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Abstract

In this project we study the coverings of Generalized Petersen Graphs that are
Generalized Petersen Graphs themselves. We give a large family of such Gene-
ralized Petersen Graphs and review results of Krnc and Pisanski by focusing on
Kronecker double covers. Finally, we generalize their results partially to Kronecker
triple covers.
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Introduction

Graph theory is the part of discrete mathematics that studies some mathe-
matical structure called graph. These mathematical objects are defined as a set of
vertices or nodes joined by edges. Their usefulness is notorious as they can be used
to model lots of real-world problems like distance travelling, network connections,
molecular structure, data organization,... Also in other branches of mathematics
such as geometry and topology, graph theory has shown its utility as it helped on
the development of some results like in knot theory.

Covering graph is also closely related to topology as it can be defined as a
discrete case of covering spaces in algebraic topology. One particular case of graph
2-covering is the well known Kronecker double cover (also called bipartite double
cover) that can be defined as the tensor product G × K2.

Generalized Petersen Graphs are a famous family of graphs introduced by
Coxeter et al. [Cox50] and named and formalized by [Wat69]. This graphs were
created in order to generalise the usual drawing of the Petersen Graph, that is a
bigger pentagon surrounding a pentagram and joining the corresponding vertex
of both figures through edges.

In this bachelor thesis we study the well known family of the Generalized
Petersen Graphs. We focus on the coverings of Generalized Petersen Graphs that
are also Generalized Petersen Graph. It consists of 5 chapters:

The first chapter is an introduction to graph theory and algebraic graph theory,
with emphasis on coverings and Generalized Petersen Graphs in order to provide
a sufficient knowledge to understand the following chapters.

In Chapter 2 we provide a large family of Generalized Petersen Graph that are
q-coverings of other Generalized Petersen Graph.

Chapter 3 is a synthesis of the results given by Krnc and Pisanski [KP19]. We
study their Theorem focusing in the part where Generalized Petersen Graphs are
Kronecker Covers of other Generalized Petersen Graphs.

We generalize the results seen at Chapter 3 partially to Kronecker triple cover
in Chapter 4.

Finally, we end this thesis with conclusions in Chapter 5.
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2 Introduction

Hence, Chapter 2 and 4 are original work while Chapters 1 and 3 are known
results. However, proofs on this last two chapters have been reproved in order to
provide us a better understanding on the topic and to be consistent with our own
notation.



Chapter 1

Graph Theory Preliminaries

This chapter is an introduction to graph theory. Its aim is to build sufficient
knowledge in order to understand the following chapters. Throughout these sec-
tions, one can find proofs of some well known results in graph theory that have
been reproved in these pages so as to familiarize with all the concepts. Most of
the following definitions and results can be found in [Wes96] and [dD19].

1.1 Graph Theory basis

Definition 1.1. A undirected graph or graph is an ordered pair of sets G = (V, E)
where E = E(G) is a set of unordered pairs of elements of V = V(G). The elements of V
are called vertices and the elements of E edges.

An empty graph is a graph with no vertices, and hence no edges. From now
on we will consider every graph to be not empty.

Definition 1.2. The pair of vertices forming an edge are called the endpoints of the edge.
In this case, the vertices are neighbors or adjacent. It is also said that the edge joins or
connects the vertices or that is incident on the vertices.

Notation 1.3. If an edge e ∈ E is incident on u, v ∈ V, we write e = uv = vu.

Notation 1.4. N(v) = {u ∈ V | uv ∈ E} is the set of neighbours of the vertex v.
N[v] = N(v) ∪ {v}.

Definition 1.5. If the same pair of vertices are joined by two or more edges, then the edges
are called multiple or parallel edges.

Definition 1.6. An edge that connects a vertex with itself is called loop.

Definition 1.7. A simple graph is a graph with no loops and no parallel edges.

3



4 Graph Theory Preliminaries

Definition 1.8. The degree of a vertex v ∈ V is the number of edges in E that are incident
to v, counting loops twice. It is denoted by d(v).

Definition 1.9. A cubic graph is a graph such that ∀v ∈ V, d(v) = 3.

Definition 1.10. A subgraph S = (U, D) of a graph G = (V, E) is a graph such that
U ⊂ V and D ⊂ E.

Definition 1.11. A walk of length k is a sequence of k edges of a graph e1, . . . , ek, such
that for 1 ≤ i ≤ k the edge ei has endpoints vi−1 and vi. It can also be described as a
sequence of k+ 1 vertices v0 . . . vk such that every two consecutive vertices are neighbours.
A trail is a walk with no repeated edges and a path is a trail with no repeated vertices.
For a walk or a trail if v0 = vk we say it is closed.

Remark 1.12. A path cannot be closed as every vertex must be different.

Definition 1.13. If there exist a path between every pair of points in a graph G, the
graph is connected. The connected components of a graph G are the inclusion maximal
connected subgraphs of G.

Definition 1.14. Let G = (V, E) be a connected graph and u, v ∈ V. A shortest path
joining u and v is called geodesic. The distance between u and v, d(u,v), is the length
of a geodesic.

Definition 1.15. A cycle is a closed trail in which every vertex is different except for the
first and the last one. If its length is and odd number we say it is an odd cycle. Otherwise
we call it an even cycle.

Remark 1.16. Note that a cycle of length n has n vertices and n edges.

Definition 1.17. A graph is a n-cycle or n-gon if it consist of a single cycle of length n.
This type of graphs are denoted as Cn.

Definition 1.18. A vertex labeling of a graph G = (V, E) is a function

ξ : V −→ L

such that L is a set of labels (usually integers). A vertex k-coloring (or a k-coloring),
is a vertex labeling such that |L| = k. The labels are also called colors. A k-coloring is
proper if adjacent vertices have different colors. A graph is k-colorable if there exist a
proper k-coloring.

Definition 1.19. An independent set of a graph G = (V, E) is a subset U ⊂ V such
that for every pair of vertices u, u′ ∈ U, then uu′ /∈ E .
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Definition 1.20. A bipartite graph G = (V, E) is a graph with vertex set divided into
two nonempty disjoint subsets

V = A ∪ B such that A ∩ B = ∅

satisfying both subsets are independent sets. Hence, the edge set E has no edge with both
endpoints in the same subset. In the same way, we define a k-partite graph as a graph
such that its vertex set is the union of k nonempty disjoint independent sets. A tripartite
graph is a 3-partite graph.

Remark 1.21. A k-partite graph is k-colorable as it has k disjoint independent subsets.

The following theorem is a characterization for bipartite graphs:

Theorem 1.22. [König (1936):] A graph is bipartite if and only if it has no odd cycles.

Proof. Necessity: We assume G = (A ∪ B, E) to be a bipartite graph. Every step
along a walk in G alternates between the sets A and B, so to return to the starting
point, an even number of steps are needed.

Sufficiency: Let G = (V, E) be a graph with no odd cycles. Let v ∈ V be an
arbitrary vertex in an arbitrary connected component H = (W, F) of G. Let ξ be a
2-coloring such that ∀u ∈ W:

ξ : W −→ {0, 1}
u 7−→ d(v, u) mod 2

Let A = {u ∈ W | ζ(u) = 0} and B = {u ∈ W | ξ(u) = 1}. One can easily
see that A is the set of vertices with an even geodesic from v, and B is the set of
vertices with an odd geodesic from v. Also both sets are disjoint. If two vertices
a, a′ ∈ A were neighbours, then taking the geodesic from v to a, the edge aa′

then the geodesic from a′ to v we would have an odd closed walk in G (as both
geodesics are even). As every closed walk of odd length contains an odd cycle,
we have a contradiction. Now, if two vertices b, b′ ∈ B were neighbours, using
the same strategy we would also have an odd cycle as both of the geodesics are
odd paths. Therefore, we have two disjoint independent sets. Now as v and H are
arbitrary, we have G must be bipartite.

Definition 1.23. A graph G = (V, E) is a complete graph if it is a simple graph such
that ∀v ∈ V, N(v) = {u ∈ V | u ̸= v}. The complete graph with n vertices is denoted
by Kn.

Definition 1.24. A digraph or directed graph is an ordered pair of sets D = (V,A) where
V is the set of vertices and A is an ordered pair of vertices. The elements of A are called
arcs.
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Notation 1.25. In order to make a difference on the notation of arcs and edges (see notation
1.3 for edges) we will write an arc as the tuple (u, v) meaning there is an arc that goes
from u to v. The first vertex of the tuple is called tail and the second one head.

Remark 1.26. Let D = (V, A). As an arc is an ordered tuple, for u, v ∈ V such that if
u ̸= v we have a = (u, v) ̸= (v, u).

Definition 1.27. Given a graph G = (V, E), an orientation of G is a digraph with the
same set of vertices D = (V, A) such that ∀e = uv ∈ E then (u, v) ∈ A or (v, u) ∈ A.

Definition 1.28. Given a digraph D = (V, A) we define the underlying graph of D as
the graph with the same vertex set G = (V, E) such that given u, v ∈ V, then uv ∈ E
only if (u, v) ∈ A or (v, u) ∈ A.

1.2 Graph Homomorphism

A graph homorphism is a function between two graphs that preserves edges.
More precisely:

Definition 1.29. A graph homomorphism φ between two graphs G = (V, E) and
H = (W, F) is a function

φ : V −→ W

such that if uv ∈ E ⇒ φ(u)φ(v) ∈ F.

In a similar way, we can define a graph isomorphism between two graphs as a
bijective function that preserves vertex adjacency and non-adjacency:

Definition 1.30. A graph isomorphism φ between two graphs G = (V, E) and H =

(W, F) is a bijective function
φ : V −→ W

such that uv ∈ E ⇐⇒ φ(u)φ(v) ∈ F.
If there exists an isomorphism between G and H we say G is isomorphic to H and

we denote it by G ∼= H.

In particular, as opposed to group isomorphism, bijective homomorphisms are
not isomorphisms in general. For example, as shown in Figure 1.1 let G = (V, E)
be the graph with vertex set V = {u, v} and edge set E = ∅ and H = (W, F) the
graph such that W = {a, b} and F = {ab}. It is clear that

φ : V −→ W

such that φ(u) = a and φ(v) = b is a bijective homomorphism but graphs are
clearly not isomorphic.
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G=(V,E) H=(W,F)

Figure 1.1: There is a bijective homomorphism between G and H
but they are not isomorphic graphs

Proposition 1.31. φ is an isomorphism if and only if it is a bijective homomorphism and
its inverse φ−1 is also a homomorphism.

Proof. Necessity: It follows from the definition of graph isomorphism.
Sufficiency: Let G = (V, E), H = (W, F) be two graphs. φ : V −→ W

be a bijective homomorphism such that its inverse φ−1 : W −→ V is also a
homomorphism. Now as φ is a homomorphism, by definition we have that
uv ∈ E ⇒ φ(u)φ(v) ∈ F. Moreover, as it is bijective an φ−1 is also an isomor-
phism we have φ(u)φ(v) ∈ F ⇒ φ−1(φ(u))φ−1(φ(v)) = uv ∈ E.

1.2.1 Graph Automorphism

Definition 1.32. A graph automorphism is a bijective homomorphism between a graph
G = (V, E) and itself:

φ : V −→ V

Remark 1.33. A graph automorphism can also be thought as a permutation of the vertices
of a graph that preserves the adjacency and non-adjacency.

Remark 1.34. Given a graph G = (V, E), the set of all the automorphisms of G with the
composition of functions has group structure. It is called the automorphism group of
the graph G and is denoted by Aut(G).

Notation 1.35. Given 2 automorphism ω, τ we denote the composition ω ◦ τ = τω.

Remark 1.36. Given a graph G = (V, E) such that |V| = n, Aut(G) is a subgroup of
the permutation group Sn.

Remark 1.37. The automorphism group of the graph C3 is Aut(C3) ∼= D3.

Definition 1.38. A graph G = (V, E) is vertex-transitive if ∀ u, v ∈ V, there exists
an automorphism φ such that

φ(u) = v



8 Graph Theory Preliminaries

We say it is symmetric if additionally for every u, v, a, b ∈ V, such that uv, ab ∈ E there
exist an automorphism

φ : V −→ V

satisfying φ(u) = a and φ(v) = b.

Definition 1.39. Let G = (A ∪ B, E) be a bipartite graph. We say an automorphism φ is
color-preserving if ∀a ∈ A and ∀b ∈ B, we have φ(a) ∈ A and φ(b) ∈ B. Otherwise, if
∀a ∈ A and ∀b ∈ B, we have φ(a) ∈ B and φ(b) ∈ A we say that φ is color-reversing.

Remark 1.40. For a bipartite graph an automorphism is always color-preserving or color-
reversing.

1.2.2 Covering map of a Graph

Definition 1.41. Let G = (V, E), H = (W, F) be two graphs and φ : V −→ W a
function between their vertex sets. φ is a covering map if it is a surjective homomorphism
such that ∀v ∈ V the restriction of φ to N[v] is a bijection onto N[φ(v)]. If there exists
a covering map between G and H, we say that G is a covering graph or a lift of H. Also
if |V| = k|W| we say it is a k-covering. We also say that H is the base graph or the
quotient of G.

Remark 1.42. From the definition one can see there might be a relationship between
algebraic topology and graph theory. In fact, graph covering is a discrete case of covering
space in topology.

Figure 1.2: Dodecahedron graph as a 2-covering of the Petersen Graph

As can be seen in Figure 1.5 the Dodecahedron graph is a 2-covering of the
Petersen Graph. Vertex are represented with different colors in order to show that
the restriction of the homomorphism is locally bijective.
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For finite graphs, one can use Integer Linear Programming in order to check
the existence of a k-covering between two graphs. The following code has been
used throughout the research in order to find some coverings:

Figure 1.3: Integer Linear Program code used in order to find q-coverings between
graphs

1.3 Kronecker cover

Definition 1.43. Let G and H be two graphs. The tensor product of G and H (denoted
by G × H) is a graph satisfying the following two conditions:

• The vertex set V(G × H) is the Cartesian product V(G)× V(H).

• (g1, h1)(g2, h2) ∈ E(G × H), if and only if g1g2 ∈ E(G) and h1h2 ∈ E(H).

It is also called Kronecker product or direct product.

Definition 1.44. The Kronecker cover KC(G) (or bipartite double cover) of a simple
undirected graph G is a bipartite covering graph with twice as many vertices as G. It can
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be defined as the Kronecker product G × K2. Therefore, is the graph with set of vertices

V(KC(G)) = {v′, v′′}v∈V(G)

and with edges set
E(KC(G)) = {u′v′′, u′′v′}uv∈E(G)

Remark 1.45. The 2 sets of bipartition are naturally constructed. One can easily see that
V(KC(G)) = V ′ ∪ V ′′.

a b

c d

0

1

0

1

a b c d

Figure 1.4: A graph and its Kronecker cover

Notation 1.46. As can be seen in Figure 1.4 vertex set of G × K2 can be written as
V(G) × {0, 1}, we may also use the following notation to represent the vertices on a
Kronecker cover of a graph G:

Given a vertex v ∈ V(G):

v′ = (v, 0) and v′′ = (v, 1)

1.3.1 Kronecker Invoultion

Definition 1.47. A function f : A −→ A is an involution or self-inverse function if
it is such that

( f ◦ f )(x) = f ( f (x)) = x

or equivalently,
f (x) = f−1(x)

Definition 1.48. Let G = (V, E) be a bipartite graph and Aut(G) its automorphism
group. We say ω ∈ Aut(G) is a Kronecker involution if it is a color-reversing involu-
tion such that ∀v ∈ V, vω(v) /∈ E
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The following result from [KP19] relates the Kronecker cover with the Kro-
necker involution:

Theorem 1.49. Let G = (A ∪ B, E) be a bipartite graph. Then, there exist a graph
H = (W, F) such that KC(H) ∼= G if and only if Aut(G) admits a Kronecker involution.
Furthermore, the corresponding quotient graph may be obtained by contracting all pairs of
vertices, naturally coupled by a given involution.

Proof. Necessity: Let us assume G = (V, E) be a bipartite graph and H = (W, F) a
simple graph such that KC(H) ∼= G. Hence, V = W × {0, 1} and by definition we
have |V| = 2|W|. Let τ ∈ Aut(G) and given (w, i) ∈ V, such that w ∈ W, i ∈ {0, 1},
we define τ(w, i) = (w, i + 1 mod 2). We can clearly see that it is an involution
as (τ ◦ τ)(w, i) = τ(τ(w, i)) = τ(w, i + 1 mod 2) = (w, i + 2 mod 2) = (w, i).
Moreover, it is also easy to see that is a color-reversing automorphism as i ̸≡ i + 1
mod 2. If we prove that ∀(w, i) ∈ V, (w, i)τ(w, i) /∈ E we are done. Let us do it by
contraposition: Suppose there exists (w, i) ∈ V, such that (w, i)τ(w, i) ∈ E. Then,
(w, i)(w, i + 1 mod 2) ∈ E and hence, ww ∈ W, which contradicts the fact of H
being a simple graph.

Sufficiency: Now we assume G = (A ∪ B, E) to be a bipartite graph and ω ∈
Aut(G) be a Kronecker involution. Let us define the following graph H = (A, F)
such that a1, a2 ∈ F if and only if a1, ω(a2) ∈ E. Note that if a ∈ A, ω(a) ∈ B by
definition of Kronecker involution. If we see that H × K2 is isomorphic to G we
are done. Let us define the following homomorphism:

φ : A × {0, 1} −→ A ∪ B
(a, i) 7−→ ωi(a)

Where ω0(a) = Id(a) = a. Note that φ is a function between the vertex set of
KC(H) and the vertex set of G. It is clearly a homomorphism: by definition of
the Kronecker cover (a1, i)(a2, j) is an edge of A × {0, 1} if and only if i ̸= j and
a1a2 ∈ F. Now, by definition of H, a1a2 ∈ F if and only if a1ω(a2) ∈ E. Finally,
if (a1, i)(a2, j) is an edge of A × {0, 1} then i ̸= j and we have, φ(a1, i)φ(a2, j) =

ωi(a1)ω
j(a2) ∈ E. Now, let us check that it is an injective homomorphism: Let

us assume φ(a1, i) = φ(a2, j). Therefore, ωi(a1) = ω j(a2), and hence i = j, and
(a1, i) = (a2, j). Now, to prove it is a surjective homomorphism, as ω is a Kronecker
involution, we trivially have |A| = |B|, and consequently |A × {0, 1}| = |A ∪ B|.
If we prove that φ−1 is also a homomorphism, by Proposition 1.31 we will have
finished. As ω is a Kronecker involution and by definition of φ we have:

φ−1 : A ∪ B −→ A × {0, 1}

v 7−→
{
(v, 0) i f v ∈ A

(ω(v), 1) i f v ∈ B
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As G is bipartite, if e ∈ E, e = ab, such that a ∈ A and b ∈ B. Hence, by definition
of the Kronecker involution and the construction of H, we have aω(b) ∈ F and
therefore, by definition of the cross product φ−1(a)φ−1(b) = (a, 0)(ω(b), 1) ∈
F × {0, 1}. So, φ−1 is a homomorphism, and hence φ is an isomorphism and we
have KC(H) ∼= G.

1.4 Generalized Petersen Graphs

The Petersen Graph is a famous graph, not only because it appears on the cover
of lots of books, but also due to its usefulness in several graph problems as exam-
ple or counterexample.

As can be seen in Figure 1.5, this graph is usually drawn as a pentagon sur-
rounding a smaller pentagram and joining the vertices of the pentagon with the
corresponding vertex of the pentagram through spokes.

Figure 1.5: 2 different drawings of the Petersen Graph G(5,2)

In order to generalize this concept, H. S. M. Coxeter, in [Cox50], constructed
a family of graphs that years later would be named as Generalized Petersen Graph
and formalized by M. E. Watkins [Wat69]. The idea was the following: draw a
n-cycle (n-gon) surrounding a star n-gon, and joining their corresponding vertices
through spokes. More precisely, and using M. E. Watkins notation:

Definition 1.50. Given n, k ∈ Z such that n ≥ 3 and 1 ≤ k < n
2 . The Generalized

Petersen Graph G(n, k) is the graph with vertex set:

V(G(n, k)) = {u0, . . . , un−1, v0 . . . , vn−1}

and edge set:

E(G(n, k)) = {uiui+1}n−1
i=0 ∪ {vivi+k}n−1

i=0 ∪ {uivi}n−1
i=0
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Remark 1.51. In the edge set, the subscripts of the vertices are written in modulus n.

Remark 1.52. The three subsets in which is divided E(G(n, k)) would define the n-gon
(also called outer rim), the star n-gon (the inner rims) and the spokes respectively.

Remark 1.53. Due to its construction, one can easily see that all Generalized Petersen
Graphs are cubic graphs.

Remark 1.54. Let G(n, k) be a Generalized Petersen Graph. The inner rim(s) consist of
gcd(n, k) n

gcd(n,k) -cycles.

The condition 1 ≤ k < n
2 is due to the following lemma one can find on

[Wat69].

Lemma 1.55. G(n, k) and G(n, n − k) are isomorphic.

Another interesting result on isomorphic Generalized Petersen Graph from
[SS09] that follows from [Wat69]:

Theorem 1.56. G(n, k) and G(n, l) are isomorphic if and only if k = l, k = n − l or
kl ≡ ±1(mod n).

The following result characterize the bipartite Generalized Petersen Graphs.

Theorem 1.57. A Generalized Petersen Graph G(n, k) is bipartite if and only if n is even
and k is odd.

Proof. Necessity: Using König’s Theorem (1.22) we know G is a bipartite graph if
and only if it has no odd cycles. We will prove it by contraposition: Let G(n, k) be
a Generalized Petersen Graph and n be an odd number. Looking at the cycle that
forms the outer rim we have u0u1 . . . un−1u0 is an odd cycle and hence it won’t
be bipartite. Now let k be an even number. The cycle v0vkukuk . . . u0v0 is an odd
cycle. Looking at the edges we have the k-trail ukuk . . . u0 that has an even number
of edges, u0v0 and ukvk are the 2 spokes, and v0vk is the only edge of the inner
rims of the cycle. So we have a (k+3)-cycle, and as k is even we have an odd cycle.
Therefore, it won’t be bipartite.

Sufficiency: Now we assume n is even and k is odd. If we show that G(n, k) is
2-colorable, then we would have that G(n, k) is bipartite. Let V = V(G(n, k)) =

{u0, . . . , un−1, v0 . . . , vn−1}. Let us define the following labeling:

ξ : V −→ {0, 1}
ui 7−→ i mod 2
vi 7−→ i + 1 mod 2
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for every i ∈ Z/nZ. We have that for every vertex ui, its neighbours are ui+1, ui−1, vi

and for every vertex vi, its adjacent vertex are vi+k, vi−k, ui (all subscript are in
modulo n). It is easy to check that

ξ(ui) = i mod 2 ̸= ξ(ui+1) = ξ(ui−1) = ξ(vi) = i + 1 mod 2

and as k is odd:

ξ(vi) = i + 1 mod 2 ̸= ξ(vi+k) = ξ(ui−k) = ξ(ui) = i mod 2

So, G(n, k) is 2-colorable and as consequence, bipartite.

The following result one can found in [KP19] that follows from the work of
[FGW71], [LS97] and [PZ09]:

Theorem 1.58. Let G(n, k) be a Generalised Petersen Graph. Then

a) it is symmetric if and only if

(n, k) ∈ {(4, 1), (5, 2), (8, 3), (10, 2), (10, 3), (12, 5), (24, 5)}

b) it is vertex-transitive if and only if k2 ≡ ±1 mod n, or n = 10 and k = 2

c) it is a Cayley graph if and only if k2 ≡ 1 mod n

The following is a list of a few members of the family of the Generalized
Petersen Graphs (a part from the Petersen graph) that are well known in Graph
Theory (see also Figure 4.2):

• for n ≥ 3 G(n,1) is the n-prism, in particular the cube G(4,1)

• the Dürer graph, G(6,2)

• the Möbius-Kantor graph G(8,3)

• the Dodecahedron graph G(10,2)

• the Desargues graph G(10,3)

• the Nauru graph G(12,5)

Also mention that it is such a famous family of graphs that there are also
generalitzations like the Supergeneralized Petersen Graphs [SPP07] or the I-graphs
[PZ09].
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Figure 1.6: "Melancolía-I". painting by Alberto Dürer. G(6, 2) can
be found as the skeleton of the left convex polyhedron.

1.4.1 Automorphism Group of Generalized Petersen Graph

Let us start this section defining the following permutations one can find in
[FGW71]:

Definition 1.59. Let G(n, k) a generalized Petersen graph and i ∈ Z/nZ. We define the
permutations on vertex set V(G(n, k)) α, β, γ as:

α(ui) = ui+1 α(vi) = vi+1

β(ui) = u−i β(vi) = v−i

γ(ui) = vki γ(vi) = uki

The following result can also be found in [FGW71]:

Theorem 1.60. For every not symmetric Generalized Petersen Graph G(n, k) we have:

• if k2 ≡ 1 mod n, then,

Aut(n, k) = ⟨α, β, γ|αn = β2 = γ2 = 1, αβ = βα−1, αγ = γαk, βγ = γβ⟩

• if k2 ≡ −1 mod n, then,

Aut(n, k) = ⟨α, β, γ|αn = β2 = γ4 = 1, αβ = βα−1, αγ = γk, βγ = γβ⟩

In this case β = γ2
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• Otherwise G(n, k) is not vertex-transitive and:

Aut(n, k) = ⟨α, β|αn = β2 = 1, αβ = βα−1⟩

Remark 1.61. α, β, γ are automorphisms that preserve the spokes. Therefore, the auto-
morphism group can not be generated only by α, β, γ.

Remark 1.62. α can be thought as a rotation of the vertices of the graph and β may be
thought as an axial symmetry. As for any G(n,k) α, β ∈ Aut(n, k) it is obvious that the
dihedral group Dn of order 2n is a subgroup of Aut(n, k).

Remark 1.63. Given a bipartite Generalized Petersen Graph G(n, k), α, γ are color-
reversing automorphism while β is color-preserving.

Let us rewrite the following lemma from [KP19] in order to preserve the nota-
tion of composition of automorphisms (see Notation 1.35):

Lemma 1.64. Let G(n, k) be a not symmetric Generalized Petersen Graph. Then, any
automorphism ω ∈ Aut(n, k) may be associated a unique triple (c, b, a) ∈ Z/2Z ×
Z/2Z × Z/nZ such that ω = γcβbαa

Proof. 1. αaβ = βα−a :

αa(β(ui)) = αa(u−i) = u−i+a = β(u−(−i+a)) = β(ui−a) = β(α−a(ui))

αa(β(vi)) = αa(v−i) = v−i+a = β(v−(−i+a)) = β(vi−a) = β(α−a(vi))

2. αaγ = γαak if k2 ≡ 1 mod n

αa(γ(ui)) = αa(vki) = vki+a = γ(ui+ka) = γ(αak(ui))

Where we have used in γ(ui+ka) = vki+k2a = vki+a if k2 ≡ 1 mod n. Analo-
gously we have:

αa(γ(vi)) = αa(uki) = uki+a = γ(vi+ka) = γ(αak(vi))

3. αaγ = γα−ak if k2 ≡ −1 mod n

αa(γ(ui)) = αa(vki) = vki+a = γ(ui−ka) = γ(α−ak(ui))

Where we have used in γ(ui+ka) = vki+k2a = vki−a if k2 ≡ −1 mod n. Anal-
ogously we have:

αa(γ(vi)) = αa(uki) = uki+a = γ(vi−ka) = γ(α−ak(vi))



1.4 Generalized Petersen Graphs 17

4. βγ = γβ:
β(γ(ui)) = β(vki) = v−ki = γ(u−i) = γβ(ui)

β(γ(vi)) = β(uki) = u−ki = γ(v−i) = γβ(vi)

Now looking at the automorphisms groups of the Generalized Petersen Graphs
we see that if k ≡ −1 mod n, then β = γ2, hence γ3 = γβ. And now, by using
any of these rules conveniently we get the result.
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Dürer graph, G(6,2)

Möbius-Kantor graph G(8,3) Dodecahedron graph G(10,2)

Desargues graph G(10,3) Nauru graph G(12,5)

Cube G(4,1)

Figure 1.7: Some famous Generalized Petersen Graphs



Chapter 2

Other q-coverings of Generalized
Petersen Graph

As we have seen in Chapter 1 the Dodecahedron G(10, 2) is indeed a 2-covering
of the Petersen graph.

The following result presents a large family of q-coverings:

Theorem 2.1. Let k, n, q be integers such that n ≥ 3, 1 ≤ k < n
2 and q ≥ 1. Let j ∈ Z.

Then:

• G(qn, jn + k) is a q-cover of G(n, k) for 0 ≤ j ≤ q−1
2

• G(qn, jn − k) is a q-cover of G(n, k) for 1 ≤ j ≤ q
2

Proof. First note that for 0 ≤ j ≤ q−1
2 , as 1 ≤ k < n

2 we have k ≤ jn + k ≤
(q−1)n

2 + k < (q−1)n
2 + n

2 = qn
2 . Now, let us prove the first statement:

Let V = {u0, . . . , uqn−1, v0, . . . , vqn−1} be the vertex set of G(qn, jn+ k) and W =

{a0, . . . , an−1, b0, . . . , bn−1} the vertex set of G(n, k). Let us define the following
function:

f : V −→ W
ui 7−→ ai mod n

vi 7−→ bi mod n

It is clearly a surjection by definition. We have to see it is a local isomorphism:
We have that for any ui, vi ∈ V, N(ui) = {ui+1, ui−1, vi} and N(vi) = {vi+(jn+k), vi−(jn+k), ui}.
Analogously, ∀ai, bi ∈ W, N(ai) = {ai+1, ai−1, bi} and N(bi) = {bi+k, bi−k, bi}.

19
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For any i ∈ {0, . . . , 2n − 1} we have:

f (ui) = ai(mod n)

f (ui+1) = ai+1(mod n) = a(i(mod n)+1(mod n))(mod n) = a(i(mod n)+1)(mod n)

f (ui−1) = ai−1(mod n) = a(i(mod n)−1(mod n))(mod n) = a(i(mod n)−1)(mod n)

f (vi) = bi(mod n)

f (vi+(jn+k)) = bi+(jn+k)(mod n) = b(i(mod n)+(jn+k)(mod n))(mod n)

= b(i(mod n)+((jn(mod n)+k(mod n))(mod n))(mod n) = b(i(mod n)+k)(mod n)

f (vi−(jn+k)) = bi−(jn+k)(mod n) = b(i(mod n)−(jn+k)(mod n))(mod n)

= b(i(mod n)−((jn(mod n)+k(mod n))(mod n))(mod n) = b(i(mod n)−k)(mod n)

Remember that every subscript of a vertex in V is supposed to be modulo qn while
for every vertex in W it is supposed to be modulo n. Therefore we have:

N( f (ui)) = N(ai) = {ai+1, ai−1, bi} = { f (ui+1), f (ui−1), f (vi)}

N( f (vi)) = N(bi) = {bi+k, bi−k, ai} = { f (vi+(jn+k)), f (vi−(jn+k)), f (ui)}

Hence, we have that ∀v ∈ V the restriction of f to N[v] onto N[ f (v)] is a bijection
as we wanted to prove.

Now, let us prove the second statement:
For 1 ≤ j ≤ q

2 and as 1 ≤ k < n
2 we have n

2 < n − k ≤ jn − k ≤ qn
2 − k < qn

2 .
Let j′ = j − 1 and k′ = n − k. From the first statement we know that G(qn, j′n + k′)
is a q-covering of G(n, k′). As j′n + k′ = j′n + (n − k) = (j′ + 1)n − k = jn − k we
have that G(qn, jn − k) is a q-covering of G(n, n − k). Finally, using lemma 1.55 we
have G(n, n − k) isomorphic to G(n, k). Note that we have used a little abuse on
the notation as n − k > n

2 .

Figures 2.1 and 2.2 are examples of coverings found by using Theorem 2.1
In theorem 2.1 we have seen a large family of Generalized Petersen Graph that

are 2-coverings of other Generalized Petersen Graphs. Indeed, we know that for
every n ≥ 3 and 1 ≤ k < n

2 , G(2n, k) is a 2-covering of G(n, k). However, are they
also Kronecker Covers of these graphs? By theorem 1.57 we know that G(2n, k) is
bipartite if and only if k is odd. Hence, we can ensure that for even k it is not a
Kronecker cover. For example, as can be seen in Figure 2.1, G(16, 2) is a 2-covering
of G(8, 2). Also, as k is even we know that G(16, 2) is not bipartite, so it can not
be a Kronecker Cover.
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Figure 2.1: G(16,2) is a 2-covering of G(8,2)

Figure 2.2: G(9,1) and G(9,4) are 3-coverings of G(3,1)
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The following step was trying to see if gcd(p, q) = 1 was a sufficient condition
for G(qn, pk) to be a q-cover of G(n, k). However, by using SageMath software
[The21] we found the following counterexample. G(12, 3) is not a 2-covering of
G(6, 1).



Chapter 3

Generalized Petersen Graph that
are Kronecker covers of other
Generalized Petersen Graph

The main goal of this chapter is to show which Generalized Petersen Graph are
Kronecker covers of other members of the same family. This question is answered
by Krank and Pizanski in [KP19]. Their main result states that G(10, 3) is the only
Generalized Petersen Graph with two non-isomorphic quotients. Moreover, they
prove which Generalized Petersen Graphs are Kronecker covers and which is their
single quotient graph. However, we will only target the cases were the quotient is
also a Generalized Petersen Graph.

With that purpose in mind, let us focus on the following part of their theorem:

Theorem 3.1. [KP19]: Let G ∼= G(n, k) be a Generalized Petersen Graph. If n ≡
2 (mod 4), then G is a Kronecker cover. In particular:

1. If 4k < n its corresponding quotient graph is G( n
2 , k).

2. If n < 4k < 2n the quotient graph is G( n
2 , n

2 − k).

Remark 3.2. G(10, 3) holds the second case. However, as we said earlier in this chapter,
M. Krns and T. Pisanksi proved in [KP19] that the Desargues graph is the only graph
among the Generalized Petersen Graph family that is a Kronecker cover of two non-
isomorphic graphs. One of those being the Petersen Graph G(5, 2).

3.1 Previous results

This section will give some previous results from [KP19] that will be useful in
order to prove Theorem 3.1.

23
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Petersen Graph

Let us rewrite the following result in order to be consistent with our notation:

Proposition 3.3. For a bipartite Generalized Petersen Graph G(n, k), the following state-
ments hold:

1. αa is a Kronecker involution if and only if a = n
2 and n ≡ 2 mod 4.

2. βαa is not a Kronecker involution.

3. if k2 ≡ −1 mod n, then neither γαa nor γβαa are a Kronecker involution for any
a ∈ Z/nZ.

Proof. 1. Necessity: Let ω = αa be a Kronecker Involution. Hence, ω2 = Id and
also it has to be color-reversing satisfying that for every vertex v, vω(v) is
not an edge. As αn = Id we trivialy have a = n

2 . Now ω color-reversing if a is
odd, so we have n ≡ 2 mod 4. We also have ω(ui) = ui+a and ω(vi) = vi+a,
and both satisfying uiω(ui), viω(vi) /∈ E(G(n, k))

Sufficiency: Now if a = n
2 and n ≡ 2 mod 4 we have a is odd so ω = αa is

color-reversing. And also we have ω2 = α2a = α2 n
2 = αn = Id. And hence ω

is a Kronecker involution.

2. Let us suppose that ω = βαa is a Kronecker involution. By definition, as
before we have a must be an odd number. In the proof of lemma 1.64 we
have seen αaβ = βα−a. As β2 = Id we also have ω = βαa = α−aβ.Now
for i = a−1

2 we have α−a(β(ui)) = α−a(β(u a−1
2
)) = α−a(u−a+1

2
) = u−a+1

2 +a =

u 2a−a+1
2

= u a+1
2

= ui+1. Therefore, uiω(ui) = uiui+1 ∈ E(G(n, k)) which
contradicts the fact of ω being a Kronecker Involution.

3. Now we assume k2 ≡ −1 mod n. Let us suppose first ω1 = γαa is a Kro-
necker involution. Note that ω2

1 = γαaγαa and using lemma 1.64 γαaγαa =

γγα−akαa = α−ak+aβ ̸= Id contradicting the fact that ω1 is an involution.
Now let us suppose ω2 = γβαa is a Kronecker involution. Again, by lemma
1.64 we have:

γβαaγβαa = γβγα−akβαa = γβγβαakαa = γγββαak+a = γ2β2αa(k+1)

= γ2αa(k+1) = βαa(k+1) ̸= Id

again contradicting the fact of ω2 being a Kronecker Involution.

3.2 Proof of the theorem

From 1, and 2 of the Proposition 3.3 above it follows that the only Kronecker
involution in the Dihedral group is αa when a = n

2 and n ≡ 2 mod 4. Also, by
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Theorem 1.57, in order to be bipartite G(n, k), n must be an even number and k
an odd number. Finally, we have from Theorem 1.49 that under these conditions,
there exists a Graph H = (W, F) such that KC(H) ∼= G(n, k). If we show H is the
quotient graph described in Theorem 3.1 we will have the proof.

Note that we already know from Theorem 2.1 that G(2n, k) and G(2n, n − k)
are 2-covers of G(n, k). However, we can only affirm that they are not Kronecker
covers of G(n, k) for an even k.

In order to proof the theorem, and following [KP19], we will prove the follow-
ing proposition:

Proposition 3.4. Let n be an odd number and an integer k such that 1 ≤ k < n
2 . Then,

KC(G(n, k)) ∼=
{

G(2n, k) i f k is odd

G(2n, n − k) i f k is even

Proof. First of all if n and k are odd integers such that 1 ≤ k < n
2 , then G(2n, k) is

bipartite, 2n ≡ 2 mod 4 and αn is the Kronecker involution of the automorphism
group Aut(2n, k). However, if n is an odd integer but k is an even integer satisfying
1 ≤ k < n

2 , then G(2n, n − k) is bipartite and αn is the Kronecker involution of the
automorphism group Aut(2n, n − k). Also note that n − k is odd an as k < n

2 ,
0 < k < n

2 < n − k < n = 2n
2 .

As both proofs are similar, let us define

k′ =

{
k i f k is odd

n − k i f k is even

Let G ∼= G(2n, k′), H ∼= G(n, k) such that G = (V, E′) and H = (W, F). We have
written E′ to emphasise that the edge set is different depending on k’. As G and H
are Generalized Petersen Grpahs let us define V = {u0, . . . , u2n−1, v0, . . . , v2n−1},
W = {a0, . . . , an−1, b0, . . . , bn−1}. Remember that throughout the hole proof any
subscript of vertex in V is written modulo 2n while any subscript of the vertex in
W is written modulo n. Let us define the following homomorphism:

φ : V −→ W × {0, 1}
ui 7−→ (ai, i mod 2)
vi 7−→ (bi, i + 1 mod 2)

Let us proof first it is a homomorphism: As G is a Generalized Petersen Graph, its
edges are of the form uiui+1, vivi+k′ or uivi. The edges of H are of the form aiai+1,
bibi+k or aibi and by definition of the Kronecker product we have E(KC(H)) =

E(H × K2) = {(u, j mod 2)(v, j + 1 mod 2)|uv ∈ F}. Hence, we have:

φ(ui)φ(ui+1) = (ai, i mod 2)(ai+1, i + 1 mod 2)
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Petersen Graph

φ(vi)φ(vi+k′) = (bi, i + 1 mod 2)(bi+k′ , i + k′ + 1 mod 2)

φ(ui)φ(vi) = (ai, i mod 2)(bi, i + 1 mod 2)

As aiai+1 ∈ F and clearly, i ̸≡ i + 1 mod 2, φ(ui)φ(ui+1) ∈ E(KC(H)). Now it is
clear that if k is odd k′ = k and bibi+k ∈ F and (i + 1) ̸≡ (i + 1) + k mod 2. If
k is even, k′ = n − k is odd and as k′ ≡ −k mod n we have bibi−k = bi−kbi ∈ F.
Therefore φ(vi)φ(vi+k′) ∈ E(KC(H)). Finally, as aibi ∈ F and i ̸≡ i + 1 mod 2, we
have φ(ui)φ(vi) ∈ E(KC(H)). Hence we conclude it is a homomorphism. We will
prove that φ is injective by contraposition: Let i, j ∈ Z/2nZ. Clearly ui ̸= vj and
φ(ui) = (ai, i mod 2) ̸= (bj, j + 1 mod 2) = φ(vj) as ai ̸= bj. Now let ui, uj ∈ V
such that ui ̸= uj. We have φ(ui) = (ai, i mod 2) and φ(uj) = (aj, j mod 2). If
i ̸≡ j mod n, ai ̸= aj and hence, φ(ui) ̸= φ(uj). If i ≡ j mod n we have ai = aj.
However, as ui ̸= uj we have i = j + n or i = j − n. As n is an odd number
i ̸≡ j mod 2 and we also have φ(ui) ̸= φ(uj). Analogously, let vi, vj ∈ V such that
vi ̸= vj. We have φ(vi) = (bi, i + 1 mod 2) and φ(vj) = (bj, j mod 2). If i ̸≡ j
mod n, bi ̸= bj and hence, φ(vi) ̸= φ(vj). If i ≡ j mod n, then bi = bj. However,
as vi ̸= vj we have i = j + n or i = j − n. As n is an odd number i ̸≡ j mod 2. It is
also a surjective homomorphism as it is injective and we have |V| = |W × {0, 1}|.
Let us see now its inverse function is a homomorphism too:

φ−1 : W × {0, 1} −→ V

(ai, j) 7−→
{

ui i f i ≡ j mod 2

ui+n i f i ̸≡ j mod 2

(bi, j) 7−→
{

vi+n i f i ≡ j mod 2

vi i f i ̸≡ j mod 2

Remember that E(KC(H)) = {(u, j mod 2)(v, j + 1 mod 2)|uv ∈ F}. Therefore
we have to check the following cases:

• Let us first suppose i ≡ j mod 2:

– φ−1(ai, j mod 2)φ−1(ai+1, j + 1 mod 2) = uiui+1 ∈ E′

– φ−1(ai, j mod 2)φ−1(bi, j + 1 mod 2) = uivi ∈ E′

– φ−1(bi, j mod 2)φ−1(bi+k, j + 1 mod 2) =

{
vi+nvi+n+k i f k is odd

vi+nvi+k i f k is even
Where at the last case we have used that if k is odd, as i ≡ j mod 2,
i + k ≡ j + 1 mod 2 and if k is even, i + k ̸≡ j + 1 mod 2. Moreover,
for the case when k is even, as vi+nvi+k = vi+kvi+n = vi+kvi+k+(n−k).
Therefore, in both cases we have:

φ−1(bi, j mod 2)φ−1(bi+k, j + 1 mod 2) ∈ E′
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• Now, if i ̸≡ j mod 2:

– φ−1(ai, j mod 2)φ−1(ai+1, j + 1 mod 2) = ui+nui+n+1 ∈ E′

– φ−1(ai, j mod 2)φ−1(bi, j + 1 mod 2) = ui+nvi+n ∈ E′

– φ−1(bi, j mod 2)φ−1(bi+k, j + 1 mod 2) =

{
vivi+k i f k is odd

vivi+k+n i f k is even
Where at the last case we have used that if k is odd, as i ̸≡ j mod 2,
i + k ̸≡ j + 1 mod 2 and if k is even, i + k ≡ j + 1 mod 2. Moreover,
for the case when k is even, and as the subscripts are in modulo 2n
we have vivi+k+n = vi+k+nvi = vi+k+nvi+(k−k+2n) = vi+k+nvi+k+n+(n−k).
Therefore, in both cases we have:

φ−1(bi, j mod 2)φ−1(bi+k, j + 1 mod 2) ∈ E′

.
Hence, φ−1 is also a homomorphism and we have KC(G(n, k)) ∼= G(2n, k′).



Chapter 4

Generalization of the Kronecker
cover

In this chapter we will generalize the Kronecker cover to a 3-cover.

4.1 Kronecker triple cover

Remember that by definition of the Kronecker product, for every vertex v ∈ G
we had two vertices in KC(G) and the same with the edges. Therefore, in order
to generalize the Kronecker cover to 3-covering we need to find a graph such that
for every vertex we get three vertices, and for every edge we also get three edges.

Definition 4.1. Let D and H be two directed graph. The directed tensor product of D
and H (denoted by D × H) is a digraph satisfying the following two conditions:

• The vertex set V(D × H) is the Cartesian product V(D)× V(H).

• (g1, h1)(g2, h2) ∈ A(D × H), if and only if g1g2 ∈ A(D) and h1h2 ∈ A(H).

Remark 4.2. The notation used is the same as the tensor product of two undirected graphs
although they mean different things.

Definition 4.3. Let D = (V, A) be a simple digraph. We define the Kronecker Triple
cover of D, and denote by KTC(D) the underlying of the directed tensor product D ×−→

C3.
Therefore, it is the underlying graph of the digraph with vertex set

V() = {v′, v′′, v′′′}v∈V(D)

and arc set
A(D ×−→

C3) = {(u′, v′′), (u′′, v′′′), (u′′′, v′)}(u,v)∈A(D)

28
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Remark 4.4. KTC(D) is clearly tripartite as V(KTC(D)) = V ′ ∪ V ′′ ∪ V ′′′ where
V ′, V ′′, V ′′′ are 3 independent sets.

Notation 4.5. In order to simplify and unify the notation we will write the vertex set of
KTC(D) as V ×{0, 1, 2}. We may also use the following notation to represent the vertices
on a Kronecker triple cover of a digraph D:

Given a vertex v ∈ V(D):

v′ = (v, 0), v′′ = (v, 1), and v′′′ = (v, 2)

In this way, the arc set of D ×−→
C3 may be written as:

A(D ×−→
C3) = {(u, i mod 3)(v, i + 1 mod 3)}(u,v)∈A(D)

where i ∈ {0, 1, 2}.

a

b

c

0

1

2

a b c

0

1

2

Figure 4.1:
−→
C3 ×

−→
C3.

Remark 4.6. As can be seen in Figure 4.1, KTC(
−→
C3 has 3 connected component.

Theorem 4.7. The Kronecker Triple cover of D is a 3-cover of the underlying graph of D.

Proof. We will prove a stronger statment: D ×−→
C3 is a 3-cover of D: Let D = (V, A).

By definition of the cross product we have, D × −→
C3 = (V × {0, 1, 2}, B). Let us

define the following homomorphism:

φ : V × {0, 1, 2} −→ V
(v, i) 7−→ v
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It is clearly a homomorphism: ∀(u, i), (v, j) ∈ V × {0, 1, 2} if ((u, i), (v, j)) ∈ B, by
definition we have j = i + 1 mod 3 and (u, v) ∈ A and as (φ(u, i), φ(v, i + 1)) =
(u, v) ∈ A we have the result. Surjection is also clear by definition of φ. Now, let
(u, i) ∈ V. Also we have, N(u, i) = {(v, i + 1), (w, i − 1)|(u, v), (w, v) ∈ A} and
N(u) = {v, w|(u, v), (w, v) ∈ A}. For φ restricted to N[v] we have φ(v, i + 1) = v
and φ(w, i + 1) = w and hence we have the local isomorphism.

Theorem 4.8. Let D = (V, A) be a digraph. If there exists a homomorphism φ such that

φ : V(D) −→ V(
−→
C3)

then the Kronecker Triple Cover KTC(D) is not a connected graph.

Proof. Let us assume that there exists a homomorphism φ : V(D) −→ V(
−→
C3). For

easier notation let us put for every v ∈ V, φ(v) ∈ {0, 1, 2}. Hence, for v ∈ V such
that (v, u) ∈ A we have (φ(v), φ(u)) ∈ A(

−→
C3). Therefore, φ(u) = φ(v) + 1 mod 3.

Let us define the following function:

f : V × {0, 1, 2} −→ {0, 1, 2}2

(v, i) 7−→ (φ(v), i)

Let us prove it is a homomorphism:
For v ∈ V, then (v, i mod 3)(u, i + 1 mod 3) if (v, u) ∈ A). Then, we have

( f (v, i), f (u, i + 1)) = ((φ(v), i), (φ(u), i + 1)) = ((φ(v), i), (φ(v) + 1, i + 1)), that
is indeed an arc of

−→
C3 ×

−→
C3. Note that φ(v)− i mod 3 is an invariant for every

connected vertices of
−→
C3 ×

−→
C3 meaning that

−→
C3 ×

−→
C3 is not connected (see Figure

4.1). Hence, as f is a homomorphism, it preserve edges which means D ×−→
C3 is

also disconnected.

2
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a b c d
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1

2
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0

a

b c

d

Figure 4.2: The KTC of two different orientations of the same graph can result on
two non isomorphic graphs
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4.1.1 3-Kronecker Automorphism

Definition 4.9. An automorphism f : A −→ A is said to be of order 3 if

( f ◦ f ◦ f )(x) = f 3(x) = f ( f ( f (x))) = x

or equivalently,
f−1(x) = f 2(x)

Definition 4.10. Let G = (V, E) be a tripartite graph and Aut(G) its automorphism
group. We say ω ∈ Aut(G) is a 3-Kronecker automorphism if it is an automorphism
of order 3 swapping the 3 sets of tripartition such that ∀v ∈ V, vω(v) /∈ E

Theorem 4.11. Let G = (V1 ∪ V2 ∪ V3, E) be a simple tripartite graph. Then, there
exist a digraph H = (W, F) such that KTC(H) ∼= G if and only if Aut(G) admits a
3-Kronecker automorphism.

Proof. Necessity: Let us assume G = (V, E) a tripartite graph, H = (W, F) a simple
digraph such that KTC(D) ∼= G. By definition of the KTC(D) we have V =

W × {0, 1, 2}. Let us define τ ∈ Aut(G) as:

τ : W × {0, 1, 2} −→ W × {0, 1, 2}
(w, i) 7−→ (w, i + 1 mod 3)

We can clearly see that (τ ◦ τ ◦ τ)(w, i) = τ(τ(τ(w, i))) = τ(τ(w, i + 1 mod 3)) =
τ(w, i + 2 mod 3) = (w, i + 3 mod 3) = (w, i). Hence, τ has order 3 and changes
all sets of tripartition as i ̸≡ i + 1 mod 3 ̸≡ i + 2 mod 3 ̸≡ i mod 3. Now, if
(w, i), τ(w, i) ∈ V then (w, i)(w, i + 1) ∈ E and by definition of the KTC(D) there
is an arc (w, w) ∈ F which is contradicting the fact of H being simple. Therefore,
τ is 3-Kronecker automorphism.

Sufficiency: Now we assume G = (A ∪ B ∪ C, E) to be a tripartite graph and
ω ∈ Aut(G) be a 3-Kronecker automorphism. Let us define the digraph H =

(A, F) such that (a1, a2) ∈ F ⇐⇒ a1ω(a2) ∈ E. Note that if a ∈ A, by definition
of 3-Kronecker automorphism it swaps the sets of tripartition. Hence we have
ω(a) ∈ B ∪ C and as G is tripartite we have A, B and C are 3 independent sets.
For simple notation we will suppose ω(a) ∈ B and ω2(a) ∈ C. Also, as ω is an
autmorphism, if a1ω(a2) ∈ E we also have ω(a1)ω

2(a2) ∈ E and ω2(a1)a2 ∈ E.
Now, let us define the following homomorphism:

φ : A × {0, 1, 2} −→ A ∪ B ∪ C
(a, i) 7−→ ωi(a)

Where A × {0, 1, 2} is the vertex set of KTC(H). Let us first check it is a homo-
morphism. (a1, i)(a2, j) ∈ E(KTC(H)) if and only if j = i + 1 and (a1, a2) ∈ F. As
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we have previously seen (a1, a2) ∈ F if and only if a1ω(a2) ∈ E by definition of
H. Now if j = i + 1 and (a1, a2) ∈ F, as we have seen before and by definition of
the 3-Kronecker automorphism we have φ(a1, i)φ(a2, j) = ωi(a1)ω

j(a2) ∈ E. It is
also an injection: if φ(a1, i) = φ(a2, j) we have ωi(a1) = ω j(a2) and trivially we
have i = j and a1 = a2. Therefore, (a1, i) = (a2, j) and φ is injective. It is also a
surjection by definition: For i = 0 and ∀a ∈ A, we have φ(a, 0) = a ∈ A. More-
over, ω is a 3-Kronecker automorphism, hence |A| = |B| = |C| and we also have
|A ∪ B ∪ C| = |A × {0, 1, 2}|. Finally, we will check φ−1 is a homomorphism.

φ−1 : A ∪ B ∪ C −→ A × {0, 1, 2}

v 7−→


(v, 0) i f v ∈ A

(ω2(v), 1) i f v ∈ B

(ω(v), 2) i f v ∈ C

As G is tripartite, if e ∈ E, then we have e = ab = ba such that a ∈ A, b ∈ B or e =
bc = cb such that b ∈ B, c ∈ C or e = ca = ac such that a ∈ A, c ∈ C. We remember
that by the definition of the 3-Kronecker utomorphism, e = bc is the same as there
exisist a1, a2 ∈ A such that b = ω(a1), c = ω2(a2) and e = ω(a1)ω

2(a2). Also for
e = ac there exisist a3 ∈ A such that c = ω2(a3) and e = aω2(a3). Let us check the
three cases:

• e = ab such that a ∈ A, b ∈ B:

φ−1(a)φ−1(b) = (a, 0)(ω2(b), 1). As ω has order 3, we have e = aω3(b) =

aω(ω2(b)) ∈ E. As a, ω2(b) ∈ A, by construction of H we have (a, ω2(b)) ∈ F
and therefore, by definition of the KTC we have φ−1(a)φ−1(b) = (a, 0)(ω2(b), 1) ∈
E(KTC(H)).

• e = bc such that b ∈ B, c ∈ C:

φ−1(b)φ−1(c) = (ω2(b), 1)(ω(c), 2). As ω has order 3, we have e = ω3(b)ω3(c) =
ω(ω2(b))ω(ω2(c)) ∈ E. As ω is an automorphism we also have ω2(b)ω(ω(c)) ∈
E. Note that ω2(b), ω(c) ∈ A. Hence, by construction of H we have (ω2(b), ω(c)) ∈
F and therefore, φ−1(b)φ−1(c) = (ω2(b), 1)(ω(c), 2) ∈ E(KTC(H)).

• e = ca such that a ∈ A, c ∈ C:

φ−1(a)φ−1(c) = (a, 0)(ω(c), 2). As ω is an automorphism we also have
ω(c)ω(a) =∈ E. By construction of H we have (ω(c), a) ∈ F and there-
fore, by definition of the KTC we have φ−1(a)φ−1(c) = (ω(c), 2)(a, 0) ∈
E(KTC(H)).

Therefore, for every edge uv ∈ E we have φ−1(u)φ−1(v) ∈ E(KTC(H)) so φ−1 is
also a homomorphism. So KTC(H) ∼= G.



Chapter 5

Conclusion

In order to finish this bachelor thesis, we will summarize and highlight the key
items of each chapter:

We have started this thesis by introducing some basic knowledge of graph the-
ory and more specific ones of algebraic graph theory such the k-covering. Also, we
have defined the family of Generalized Petersen Graphs and introduced the Kro-
necker Cover. We have also reproved some known theorems such as Theorem 1.49,
that sets a relation between the Kronecker Cover and the Kronecker Involution of
a graph G.

Immediately after this introduction, we have presented a family of Generalized
Petersen Graph that are q-coverings of other Generalized Petersen Graphs. Due to
the lack of time, we haven’t found any other Generalized Petersen Graph that sat-
isfy being a q-covering of another Generalized Petersen Graph although it might
be some other. It would be interesting to use Theorem 1.56 in order to extend our
result.

Afterwards, we have seen which Generalized Petersen Graphs are Kronecker
Covers from other Generalized Petersen Graphs. These are known results from
Krnc and Pisanski [KP19] that we have reproved in order to preserve our notation.
Also, all their results have been useful in order to prepare us for the next step.

Finally, we have introduced the Kronecker Triple Cover and the 3-Kronecker
automorphism. We have generalized the Kronecker cover to a 3-covering with the
aim of finding which Generalized Petersen Graphs are Kronecker Triple Covers of
other Generalized Petersen Graph. Although we have proved the relation between
the existence of a 3-Kronecker automorphism and the Kronecker Triple Cover we
have not characterized which Generalized Petersen Graphs are KTC of other such
graphs due to there might exist more that one 3-Kronecker automorphism. Due
to lack of time, it also remains as an open problem to generalize the Kronecker
Cover to a q-covering and relate it to the q-Kronecker automorphism, encouraging

33
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researchers to follow our results.
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