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Abstract: More than 4 million astronomical sources extracted from the Sloan Digital Sky Survey
catalog have been used to train a set of machine learning models, selected with a benchmarking
program, in order to identify the best basic classifier of astronomical sources for future observations.
We have also applied different filters to our dataset that modify its selection function, measuring
the accuracy of the selected model to evaluate under which observational constraints this model
performs better.

I. INTRODUCTION

The universe is composed of various objects of different
shape, size and color. In order to understand the universe
we first need to classify the objects that make it up.

For centuries [1], our ancestors have been looking at
the sky to understand what kinds of objects were in the
universe. From the Egyptians to the present day, hu-
manity has created thousands of different astronomical
catalogs [2].

The goal of all of them is to collect observations (mea-
surements) of astronomical objects made with one or
more instruments and to combine them into a unique ho-
mogeneous description. This enables anybody interested
in the study of a given class of sources to compare their
properties on an equal basis. Now, with more extensive
and higher quality catalogs, we can perform this study
in a better way. This work focuses on the classification
of astronomical light sources into the three fundamental
classes of stars, galaxies and quasars.Specifically, we do
this using Machine Learning (ML) techniques, a type of
artificial intelligence that is very useful in cases like this
where there are zillions of objects to classify.

The catalog we will use is the Sloan Digital Sky Survey
(SDSS), a blind imaging and spectroscopic astronomi-
cal survey gathering data at optical wavelengths from
a dedicated wide-angle telescope of 2.5 meters located
at Apache Point Observatory in New Mexico [5]. This
database, specifically its Data Release 16 (DR16) [4],
contains a long list of measurements for hundreds of mil-
lions of astronomical objects that will be explained later
in more detail. We will use the fact that astronomical
sources of a given type or class share a set of common
characteristics to train a machine learning model capa-
ble of making an automated classification of future survey
targets.

II. DATASET

The SDSS-DR16 dataset includes diferent types of in-
formation: imaging, photometric and spectroscopic, as
well as cross-matches with observations from other large-
scale surveys. We have focused this study on primary
and secondary SDSS objects with reliable photometry
and listed also in mid-IR AllWISE catalog.

The photometric data from the SDSS come in five op-
tical broad-band filters: u(λ = 0.355µm) and g(λ =
0.469µm) and r(λ = 0.617µm) and i(λ = 0.748µm)
and z(λ = 0.893µm) [3] that are used to calculate up
to 5 different measures of the total flux each object in
our dataset: psfMag, measures the total flux deter-
mined by fitting a PSF point spread function model to
the object; modelMag, calculates the magnitude from
the best fit using a de Vaucouleurs function or an expo-
nential one; cModelMag, composite magnitudes, calcu-
lates the total magnitude by fitting a linear combination
of de Vaucouleurs + exponential profiles; petroMag,
the Petrosian magnitude, a way of calculating the total
magnitude by measuring a constant fraction of the total
light, regardless of the distance to the object and that
is unaffected by extinction; modCorrected, extinction-
corrected modelMag.

For its part, the WISE dataset provides magnitudes in
4 mid-infrared bands: w1(λ = 3.4µm), w2(λ = 4.6µm),
w3(λ = 12µm) and w4(λ = 22µm) [4].

The data have been extracted using SQL-queries and
the CasJobs program of the SkyServer webpage of
the SDSS. Our DR16 dataset includes 3648512 unique
sources, for which we have spectroscopic, photometric
and infrared information. These sources are classified
by SDSS according to whether they are stars (”STAR”),
galaxies (”GALAXY”) or quasars (”QSO”). This classi-
fication was done by first observing whether the source
was extended or not, classifying it as a galaxy or a star re-
spectively [5]. Then, together with the redshift estimates
of the sources, it was possible to differentiate between
stars and quasars. Currently, for spectroscopic targets,
classification is made by comparing different predefined
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models of spectra with their observed spectrum. [6].

To train a ML model we need first to clean the dataset,
removing invalid and doubtful data. This has been done
by performing the following operations: (1) we have en-
sured that there are no duplicate entries, or objects with
infinite magnitudes (NaN); (2) we have also eliminated
sources with invalid apparent magnitudes (those with
negative or deliberately high values, like 9999); (3) we
have kept only objects with a value of zWarning, a pa-
rameter provided by the dataset, equal to 0 (indicates no
error) and 16 (indicates a source with noise but does not
necessarily mean an error); (4) finally, we have removed
data with a PSF r-band magnitude greater than 24 to
avoid what appears to be a failure in the data processing
(see Fig. 1). In total we have eliminated 209,888 sources
with errors. With all this we have a clean dataset of
3,438,624 celestial objects of which 2,374,624 are galax-
ies, 517,101 quasars and 546,899 stars (see Fig. 1), the
abundance ratios being [4.59, 1.0, 1.05], respectively.

From this cleaned dataset, 80% will be used for train-
ing and validating the model, while the remaining 20%
will be used later to test the accuracy of our ML methods
(Sec. V).

FIG. 1: Distribution of the different classes of sources
according to the PSF magnitude in the r band. Note the

anomalous peak near 25 mag that may result from a glich in
the photometric pipeline and that has led us to eliminate

from our sample objets with psfMag > 24.

III. MODELLING

ML methods use a training dataset to determine which
functions are best suited to obtain the expected classi-
fication results, both in terms of accuracy and process
execution time. In this work, we will compare a large set
of different classifiers after doing some previous prepro-
cessing of the clean data.

A. Types of Algorithms

Most of the classifiers that we are going to compare
are based on the following commonly used supervised
classification methods:

• Decision trees: Based on a tree structure. It uses
a set of ”if-then” style rules that are mutually ex-
clusive and exhaustive for classification. It is a top-
down algorithm. The attributes at the top of the
tree have the greatest impact on the ranking. The
number of branches we choose will depend on the
number of objects in the training set.

• Naive Bayes: Based on Bayes theorem, assum-
ing that the features are conditionally independent.
That is, each of the features of an object will influ-
ence the final classification of that object.

P (c|X) = P (x1|c)× P (x2|c)× ...× P (xn|c)× P (c) (1)

– P (c|x) is the posterior probability of class
(target) given predictor (attribute)

– P (c) is the previous class probability

– P (x|c) is the given class probability of the pre-
dictor

– P (x) is the past predictor probability

It is an algorithm to be taken into account for very
large datasets, like ours, since the training time is
linear, it does not scale with the size of the dataset.

• K-nearest Neighbor (KNN): Based on classi-
fying the data by looking for the ”most similar”
points by proximity learned in the training stage.
With this algorithm we estimate the density func-
tion (F (x/Y j)) of the variables x for each class Yj.
The algorithm stores the characteristic vectors and
class labels of the training examples. To make the
predictions, the vectors are represented in the char-
acteristic space for the elements we want to predict,
and the distance between stored vectors and the
new vector is calculated. The k closest examples
are selected. The new vector (belonging to the ob-
ject to predict) is classified with the class that is
most repeated in the selected vectors.

B. Pre-Processing

Before one can benchmark the classification algo-
rithms, it is necessary to prepare the clean dataset sub-
jecting it to a preprocessing that consists on the following
three steps:

1. Sampling: There is the option to choose a sub-
set of data from our dataset to train our model.
This must be done very carefully so as not to hide
information from the algorithm.
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2. Encoding: Classification algorithms only work
with numerical data (some even only with inte-
gers!). In order to pass our variables to the model
we will use the labelEncoder. This encoder as-
signs a number to each distinct category. We have
only one categorical variable, our ”label”. The as-
tronomical source classification. So the function of
this encoder will be as follows:

[GALAXY, STAR,QSO] → [0, 1, 2]

3. Scaling: In this process all the variables are trans-
formed within the same range. That is to say, all
the magnitudes have the same measurement scale.
We will use the so-called MinMaxScaler, which
transforms all quantities between 0 and 1.

IV. BENCHMARKING

There are different scores that can be used to com-
pare classifiers. Here, we will deal with two of the most
relevant, namely, accuracy and training time.

The TABLE I lists the classifiers benchmarked with
the values of accuracy ordered from highest to lowest.

The most important factor in choosing a classifier is by
far the accuracy. However, we can see that some classi-
fiers have identical accuracy values. In this case, one has
to pay attention to the training time. Note that the clas-
sifier that takes the longest time is kNN brute, which
uses a brute force algorithm. In comparison, the kNN
Tree which uses a decision tree algorithm, gives the same
accuracy but is about 70 times faster!

Among the top five algoritms the ”HistGradBoost”
classifier offers the best training time. However, given
that the relatively modest size of our dataset, we have
given full preference to the accuracy, so our preferred
choice is the Random Forest (RF) Entropy, with an ac-
curacy of 0.982 and a training time of 584 seconds.

The RF estimator use bagging (picking a sample of n
< N observations rather than all of them) and random
subspace method (picking a sample of k ≤ K features
rather than all of them, called attribute bagging) to grow
a tree. They work very well with large datasets like ours.

But before a RF classifier can be applied to a dataset
one must determine what the optimal number of estima-
tors (decision trees) given the the number of observations
available from the dataset. To find out which is the best
value for us, we have created a program that measures
the accuracy of the RF classifier for three different ways
of choosing the subset of features:

• sqrt uses a random subset considering
√
nfeatures

where nfeatures is the number of features in our
dataset.

• log2 uses log2(nfeatures) features for each split.

• none algorithm uses all features instead of choosing
a random subset.

Classifier Accuracy Training-Time (s)

RF entropy 0.982 584.009

RF gini 0.982 948.446

ExtraTrees 0.981 89.944

Bagging 0.980 115.177

HistGradBoost 0.980 37.903

kNN ball tree 0.979 5933.081

kNN kd tree 0.979 510.750

kNN brute 0.979 36311.472

GradientBoosting 0.972 2443.474

SGD L1 0.971 3.981

Calibrated-CV 0.970 167.692

LibLinear SVC L2 0.969 16.546

DecisionTree 0.968 70.771

LibLinear SVC L1 0.966 403.401

Ridge CV 0.965 2.961

Ridge Auto 0.965 1.309

Passive-Aggressive 0.964 2.462

SGD Elastic-Net 0.964 3.664

SGD L2 0.963 2.393

Perceptron 0.957 2.217

AdaBoost 0.930 203.204

GaussianNB 0.746 1.957

MultinomialNB 0.691 1.004

BernoulliNB 0.691 1.007

NearestCentroid 0.659 0.887

TABLE I: Accuracy and training time values for each
classifier tested. All of them have been extracted from the

Scikit-Learn python package. [7]

FIG. 2: OOB error rate vs. the number of estimators in
our random forest classifier.

Fig. 2 shows on the Y axis the out-of-bag (OOB) error,
giving the average of the error for each of the observations
calculated from the predictions using a different number
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of trees (n estimators). The RFs are trained using boot-
strap aggregation, where each new tree is trained from a
bootstrap sample of the observations. The three curves
shown correspond to different ways of choosing the sub-
set of features of the classifier, i.e. the size of the random
subsets of features when spliting a node. As the number
of estimators grows, all curves tend asymptotically to a
minimum value of the OOB error shape. This implies, in
principle, that the higher the number of estimators, the
better the model (assuming the model has no overfitting).
However, since more estimators also means more CPU
consumption and one can see from Fig. 2 that above 300
estimators all three curves tend to stabilize, we have set
the optimal number of trees to 371, for which we obtain
the best error value for the sqrt algorithm.

V. FEATURE SELECTION

With our classifier fully set, the next step is to select
which features of our dataset are the most relevant and
discard those that only add noise to the outcome. We
have implemented two feature selection methods: one
manual and one automated.

For the automated one we have implemented a small
python script with a recursive variable elimination
method. The idea is very straightforward: we train and
evaluate the model with an increasing number of features
each time. This will give us the score for each subset of
features used. So, we will keep the one with the highest
score.

We find out that, for our dataset, adding features to
the model increases the score we obtain, up to a criti-
cal value, which in our case is 16 features, among which
there are: CModelMag magnitudes, PSF, ModelMag and
WISE magnitudes.From this point on, the score slowly
drops. This is due to the fact that the model uses fea-
tures that do not contribute value at the time of the
classification, they only hinder the model and contribute
noise.

For the manual selector we will check the scores ob-
tained by the model when training it with different
groups of magnitudes present in the dataset that we
will choose conscientiously. We will analyze the differ-
ent groups: [modcorrected, mod, petroMag, cmod, psf,
and each one with Wise Magnitudes].

In Fig. 3 we obtain a higher score using the PSF mag-
nitude together with the Wise Magnitudes. We also see
that for all the magnitudes we will obtain a better score
if we put them together with the Wise magnitudes. We
should not be surprised, because our dataset is very large
and these magnitudes give us other relevant information
independent of the other magnitudes. That is, the infor-
mation provided by the Wise magnitudes does not over-
lap with the photometric magnitudes. They are indepen-
dent of each other.

FIG. 3: Histogram of the accuracy values obtained by
training our random forest classifier for each of the groups.

VI. FILTERS

In this section we will apply some filters to the dataset
to see what changes they imply in the accuracy of the
model.

A. Redshift

The astronomical redshift, z, is an extrinsic feature of
astronomical sources that provides information on their
radial velocity (if stars) or on their comoving distance
from us (if galaxies and quasars). For the latter, a high
value of z may also require to take into account evolu-
tionary and cosmological corrections for some of the ob-
servables. In this section, we proceed to determine how
the quality of the classification varies as a function of the
value of this parameter.

Fig. 4 shows that the classification for low redshift
sources is much better and more accurate (the model
score is higher) than for high redshift sources. This indi-
cates that the model can better learn and correlate the
magnitudes and therefore provide an improved classifica-
tion. When we increase the redshift, we include ”biased”
(uncorrected) observations that add noise to the model.
To get rid of this bias and provide correct information we
would have to take into account the absolute magnitude
of the objects, not the apparent one.
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FIG. 4: Values of the accuracy obtained by training our
RFC with subsets of sources below a given redshift.

B. Magnitude

This filter impose an upper value for the PSF magni-
tude in the r-band. We observe that for low and high
magnitudes we obtain worse scores than for magnitudes
around 16, where the accuracy peaks.

It is worth noting that in this case something different
from the case of the redshift filter happens. We obtain
low accuracy at low magnitudes due to the lack of data in
the subset. We lack data to complement the model. On
the other hand, we obtain a similar result for the redshift
filter at high magnitudes. The model is worse for these
cases. That is, when we increase the sources with higher
magnitude we introduce noise in the model.

C. Galactic Latitude

With this filter we will train the RFC with subsets of
sources split by galactic latitude (symbol b), one of the
two coordinates of a celestial coordinate system centered
in the Sun which measures the angle of a source north-
ward of the galactic equator as viewed from our star.

As we can see in Fig. 5, the farther away the values
of b from the galactic equator, the better the accuracy.
This is because high latitudes are less affected by the
extinction from the dust in the galactic disk.

FIG. 5: Values of the accuracy obtained by training our
RFC with the subsets of sources below a given b.

VII. CONCLUSIONS

We used a dataset with more than 4 million astro-
nomical sources extracted from the SDSS-DR16 to train
a series of ML models to classify astronomical sources in
order to find the best suited for this type of problem when
using only photometric data. After cleaning our dataset
of incomplete and/or doubtful data, the best model has
proven to be a Random Forest classifier. We have also
applied several filters to our clean dataset to determine
the role played by different extrinsic and intrinsic observ-
ables on the accuracy of the classification. We have found
that the optimal classifier achieves better scores for low
redshift values and for PSF magnitudes around 16 mag
(r-band). The accuracy also improves when one selects
sources farther away from the plane of the Galaxy, which
is understandable since these sources are less affected by
galactic dust.
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