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ABSTRACT

We present a physics-based machine learning ap-
proach to predict in vitro transcription factor bind-
ing affinities from structural and mechanical DNA
properties directly derived from atomistic molecular
dynamics simulations. The method is able to pre-
dict affinities obtained with techniques as different
as uPBM, gcPBM and HT-SELEX with an excellent
performance, much better than existing algorithms.
Due to its nature, the method can be extended to
epigenetic variants, mismatches, mutations, or any
non-coding nucleobases. When complemented with
chromatin structure information, our in vitro trained
method provides also good estimates of in vivo bind-
ing sites in yeast.

INTRODUCTION

Proteins are the main regulators of gene expression as they
can directly or indirectly inactivate, activate, or enhance the
transcription of DNA. Central elements in this regulatory
system are transcription factors (TFs): modular proteins
that recognize sequences of DNA (typically 6–20 bp long),
helping to recruit RNA polymerases that trigger the subse-
quent transcription of a nearby gene (1,2). The binding of
TFs during normal cell life is difficult to predict (3,4) as it
is modulated by a myriad of effects, such as the presence of
nucleosomes (which in general hinders TF binding) (5,6),
or the formation of clusters that foster cooperativity, gen-
eral chromatin compaction, or even phase separation (7–
9). However, a key requirement for in vivo binding is a good
binding to the targeted naked DNA.

The recognition of naked DNA by transcription factors
is complex and does not follow a common code or a sin-
gle mechanism (1). Based on the degree of structural dis-

tortion that protein induces in DNA, we can distinguish
three binding paradigms (10): (i) Fischer’s lock and key the-
ory (no distortion on DNA from its canonical B-form);
(ii) conformational selection (small to medium deformation
that aligns with intrinsic deformation patterns of DNA)
and (iii) induced fit (large deformations of DNA that are
unlikely to happen in the absence of the protein). Based
on the type of contacts used for DNA recognition, we
can distinguish between TFs interacting mainly with the
DNA backbone, those establishing hydrogen bond interac-
tions with the nucleobases in either major or minor groove,
and finally those disrupting the duplex geometry to gener-
ate stacking contacts. In a similar vein, Rohs and cowork-
ers (1,11,12) defined two main mechanisms for ‘TF–DNA
reading’: the direct readout, related to the formation of
specific interactions of the TF with the nucleobases (typi-
cally by means of hydrogen bonds), and the indirect read-
out, related to the sequence-dependent shape of DNA. Re-
cently, our group extended these ideas by also considering
the sequence-dependent energy cost for changing the DNA
conformation from the unbound to the bound state (10), a
concept that introduces sequence-dependent flexibility as a
determinant of sequence-dependent binding.

Most data on the sequence preferences of TFs, i.e.
the TFBSs (transcription factor binding sites), rely on
high-throughput experimental techniques such as high-
throughput SELEX experiments (HT-SELEX; (13–15)),
protein binding microarrays (PBM) using either synthetic
sequences (uPBM; (16)) or sequences from the genomic
context (gcPBM; (17)), or fluidic engines such as HITS-
FLIP (18). The final output of these in vitro techniques is
a list of DNA sequences of different lengths (depending on
the experimental method, from 10 in HT-SELEX to 36 in
PBM) with an associated estimate of their binding affin-
ity for a given TF. The in vivo preferences are typically de-
rived from ChIP-seq approaches (or variants such as ChIP-
exo) (19–21), where the chromatin is immunoprecipitated
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by TF-specific antibody and the retained chromatin is then
sequenced. The technique is noisy, as it uses cell popula-
tions, and the resolution is poor (200 bp ± 300 in ChIP-seq,
and down to 50 bp in the case of ChIP-exo) (20,21), but it
provides direct evidence of the active TFBS under physio-
logical conditions.

Traditional theoretical approaches to predicting TFBS
are based on positional weight matrices (PWM) and their
associated logos (22,23). While original versions assume the
independence of nucleotide preferences at each position, the
newest PWM models can capture some of the sequence in-
terdependence (23,24), increasing their reliability. However,
the limitations of PWM models are well known (25,26),
which has fuelled the development of alternative methods
relying on an extended set of descriptive parameters and
last-generation learning models. We can broadly classify
these new predictive models based on whether they aim to
predict in vivo or in vitro TFBS. Those for in vitro TFBS pre-
diction use the nucleotide sequences and a variety of DNA
shape descriptors as input parameters (12,26,27). Methods
for in vivo TFBS prediction are typically focused on human
genomes, and complement the descriptors of naked DNA
(typically sequences) with ones related to chromatin struc-
ture and dynamics (RNAseq, DNase, conservation profiles
etc.). Experimental data have been widely used to train a va-
riety of machine learning and deep learning methods (28–
38) to predict TFBS.

We present here a physics-based ML approach to TF
binding affinity prediction in vitro that uses the physical
properties of DNA directly derived from molecular dynam-
ics (MD) simulations (39–41). These properties consider
both the equilibrium geometry and the flexibility, as de-
fined by Olson (42), to describe DNA conformation with
sequence-dependence at a base-pair step (bps) resolution.
The importance of these conformational properties for the
study and prediction of DNA behavior and preferences has
been proved in numerous studies (42–48).

Our method uses these DNA physical properties to train
a random forest regressor to reproduce uPBM, gcPBM and
HT-SELEX data for a large variety of protein families, and
yields results that outperform currently available methods.
We then use this in vitro trained method to explore in vivo
binding sites of the transcription factor CBF1 in yeast, one
of the very few TFs for which we have experimentally avail-
able data for both in vitro (PB-exo) and in vivo (CHIP-
exo) binding. When in vitro predictions were combined with
chromatin structure as determined by nucleosome position-
ing maps, our method has shown state-of-the-art predictive
power in identifying in vivo TPBSs.

MATERIALS AND METHODS

Datasets for training and testing

There is a variety of data on in vitro TF binding pref-
erences, covering a variety of proteins and measuring
techniques. HT-SELEX data were taken from 2 dif-
ferent studies (European Nucleotide Archive ENA PR-
JEB14744 and PRJEB29730) and processed using the asso-
ciated package (https://bioconductor.org/packages/release/
bioc/html/SELEX.html). The combined databases contain

information on 600 TFs from >30 different protein fam-
ilies. TFs with no k-mer (10 bases) with at least 100
counts in 0th order SELEX cycle were removed from the
training set as they have no clear binding motif (as dis-
cussed in (13)). As reported in the literature (13), train-
ing and testing were done using data from the penul-
timate SELEX cycle provided in the databases. uPBM-
data were taken from the DREAM5 challenge contain-
ing information on binding preferences of 35-mer oligos
for 66 mouse TFs (49). The 50 oligos with the highest
affinity to a given TF were used to define a PWM (50),
which was then used to align the sequences and derive the
most probable binding site (a shorter k-mer, typically 12-
mer). Finally, for gcPBM data, sequences already aligned
around the putative binding site placed at the center of
36mer genomic were used; more specifically, sequences for
the TF dimers Mad1/Max (‘Mad’), Max/Max (‘Max’), c-
Myc/Max (‘Myc’) and CFB1 (Gene Expression Omnibus
accession numbers GSE59845 and GSE44604 respectively)
(17,50–52). Possible multiple binding sites were removed us-
ing a previously published protocol (26).

In vivo binding data for CBF1 were taken from ChIP-
exo maps of Saccharomyces cerevisiae (GSE44604 and
GSE147927) (17,52,53) and were used to perform a proof
of concept of the ability of the in vitro CFB1 binding predic-
tor to detect in vivo binding sites. Data on chromatin used to
discuss the differences between in vitro and in vivo binding
profiles were taken from previously published nucleosome
maps in the same cellular model (5,54).

All ID and references to the datasets used for training and
testing are summarized in Supplementary Table S1.

Feature classes

For the training of the machine learning (ML) algorithm,
different classes of features were used:

• Sequence composition: presence. For each k-mer, a vector
of counts for the 256 possible tetramers that show up in
a given k-mer was calculated, using a sliding window of
length 4 and simply adding occurrences. For instance, the
6-mer ‘AAAAAT’ would have two counts for the tetramer
‘AAAA’, one for ‘AAAT’ and none for the remaining 254
tetramers.

• Indirect readout: base pair parameters. The base pair pa-
rameters (equilibrium values and the diagonal compo-
nents of the stiffness constant matrix, called AVG and
DIAG respectively, (37–39)) for each individual base pair
step movement (translational: shift, slide and rise, and ro-
tational: tilt, roll and twist) were considered. The values
were retrieved from a dataset that covers all the unique
base pair steps in all the possible tetranucleotide environ-
ments from microsecond-long molecular dynamics sim-
ulations (10,41). All data used to characterize tetramers
are available in our BigNASim database (55).

• Direct readout. The electrostatic patterns of each base
(hbond acceptor/donor or hydrophobic) were considered
using the scheme below (see Supplementary Figure S1)
(12). Our method assigns integers (–1, 0, +1) to acceptors,
hydrophobic sites and donors respectively, and for each
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Figure 1. General scheme of the ML training strategy.

overlapping tetramer along the DNA sequence sums the
relative values along columns. For the minor groove, since
the flanking sites are always –1, they are omitted and we
keep only the middle value. In total, for each tetramer the
electrostatics are explained by five values, for example, for
‘AACT’ [–1, +1, –1, 0, 0] + [–1, +1, –1, 0, 0] +[0, +1, –1,
–1, +1] + [0, –1, +1, –1, 0] = [–2, 2, –2, –2, 1].

All the references to the features used are summarized in
Supplementary Table S1.

Machine learning training

Features described above were used as descriptors, and they
were attributed to each overlapping tetramer in the k-mer
sequence under study (see Supplementary Figure S2). Ex-
perimental affinities in databases were used as labels for a
Random Forest regressor (56). A train/test ratio of 80/20
on the experimental data (HT-SELEX, uPBM and gcPBM)
(see Scheme) was used to reduce overtraining artifacts. The
R2 regression scoring function, Pearson correlation (r) and
MSE (mean squared error; see Supplementary Methods
for details) between the predicted and experimental affinity
(56) was used to validate the accuracy of the model (Fig-
ure 1). For the training process, we randomly selected 80%
of the data, and we performed bootstrap to avoid biases.
This method allowed us to perform the training multiple
times even if the chosen training and testing sets could have
contained repeated entries. For validation of the method,
we also tested the choice of the training set using cross-
validation, which performs the simulation K times dividing
the data into K partitions and using each time one differ-
ent partition as a test set. Changing the algorithm to K-fold
cross-validation (K = 10; 90/10 randomly chosen), we ob-

tained very similar results as previously (see Supplementary
Table S2).

To improve the accuracy and efficiency of the training
process and to avoid training artifacts, we applied several
data pre-processing steps:

Undersampling

The uPBM experimental datasets are usually very noisy
with an overpopulation of k-mers with a low affinity value.
To obtain a more balanced set, we applied different under-
sampling approaches for each dataset type (details and an
example in Supplementary Methods and and an example in
Supplementary Figure S3).

Weighting

For the uPBM dataset, because of the lack of high-affinity
sequences, we assigned uniform higher weights (10) to se-
quences matching the PWM data for each TF being consid-
ered. We also calculated the importance of each class feature
in the regressor (56).

The purpose of undersampling and weighting (or over-
sampling of high affinity values) is to remove noisy data by
stratifying the affinity profile and picking only a few sam-
ples in each stratum.

HT-SELEX data quality assessment

For HT-SELEX data, we considered the target affinity
values as those reported in the cycles. In principle, bind-
ing affinities of the different k-mers should grow exponen-
tially at each cycling step until saturation, and any devia-
tion from this behaviour signals inconsistency of the data.
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Thus, to guarantee the quality of the experimental data,
we performed a quality check with a support vector ma-
chine (SVM) discriminant using the correlation between se-
lected counts across different cycles as descriptors (see Sup-
plementary Methods).

Genomic testing

For the in vivo validation on the yeast genome, we generated
discrete maps using the relative score obtained from the ML
training for each possible TFBS and comparing the predic-
tions with in vitro (PB-exo) (17) and in vivo maps (ChIP-exo)
(17,52,53). We define:

- True positive (TP) when the experimental peaks (both PB-
exo and ChIP-exo) overlap with our prediction.

- False positive (FP) when TFBSs predicted by our model do
not correspond to any experimental peak. We also applied
this category if our prediction corresponds to just one of
the experimental dataset (either PB-exo or ChIP-exo)

- Nucleosome occupied locations (Nuc) when comparing
our prediction with nucleosome maps one TFBS predicted
by our model overlaps with a nucleosome.

- False negative (FN) when experimental TFBS peaks have
not been predicted by our model.

- True negative (FN) when both experiments and predictive
model agree that there is not a TFBS.

The program and the full database of feature parameters
are available in the GitHub repository: https://github.com/
Jalbiti/DNAffinity.

RESULTS AND DISCUSSION

For each experimental dataset (gcPBM, uPBM and HT-
SELEX), we trained our machine learning regressor to pre-
dict experimental binding affinities using three classes of
features informative of the three DNA–protein recognition
modes: sequence, direct and indirect readout. After training
on 80% of the data, we calculated the determination coef-
ficient (R2) between our predictions and the experimental
values (see Materials and Methods) on the remaining 20%
of the data. With that, we found that our model is able to
reproduce gcPBM data with astonishing quality, as shown
in an average R2 of 0.93 ± 0.02 (see Figure 2).

Using the uPBM data as reference (see Materials
and Methods), we could predict affinities with an average
determination coefficient R2 = 0.69 ± 0.17 (Figure 3).

We then applied our ML predictor to two datasets from
HT-SELEX (see Materials and Methods and Supplemen-
tary Table S1): the first using the results based on 5-cycles
of HT-SELEX experiments, and the second on 7-cycles. In
the first case, we achieved an R2 of 0.63 ± 0.19, and in
the second 0.71 ± 0.21, which yielded a total average of
0.66 ± 0.19. Supplementary Figures S4–S7 detail the re-
sults for each HT-SELEX experiment and each transcrip-
tion factor. In a further step, we used SVM to remove those
cases displaying inconsistency between the enrichments at
different HT-SELEX cycles (see Materials and Methods
and Supplementary Methods) as they are suspicious cases
whose inclusion can bias the training and testing. The im-
provement obtained after SVM-filtering of data is clear, as

seen from the average R2 of 0.70 ± 0.14 and the dramatic
reduction of cases with low R2 (see Figure 4).

In summary, DNAffinity is able to accurately predict rel-
ative binding affinities of transcription factors with a com-
mon set of descriptors, irrespectively of the source of exper-
imental approach used to determine the binding (see Figure
4). The logo plots of the most favorable TFBSs, calculated
using the top 100 predicted sequences, for each TF studied
are presented in Supplementary Table S3.

DNAffinity’s performance compared to existing ML predic-
tors

We compared our predictor with a larger variety of previ-
ously published methods that combine different learning
approaches and include DNA sequence and DNA shape
features (27,35,36,49) (Figure 5 and Supplementary Figures
S8 and S9). In all cases comparisons are done using the same
number of cases (TFs) and the same dataset as used by the
original developers of the methods.

For gcPBM our performance (Figure 2) is nearly identi-
cal to that obtained with the shape-augmented ML predic-
tor (32), but this outstanding performance should be taken
with caution as there are only three transcription factors
for which gcPBM information is available. Here, the probes
are very well aligned based on the central TFBS and the se-
quences used do not show high variability, making the prob-
lem relatively easy to solve.

A more reliable and challenging benchmark can be ob-
tained using uPBM and HT-SELEX data as: i) there are
more datasets available and ii) there is a larger variety of
trained models to benchmark against.

In order to evaluate the performance of DNAffinity, we
compared its predictive power on 66 uPBM datasets and
compared our R2 with the ones obtained using the same
dataset by: CRPTS/CRPT (a hybrid convolutional recur-
rent neural network (CNN/RNN) architecture that com-
bines DNA sequence and DNA shape features) (27); Deep-
bind (a CNN model primarly based on DNA sequences)
(36); two kernel-based methods (spectrum + shape ker-
nel, di-mismatch + shape kernel) (57); a deep learning-
based DLBSS (37); and a shape-based ML regressor
DNAShapeR (33). The data used for the comparison were
previously reported (27). In Figure 5A and Supplementary
Figure S8, we show the results of the comparison. The im-
provement with respect to all other predictive algorithms is
very clear: our algorithm has a stronger predictive power
when compared to methods based on shape and neural net-
work, probably thanks to the properties considered and the
pre-processing of the 36mers.

For HT-SELEX data, we compared our results with
a shape-based ML regressor, DNAShapeR, and DeepSE-
LEX (38) trained and tested on the same TFs (Figure 5B).
Running DNAShapeR, we used their refined set of se-
quences (M-word, https://rohslab.usc.edu/MSB2017/) and
their latest parameters. The comparison shows how our
method could better predict the TFBS affinities, and that
the results we get for those selected protein is in the range
of our prediction using all the cases (DNAffinity all in Fig-
ure 5B) available for HT-SELEX (see Supplementary Ta-
ble S1). We tested the rigorousness of our method calculat-
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Figure 2. Correlation between the predicted and experimental TF binding affinity for the three cases under study: (A) Mad1/Max (‘Mad’), (B) Max/Max
(‘Max’) and (C) c-Myc/Max (‘Myc’). Correlation with experimental affinities for the transcription factors: MAD1 (left panel): R2 = 0.951, MYC (central
panel): R2 = 0.905, MAX (right panel): R2 = 0.922.

Figure 3. Determination coefficient (R2) between predicted and experimental data for different protein families using uPBM data.

Figure 4. Determination coefficient (R2) between predicted and experi-
mental affinities for different transcription factors (black circle marks the
mean, black bar marks the median value). Data used were: HT-SELEX on
the entire dataset, uPBM, gcPBM and HT-SELEX on the filtered dataset
(after applying our reliability filter that uses an SVM classifier on the raw
data; see Materials and Methods and Supplementary Methods).

ing the MSE (see Supplementary Methods) and comparing
it to the other algorithms that had the best (newest) and
the worst performance compared to ours: CRPT (27) and
DNAShapeR (33) for uPBM data and both DNAShapeR
(33) and DeepSELEX (38) for HT-SELEX data (see Sup-
plementary Table S4); confirming that also using this metric
the results obtained by our algorithm are consistent.

Finally, many previously developed methods verified the
transferability of their predictive algorithm by first train-
ing with one dataset (HT-SELEX) and subsequently test-
ing on another dataset (uPBM). These two experimental
techniques differ in the variety and number of sequences
that can be studied, and on the length of the different
probes: HT-SELEX considers a large amount of differ-
ent short sequences with one possible binding site, while
uPBM has fewer and longer probes with multiple candi-
date binding sites, and mainly low affinity. Consequently
we also compared the ability of our method to inter-cross
between datasets. The results obtained (Figure 5C) show
that when comparing our results to previously published
methods, including neural network and deep learning al-
gorithms (data taken from (38)), DNAffinity outperforms
all of them. We obtained an average Pearson correlation of
0.47 versus 0.41 (DeepSELEX) (38), 0.35 (DeepBind) (36),
0.36 (BEESEM)(58) and 0.20 (BindSpace) (59).
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Figure 5. Comparison between our predictions and previously reported ones. (A) Determination coefficient (R2) between predicted and experimental data
for different protein families using uPBM data, data retrieved from (27) and DNAShapeR (33). (B) Pearson correlation using in common HT-SELEX data
obtained in the literature by previously developed methods, DeepSELEX and DNAShapeR (33,38) and ours (DNAffinity) respectively, values obtained
using all the HT-SELEX data available using our method (DNAffinity all). (C) Pearson correlation between predicted and experimental data for different
protein families using HT-SELEX for training and testing on uPBM data, using our method (DNAffinity) and previously developed methods: DeepSELEX
(38), DeepBind (36), BEESEM (58) and BindSpace (59). The data reported were taken from (38). Black circle: mean, black bar: median.

Importance of the features

Contrary to our original expectations, we found that the im-
pact of the different features on the predictive power of the
method depends dramatically on the type of experimental
data used for training (Figure 6).

For gcPBM data, characterized by a very low sequence
variability and a very well defined TFBS, the physical prop-
erties of the tetramers have a higher importance, probably
because they can differentiate between otherwise very simi-
lar sequences.

For uPBM, we trimmed the sequence based on MEME
suite result, so the variability of the sequence diminishes.
For this reason, in part like in case of gcPBM, the motifs
present a common pattern and shape seems to be the best
class of feature capable of accentuating their differences (see
the contribution of different feature classes in Supplemen-

tary Figures S10 and S11). However, because the sequence
variability is broader than in gcPBM, also sequence and
electrostatics features seem to gain importance.

On the contrary, for HT-SELEX, where a wide range of
sequences is reported, the predictive power is equally di-
vided across the three feature classes (Figure 6). This can
be explained considering that the method explores a larger
range of sequences, including these that are not physiolog-
ically accessible. Also, in this case we studied the impor-
tance of every class of feature for the prediction and de-
tected that all of them contribute to the prediction (Sup-
plementary Figures S10 and S11). Interestingly, the elec-
trostatic descriptor gained importance when using HT-
SELEX data compared to uPBM. The addition of this
new ‘direct-reading’ feature to the prediction scheme intro-
duces a new dimensionality in our method to discriminate
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Figure 6. Relative importance (%) of each feature class in the prediction. (A–C) Results regarding prediction of gcPBM, uPBM and HT-SELEX data
respectively. (D) Average of the relative importance (%) considering the prediction on all the datasets (A–C).

among largely variable sequences. The HT-SELEX dataset
seems pushing the predictive power of the models to their
limits.

Above all, by analyzing the effect of each feature on the
different protein families it could be possible detect the
ones that are mostly affected by indirect-readout (shape and
force constants) or direct-readout (sequence and electro-
statics) descriptors (see Supplementary Figure S11). Our re-
sults also raise concerns about attempts to train ML meth-
ods with a narrow set of sequences, and give us confidence
that DNAffinity provides results of very similar quality
when reference data come from uPBM or HT-SELEX with
a common set of features.

In vivo testing

We finally applied our method to simultaneously predict in
vitro and in vivo datasets describing the TFBS for the pro-
tein CBF1 (one case for which both in vitro and in vivo data
are available, see Materials and Methods). After training
our regressor using gcPBM data (R2 = 0.80), we applied
our model to predict PB-exo and ChIP-exo peaks along the
yeast genome. We considered the consensus exo peaks, be-
cause being in common they are independent on the experi-
mental technique/conditions. Each method (ChIP and PB)
has some intrinsic noise due to non-specific or spurious in-
teractions and that using consensus peaks ensures that each
signal is genuine. To account for the impact of chromatin
structure, we include accurate nucleosome maps collected
for yeast in the G1 phase (5,54). Quite encouragingly, we
were able to predict almost all consensus exo peaks, defined
as locations where PB-exo and ChIP-exo signals coincide
(Figure 7). Our true positive (TP) rate (TP/total number of
exo experiments peaks) was over 94% (TP case example in

Supplementary Figure S12A), meaning that only < 6% of
the consensus exo peaks are not detected by our method
(see Figure 7). Although these TPs entail only 14% of all
predictions of our model, a vast majority of the theoret-
ically false positive are at locations occupied by nucleo-
somes (see Figure 7 and example in Supplementary Fig-
ure S12B). As those chromatin sites would not have been
accessible for the binding of a transcription factor (occu-
pied by nucleosomes, Nuc in Figure 7B), they correspond
to cases where intrinsic (in vitro) binding can be favourable,
but chromatin structure precludes effective in vivo binding.
Thus, when nucleosome maps are included as descriptors,
the resulting false positive (FP) rate is just 11%. In fact, of
the 146 ‘bona fide’ FPs, 37 (FP2 in Figure 7) correspond
to sequences that matches one exo signal (PB-exo or CHIP-
exo) and 15 have evidence of activity based on polymerase
maps (fourth column in the classification scheme Figure 7,
FP case examples in Supplementary Figure S12C and D).
It means that the real FP rate can be as low as 7% (FP1
and third column scheme in Figure 7). Due to the lack of
simultaneous in vivo and in vitro binding data, it is difficult
to generalize our conclusions; we consider here nucleosome
occupancy as a proxy for chromatin structure, but there
are many other means by which cells can hide regions that
would otherwise be bound by transcription factors. Even
though we will never be able to make a prediction taking
into consideration all the possible variables to in vivo TF
binding, we transferred the in silico prediction to in vivo con-
ditions. We think it is important to determine how the in-
trinsic sequence-dependent binding properties in vitro are
affected by chromatin accessibility. Our results may suggest
that in vivo binding may be understood as in vitro binding
corrected by high-resolution (nucleosome-scale) chromatin
structure.
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Figure 7. (A) Scheme representing the prediction scores along the yeast genome. (B) Statistics of our prediction along the yeast genome. On the right,
distribution over all the predicted peaks: 188/1326 true positive (TP, orange); 13/1326 false negative (FN, red); 992/1326 in locations occupied by nucle-
osomes (in purple); the false positive (FP) cases are divided into FP1 that correspond to predicted peaks at nucleosome free region (NFR) that do not
correspond to any experimental peak ((94/1326, in blue) and FP2 (52/1326, green) that correspond to sequences that either match one exo signal (PB-exo
or CHIP-exo) or have evidence of activity based on polymerase maps. On the right, distribution over all the consensus experimental peaks (PB-exo and
CHIP-exo): 188/201 true positive (TP, orange); 13/201 false negative (FN, red).

CONCLUSIONS

Prediction of transcription factor binding sites is the next
grand challenges in genomic research. Development of effi-
cient predictive algorithm requires solving a series of intrin-
sic problems: on the one hand, the concept of transcription
factor binding site is not uniquely defined, as it deeply de-
pends on the intrinsically noisy and low-resolution exper-
imental technique used to detect it, making it impossible
to create a universal predictor. On the other, transcription
factors use a repertoire of mechanisms for selecting target
DNA sequences, and the most informative parameters de-
scribing these mechanisms largely depend on the sequence
variability explored by the experiment. The complexity of
the problem increases even more if in vitro predictions are
tried to be extrapolated to in vivo settings, where other
factors besides intrinsic transcription factor affinity play a
role.

Our predictive model (DNAffinity) is based on a simple
machine learning algorithm trained on ab initio parame-
ters derived from first-principle molecular dynamics simu-
lations. One of the advantages of using theoretically derived
descriptors is that they can be in principle obtained for any
non-coding DNA, including epigenetic variants or lesions.
Despite the ‘ab initio’ nature of the descriptors and the sim-
plicity of the training, the method provides excellent results,
outperforming all available competitors when predicting in
vitro transcription factor binding sites irrespective of the ex-
periment used for validation. Very encouragingly, DNAffin-
ity trained on in vitro data showed an excellent ability to
detect the binding sites of the same transcription factor in
vivo. Thus, even though DNAffinity predicts many potential
binding sites where no experimental evidence of in vivo bind-
ing exists, a grand majority of these seemingly false positives
are trivially explained by chromatin structure and nucleo-
some occupancy. When combining DNAffinity and nucle-
osome maps, our method was able to locate in vivo TFBS
with a high accuracy.
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