen-
tary information of [1]. Compression of fractals is
thus interesting and will be the subject of further
study in the soft condensed matter lab led by Prof.
Fernandez-Nieves.

V. APPENDIX: 1D SQUARE LATTICE

To check weather the initial increase with N in the case
of the square lattice are due to the conversion of the 2D
image to a 1D sequence, we repeat the process outlined
in section III A with images only one pixel wide. The
results are plotted in Figs. 8 and 9. In Fig. 8 we see that
the CID behaves similarly to the way it did for the case
of the 2D image, starting with a small increase followed
by a stabilization with a slight downward slope. In Fig. 9
we observe that the trend is similar to that series corre-
sponding to a square lattice in Fig. 6, but the maximum

observed there does not appear. This suggests that the
maximum may have been caused by the scanning of the
image to convert it to a 1D sequence before compression.

20 40 60 80 100 120

Number of dots

0.00

0.10

0.20

C
ID

Dots in the lattice

Random dots

Fig. 8. CID of sets of dots in a 1 pixel wide image,
ordered at random and in a square lattice, as a function
of the number of dots in the set.

20 40 60 80 100 120

Number of dots

0.0

0.2

0.4

0.6

C
ID

/C
ID

 o
f 

ra
n

d
o

m
 d

o
ts

Fig. 9. Ratio CID/(CID of random dots) for sets with
the same number of dots, for 1D square lattices.

Acknowledgments

I would like to thank my advisors, Alberto Fernandez-
Nieves and Ramon Planet, for their guidance and input.
I am also grateful to my friends for keeping me sane in
this times of covid restrictions, and to my family for their
unconditional support.

[1] S. Martiniani, P. M. Chaikin, D. Levine: Quantifying Hid-
den Order out of Equilibrium, Phyisical Review X 9, 01131
(2019).

[2] C. E. Shannon:A Mathematical Theory of Communica-
tion, Bell System Technical Journal 27, 379 (1948).

[3] A. Lempel, J. Ziv: A Universal Algorithm for Sequen-
tial Data Compression, IEEE Transactions on Informa-
tion Theory 23, 337 (1977).

[4] A. Lempel, J. Ziv: Compression of Two-Dimensional
Data, IEEE Transactions on Information Theory 32, 2
(1986).

[5] P. C. Shields: Performance of LZ Algorithms on Individual
Sequences, IEEE Transactions on Information Theory 45,
1283 (1999).

Treball de Fi de Grau 5 Barcelona, January 2022


