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Advisor: José M. Fernández-Varea

The purpose of this work is to study the non-relativistic ground-state energy of 2-electron atoms
and ions by means of variational methods. We incorporate radial correlation effects considering an
open-shell wave function with different spatial orbitals. First, the corresponding analytical expres-
sions for the energy of the system as a function of the variational parameters must be deduced.
Then, the energy is minimized following two methods. The results for various values of Z are com-
pared to more sophisticated calculations. Lastly, the magnetic susceptibility and the atomic form
factor for these systems, introducing radial correlation, are considered.

I. INTRODUCTION

Given their simplicity, hydrogen atoms and hydrogen-
like ions are systems with an exact solution. These sys-
tems have been widely covered over the years by physi-
cists. However, for the helium atom and other two-
electron ions there is no exact solution and, consequently,
they have been a topic of high interest for many years.

The understanding of these systems has been decisive
in a variety of fields, such as astrophysics. For exam-
ple, studying the case for Z = 1, that is, the negative
hydrogen ion. It plays an important role in the Sun’s
surface, being crucial to understand its emission and ab-
sorption properties [1]. Negative hydrogen also appears
to be key in other processes, for instance, for upcoming
nuclear fusion machinery [2].

Different methods have been considered in order to
obtain a better analytical approximation to the exact
energy of 2-electron atoms. Perhaps one of the most
well-known is the Hartree–Fock method. Instead of using
hydrogen-like orbitals with an effective charge, it deter-
mines its functional form with the variational method.
Doing so gives an improvement of the energy with re-
spect to the simple variational method, nonetheless, it
fails to consider possible correlation effects.

The aim of this paper is to incorporate radial corre-
lation in our calculations. This has been done before in
quite a few publications, such as in the works of Eckart [3]
or those of Shull and Löwdin [4], with very satisfactory
results.

There are many ways to introduce radial correlation
into the wave function, but it is not clear for all them
what interpretation each term has. The wave function
adopted here introduces correlation by simply consider-
ing an open-shell wave function with different spatial or-
bitals, using exponential functions as the orbitals.

Hartree atomic units (ℏ = e = me = 1) are used
throughout this report.
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II. THEORETICAL CONSIDERATIONS

In this first section we give a concise theoretical back-
ground of the various topics we will be discussing in this
work. The results for each module shall be expected in
the following section, as well as a brief discussion along-
side them.

A. Ground state for two-electron atoms and ions

The non-relativistic electrostatic Hamiltonian for
helium-like atoms is given by

H = −1

2
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− Z
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− Z

r2
+

1

r12
, (1)

where r12 = |r1 − r2| and Z is the atomic number. The
first two terms are the kinetic energy contribution, the
following two correspond to the electron-nucleus poten-
tial and the last one introduces the electron-electron re-
pulsion.
Since the Hamiltonian does not depend on spin, the

wave function can be factorized into spatial and spin
functions, where the spin function is appropriately anti-
symmetrical, χ0,0(1, 2). We shall focus on the former.
First we will review the simple variational method with

one parameter. This method proposes that each electron
partially screens the nuclear charge Z, thus we can as-
sume that each electron “sees” an effective nuclear charge
Zeff < Z. For instance, if we take as a trial wave function
a Slater determinant with analytical hydrogenic orbitals
and compute all the matrix elements, we get that the con-
dition of minimum energy is satisfied with Zeff = Z− 5

16 .
We will compare the success of this result with others
methods in the following sections.
In the present work, as a trial spatial wave function for

these systems we use [1]

Ψ(r1, r2) = N 1

4π
(e−ar1 e−br2 + e−br1 e−ar2), (2)

where N is the normalization constant whereas a and b
are the parameters we want to determine using the varia-
tional method. The election of this particular functional
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form arises from the requirement to have a different spa-
tial orbital for each electron, labelling the nuclear charge
seen by each of them with a and b, thus breaking the sym-
metry between them and introducing radial correlation
explicitly.

To obtain the matrix elements of H some integrals
need to be solved, in particular the kinetic energy T , the
electron-nucleus potential Ven and the electron repulsion
potential Vee that result in the expectation value of the
Hamiltonian

E(a, b) = ⟨Ψ|H|Ψ⟩ = T + Ven + Vee. (3)

B. Minimization with two parameters

The variational energy Emin is given by the minimiza-
tion of E(a, b). Minimizing this expression the usual way
results in a non-linear system of two equations that can-
not be solved analytically, and a numerical resolution is
needed. The use of any standard minimization algorithm
is enough to obtain the best minimum. We have used
a generic two-dimensional simplex subroutine written in
the programming language C [5], giving it a precision of
10−15 and letting it run for a maximum of 106 iterations.
It is worth noting that this type of algorithm heavily re-
lies on the initial value given to it.

C. Minimization with one parameter

The minimization of E(a, b) can be also done employ-
ing a scaling method and the virial theorem. For in-
stance, for our wave function in Eq. (2) we can set

a = η (1 + ν) and b = η (1− ν), (4)

where η can be referred to as “scale factor” [2], as it
appears when the distance variables r1 and r2 are trans-
ferred to a new scale by being rewritten as ηr1 and ηr2,
while ν can be referred as the “splitting factor” since if
we take ν = 0 Eq. (2) transforms into a doubly-occupied
orbital, but when ν ̸= 0 the orbitals are different and
each of them has only one electron.

To obtain the minimum of the ground-state energy, we
must note that the kinetic and potential energies follow
these properties [6] regarding the scale factor η: V (η) =
η V (1) and T (η) = η2 T (1), where T (1) and V (1) are
the matrix elements of the kinetic energy and potential
energy operators setting η = 1 in our trial wave function,
Eq. (2). Then, the expression for the ground state energy
is

E(η) = η V (1) + η2 T (1) (5)

which minimized with respect to η yields

ηmin = − V (1)

2T (1)
and Emin = − V 2(1)

4T (1)
. (6)

Once T (1) and V (1) are computed analytically by evalu-
ating two quite straight-forwarded integrals, we can sub-
stitute them in the expression for Emin, Eq. (6), and then
minimize it with respect to ν using any standard method.
We have used a one-dimensional simplex algorithm in C.
The scale factor is then found through the expression for
ηmin.

D. Magnetic susceptibility

The magnetic susceptibility χm is a measure of how
much a material will become magnetized in an applied
magnetic field. Whether χm is positive or negative will
classify this material into two categories: if the material
responds with an alignment with the magnetic field, that
is, χm > 0, it is called paramagnetic. Otherwise, if it
responds with an alignment against the magnetic field,
χm < 0, it is diamagnetic.
The expression for the magnetic susceptibility is

χm = −NA re
6

N r2, (7)

where NA = 6.022 140 76×1023 mol−1 (Avogadro con-
stant), re = 2.817 940 3262×10−13 cm (classical electron
radius), N is the number of electrons and

r2 ≡

〈
Ψ

∣∣∣∣∣ 1N
N∑
i=1

r2i

∣∣∣∣∣Ψ
〉
, (8)

where Ψ is the ground-state wave function. We will study
the case Z = 2, that is, the helium atom. Specifically,
we want to see how χm is affected by radial correlation
in the trial wave function.

E. Electronic density and atomic form factor

We will now focus on the electronic density and the
atomic form factor of the two-electron systems using our
trial wave function. The atomic form factor is deeply
connected to the cross sections for radiation interaction
processes, that involving elastic collisions between pho-
tons and matter being the most obvious, such as Rayleigh
scattering. Rayleigh scattering is the process in which a
photon is elastically scattered by bound atomic electrons,
that is, without the targeted atom being excited. Thus,
the state does not change and the incident photon energy
is the same as the scattered photon energy. This process
is also called coherent because interference effects caused
by different parts of the atomic distribution appear.
In order to calculate the atomic form factor, first we

need to obtain the expression for the electronic density,
given by

ρ(r) =

∫
. . .

∫ ∣∣Ψ(r, r2, . . . , rN )
∣∣2 d3r2 . . . d3rN . (9)
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The atomic form factor F (q) [7] for an atom with
atomic number Z is defined as

F (q) =

〈
Ψ0

∣∣∣∣∣∣
Z∑

j=1

exp(iq · rj)

∣∣∣∣∣∣Ψ0

〉
, (10)

where Ψ0 is the ground-state wave function, the sum cov-
ers the Z atomic electrons and q is the momentum trans-
fer vector with modulus q. The atomic form factor can be
also expressed as the Fourier integral of the total electron
density ρ(r)

F (q) =

∫
ρ(r) exp(iq · r) d3r. (11)

Considering the spherical symmetry of the atom, the an-
gular part of the integral can be computed analytically
and we get the simplified expression

F (q) =

∫ ∞

0

ρ(r) j0(qr) 4πr
2 dr, (12)

where j0(x) = (sinx)/x is the spherical Bessel function
of the first kind and order 0.

F (q) is a monotonously decreasing function of q, going
from F (0) = Z to F (∞) = 0, in such a way that it favors
the before-mentioned Rayleigh scattering towards small
angles.

III. RESULTS AND DISCUSSION

A. Ground-state energy

The first calculation made in order to obtain the
ground-state energy is the normalization constant, that
results in

N =

[
1

8a3b3
+

8

(a+ b)6

]−1/2

. (13)

We also need expressions for the kinetic energy, the
electron-nucleus potential and the electron-electron po-
tential, and after doing some calculations, we attain the
following

T = N 2

[
a2 + b2

16a3b3
+

8ab

(a+ b)6

]
, (14)

Ven = −N 2Z

[
a+ b

8a3b3
+

8

(a+ b)5

]
, (15)

Vee = N 2

[
a2 + 3ab+ b2

8a2b2(a+ b)3
+

5

2

1

(a+ b)5

]
. (16)

With these expressions we finally obtain the expectation
value of the Hamiltonian, Eq. (3). Defining α = a + b
and β = ab, the energy for the ground state reads

E(a, b) =
8β3α6

α6 + 64β3

[
− Z

(
α

8β3
+

8

α5

)
+

a2 + b2

16β3
+

8β

α6
+

a2 + 3β + b2

8β2α3
+

5

2α5

]
.

(17)

As a way of checking that this expression is correct, we
can make the substitution a = b = Zeff in Eq. (17) and
then confirm that it becomes the result for the simple
variational method with same orbital electrons EZeff

=
−Z2

eff . Indeed, the expression found satisfies this simple
condition. Furthermore, this result is in full accord with
calculations made similarly by other researchers [1–4, 8].

B. Minimization of the energy

The two-parameter function E(a, b), once we minimize
it employing the simplex subroutine, leads for Z = 1 to
the best minimum Emin = −0.513 303 for a = 1.0392 and
b = 0.2832. The interpretation of this result is that since
H− is weakly bound, one electron is close the nucleus
while the other one is far from it, that is, an almost un-
screened hydrogen atom and a very loose electron, hence
the small ionization potential.

TABLE I: Ground-state energies EZeff obtained from the sim-
ple variational method, EHF obtained from the Hartree–Fock
method, Enr the non-relativistic energies and Emin obtained
from Eq. (17) for different values of Z with optimized param-
eters a and b.

Z EZeff EHF Enr Emin a b

1 −0.4727 −0.487 93 −0.527 75 −0.513 30 1.039 0.283

2 −2.8477 −2.861 68 −2.903 72 −2.875 66 2.183 1.189

3 −7.2227 −7.236 42 −7.279 91 −7.248 75 3.295 2.079

4 −13.5977 −13.611 30 −13.655 57 −13.622 97 4.390 2.985

5 −21.9727 −21.986 24 −22.030 97 −21.997 55 5.474 3.901

The results for other values of Z are presented in Table
I. It shows a collection of energies obtained from different
methods: two taking radial correlation into account and
two without it. These last two are EZeff

, the energy de-
rived from the simple variational method and EHF, the
energy obtained from the Hartree–Fock method. The
other two are the exact non-relativistic energy Enr [2]
and Emin, the energy obtained using our trial wave func-
tion, Eq. (17). The table includes the values for a and b
obtained for each minimization of Eq. (17).
These results bear out the importance of general spa-

tial correlation, in our particular case, radial correlation.
When the nuclear charge increases, the correlation en-
ergy between electrons of opposite spins becomes less
important. It is observed that introducing the split-
ting orbitals, the energy obtained has a better upper
bound than the energy calculated by the simple varia-
tional method, for instance. It can also be observed that
while the Hartree–Fock energies present an improvement
with respect to those obtained from the simple varia-
tional method, they also fail to give a better upper bound
for Z = 1. This brings out the importance of taking cor-
relation into account, as the Hartree–Fock method does
not consider it.
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FIG. 1: Contour plots of E(a, b), Eq. (17), for Z = 1 (top) and
Z = 2 (bottom). The contour lines (from outer to inner) are
−0.50, −5.06, −0.51 for Z = 1 and −2.871, −2.873, −2.874,
−2.875 for Z = 2.

TABLE II: Ground-state energies Emin obtained through the
scaling method with their corresponding ηmin and νmin as well
as the derived parameters a and b.

Z Emin ηmin νmin a b

1 −0.513 303 0.6612 0.5717 1.0391 0.2832

2 −2.875 662 1.6859 0.2950 2.1831 1.1885

3 −7.248 750 2.6869 0.2263 3.2949 2.0709

4 −13.622 966 3.6872 0.1904 4.3895 2.9848

5 −21.997 540 4.6873 0.1677 5.4734 3.9012

The minimum, displayed in Fig. 1 with a cross, un-
doubtedly requires a ≫ b (or vice-versa), i.e. two very
different orbitals. Several values of the energy have been
drawn in these figures and it is clearly seen how each level
approaches more the minimum.

As mentioned above, there is an alternative way of
minimizing the energy through a one-parameter function.
The numerical results for this method are listed in Table
II. We can see that the minimized energy and the pa-
rameters a and b match with very small relative error to
those found with the two-parameter function (Table I).

C. Magnetic susceptibility

In order to obtain the magnetic susceptibility first we
need to compute the expected value for r2. Making use
of Eq. (8) we end up with the expression

r2 = N 2

[
3

16

a2 + b2

a5b5
+

96

(a+ b)8

]
. (18)

For our particular case, we input N = 2 for the number
of electrons. First, we can take the standard effective
nuclear charge Zeff for both a and b with Z = 2. Doing
so we arrive at the value

χm = −1.67×10−6 cm3/mol.

If we input the optimised parameters a = 2.1832 and
b = 1.1885 for Z = 2 (Table I), we get

χm = −1.95×10−6 cm3/mol.

As it is well known, helium is diamagnetic. The experi-
mental value is [9]

χm = −2.02×10−6 cm3/mol

and it is observed that the value obtained with our trial
wave function has a small relative difference with it,
whereas the one obtained with Zeff differs more.

D. Electronic density and atomic form factor

Introducing our trial wave function, Eq. (2), in the
above-mentioned expression for ρ(r), Eq. (9), and taking
α = a+b and β = ab we get the following electron density

ρ(r) =
1

4π

2α3

α6 + 64β3

[
a3α3e−2ar

+ 16β3e−αr + b3α3e−2br
]
.

(19)

To make sure the calculation is right, it has to follow
the normalization condition

∫∞
0

ρ(r) 4πr2 dr = N , which
indeed it does. Once we have this result we can finally
compute it into Eq. (12) and obtain, once again taking
α = a+ b and β = ab, the following expression

F (q) =
4α3

α6 + 64β3

[
4a4α3

(q2 + 4a2)2

+
32β3α

(q2 + α2)2
+

4b4α3

(q2 + 4b2)2

]
.

(20)

This expression is in complete accord with reference [10].
Doing the simple substitution a = b = Zeff we recover
the atomic form factor for hydrogenic orbitals multiplied
by 2, which supports its correctness.
The representation of F (q) can be observed in Fig.

2, along with the atomic form factor obtained from a
radially correlated Hartree–Fock wave function [7]. The
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FIG. 2: Top: Atomic form factor of He obtained from
a Hartree–Fock wave function with correlation [7] (dashed
curve) and from Eq. (20) (solid curve). Bottom: Relative dif-
ference, in %, bethween the Hartree–Fock form factor and the
one obtained from the wave function (2) with a and b from
Table II (solid curve) or taking a = b = Zeff (dashed curve).

two curves are very close to each other as, in fact, our
radial correlation also gives a good approximation for the
atomic form factor. Taking a look at the figure below,
one can notice that there is, overall, a smaller relative

difference between the Hartree–Fock form factor and ours
than with the one obtained from Zeff . For small values
of q, this difference is negligible, while for larger values
it quickly starts to increase.

IV. CONCLUSIONS

Introducing radial correlation in the trial wave function
for two-electron atoms, even if it is just implicitly, has a
great impact in the corresponding ground-state energy.
It is more noticeable for smaller values of Z. In fact,
radial correlation gives a bound that allows H− to exist.
This means that correlation effects are greater in these
two-electron systems than in other many-electron atoms.
The minimization of the energy can be achieved using

two different methods: a two-parameter method or a one-
parameter one. The relative error between both results
is very small.
Radial correlation also contributes to improving the

result for the magnetic susceptibility, better than just
using the simple variational method with Zeff .
The electron density and therefore, the atomic form

factor, also get improved introducing our trial wave func-
tion. For smaller values of the momentum transfer it
follows quite exactly the desired form.
In this work we have focused on radial correlation,

which has been proved to be a good approach, but one
could also add angular correlation to the wave function,
which may prove to also have very satisfactory results
[2, 11].
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José Maŕıa, as his kind assistance and advice have been
essential for this work. Thank you for showing me how
entertaining physics can be.

[1] S. Chandrasekhar, The negative ions of hydrogen and
oxygen in stellar atmospheres, Rev. Mod. Phys. 16 (1944)
301–306.

[2] H. Høgaasen, J. Richard and P. Sorba, Two-electron
atoms, ions, and molecules, Am. J. Phys. 78 (2010) 86–
93.

[3] C. Eckart, The theory and calculation of screening con-
stants, Phys. Rev. 36 (1930) 878–892.
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