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Abstract

Mapper is one of the principal tools in topological data analysis (TDA) that enables
studying topological features of high-dimensional datasets. Many studies from
different fields, such as medicine and sports, have recently applied the Mapper
algorithm to extract outstanding information from data.

In this work, our goal is to substantiate the conclusions from Comparison between
endocardial and epicardial cardiac resynchronization in an experimental model of non-
ischaemic cardiomyopathy study. In particular, we look for the optimal heart region
where cardiac resynchronisation therapy offers a better result. Even though the
core of the study is practical, we also profoundly study the theory behind the
Mapper algorithm and the statistical methods we apply throughout the process.

Resum

Mapper és un dels mètodes principals dins de la branca de topological data anal-
ysis (TDA) que permet estudiar característiques topològiques sobre conjunts de
dades de grans dimensions. Recentment, molts estudis de diferents àrees, com la
medicina o els esports, han aplicat l’algorisme de Mapper per extreure informació
rellevant de les dades tractades.

En aquest treball, el nostre objectiu és refermar les conclusions que es van obtenir
a l’estudi Comparison between endocardial and epicardial cardiac resynchronization in
an experimental model of non-ischaemic cardiomyopathy. En concret, volem aconseguir
la posició del cor òptima on una teràpia de resincronització cardíaca tingui més
eficiència. Malgrat que la part principal d’aquest estudi és pràctica, també profun-
ditzem en la teoria que hi ha al darrere de l’algorisme de Mapper i els mètodes
estadístics utilitzats durant el procés.

2020 Mathematics Subject Classification. 55N31, 55P10, 62P10
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Introduction

These notes were born from the idea to support the results obtained in the paper
Comparison between endocardial and epicardial cardiac resynchronization in an experi-
mental model of non-ischaemic cardiomyopathy carried out by a team from the De-
partment of Cardiology in Hospital de la Santa Creu i Sant Pau. The study aimed
to “compare the acute response of biventricular pacing from the LV epicardium and en-
docardium in a swine non-ischaemic cardiomyopathy (NICM) model of dyssynchron”. In
other words, they wanted to find differences, or relevant information, by compar-
ing the obtained heart testings values between a swine with or without a bipolar
pacing electrode.

They tested this method on six different swine individuals. The values obtained
for each swine were differentiated by the different heart regions and also by en-
docardial or epicardial pacing. There are three heart regions: basal, mid, and
apical. Then, their results reflected that the pacing from basal regions, either from
the epicardium or endocardium, produced better responses than mid or apical re-
gions. On the other hand, they could not find any relevant information about the
comparison between endocardial and epicardial pacing. After applying traditional
statistical methods to their dataset, a whole set of conclusions was abstracted.

Afterwards, the Faculty of Mathematics and Computer Science of the Universitat
de Barcelona joined the study in order to apply topological data analysis tech-
niques to the same dataset. The principal aim of this collaboration was to reaffirm
the results referred to the distinction between heart regions’ responses. On the
other hand, we were open to the possibility of finding a differentiation between
the endocardium and epicardium.

Topological data analysis is a branch of applied mathematics that uses topological
techniques and concepts to analyse data. Topological data analysis, commonly
abbreviated by TDA, was born from the necessity to analyse high-dimensional
data that traditional statistical methods could not manage.

During the last years, the collection of data in almost every area of our society has
been growing exponentially. This vast amount of data plays a fundamental role
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vi Introduction

in our lives since we can abstract determinant and valuable information from it.
However, there was a point in the past when we found ourselves in a situation
where we had to deal with high-dimensional datasets that we could not analyse
through the traditional methods we used to apply.

The principal aim of TDA is to find relevant information about the studied dataset
through quantitative and qualitative topological features (e.g., clusters, branches,
holes...). Intuitively, TDA tries to extract information from the shape of data.

This branch of applied mathematics is a continually growing area, and nowadays
there is much investment in it. One principal reason for this significant invest-
ment is the relevant and valuable results from real-life studies. In particular, there
are many examples applied to the medical field; an example could be the paper
“Identification of type 2 diabetes subgroups through topological analysis of patient simi-
larity” [1]. As the title can tell, they identified three distinct subgroups of Type 2
diabetes (T2D) from topology-based patient-patient networks.

Nowadays, the two principal methods used in TDA are the Mapper algorithm
[Singh et al., 2007] and persistent homology.

In this paper, we apply the Mapper algorithm to study the topological features
from the Hospital de Sant Pau dataset. We divide this paper into two sections.
In the first one, we give a fully detailed explanation of the theoretical concepts
behind Mapper and other tools we have used to analyse the data. On the other
hand, the second part states the procedure and results from applying the Mapper
algorithm to the given dataset.

The idea of the Mapper algorithm is, given a data set X and a well-chosen real-
valued function f : X → Rd, to summarise X through the nerve of the refined
pullback of a cover U of f (X). For well-chosen covers U , this nerve is a graph
providing an easy and convenient way to visualise a summary of the data.

Hence, in the first section of these notes (the theoretical one), we state the nec-
essary theory to understand the nerve concept and one of the most important
theorems in TDA, the Nerve Theorem. This theorem states the relation between a
nerve and the respective topological space through topological features. Further-
more, we also introduce the concepts for principal components analysis (PCA) and
give a short comparison between PCA and singular value decomposition. Finally,
at the end of this section, we briefly discuss the stability of 1-dimensional Mapper.

In the study of the data, firstly, we briefly introduce a complete description of the
dataset we use to facilitate the reader’s comprehension of everything implemented
and abstracted from it. Then, we discuss the results obtained after submitting our
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data to a filter function and PCA analysis and claim that the tools that we used
were optimal for our study. After visualizing our point cloud, we apply the Map-
per algorithm to it and present the outputs. To conclude the paper, we recapitulate,
observe and examine all the results that have been obtained throughout the study,
and take out some final conclusions.
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Chapter 1

Nerve Theorem

In this section, we will study some theoretical concepts behind Topological Data
Analysis, TDA, and the Mapper algorithm. The goal of TDA is to make meaningful
signatures of the data through topological tools. Hence, these signatures lead to
topological invariants, which enable a greater understanding of the relationships
in —and transformations of— data. Moreover, these techniques allow us to obtain
some information and conclusion from the data set that we could not acquire
using traditional methods.

The Mapper algorithm uses the concept of nerve of a cover of a topological space
X. Moreover, we also study the well-known Nerve Theorem. This theorem states
the relation of topological features between a topological space X and the nerve of
a suitable cover of X. This theorem has different versions, but we will only state
the homotopical and homological versions. Since we will prove the result for the
homotopical version, we have to study all the theoretical concepts to understand
it. On the other hand, we just introduce the theorem itself and the respective proof
for the homological result.

Even though the nerve of a given dataset is the principal concept of the Mapper
algorithm, we will see that, in general, it does not satisfy the Nerve Theorem.
However, at the end of this section we state some results related to the algorithm’s
stability (or instability). This stability is explained through the perturbation of the
parameters that have to be selected by the user.

1.1 Homotopical Nerve Theorem

We begin by studying the homotopical version of the Nerve Theorem and the
necessary theoretical background to understand and prove it.

1



2 Nerve Theorem

Definition 1.1. Given a subset X of a topological space, we define an open cover as
a collection of open subsets U = {Ui}i∈I such that X ⊆ ∪i∈IUi.

Definition 1.2. Let X be a topological space, and let {Ui ⊂ X}i∈I be an open cover
of X. Then a refinement of this open cover is a set of open subsets {Vj ⊂ X}j which
is still an open cover in itself and such that for each j ∈ J there exists an i ∈ I with
Vj ⊂ Ui.

Definition 1.3. A topological space X is called paracompact if every open cover of
X has a refinement by a locally finite open cover.

Note that every compact space is a paracompact.

Definition 1.4. An abstract simplicial complex is a collection K of finite subsets of a
set X satisfying the following conditions:

(a) For all x ∈ X, {x} ∈ K (i.e., the elements of X belong to K).

(b) If τ ∈ K, and σ ⊆ τ, then σ ∈ K.

The elements of K are the simplices, and the elements of X are called vertices of K.

Next, we state one of the most important concepts to understand how Mapper
works. It will be pretty simple to assimilate the mechanics of the algorithm if we
get a complete understanding of the nerve concept. The definition is as follows:

Definition 1.5. Let X be a topological space, and U = {Ui}i∈I an open cover of X.
The nerve of the cover is the abstract simplicial complex N (U ) whose vertex set is
U and satisfies

σ = [Ui0 , Ui1 , . . . , Uik ] ∈ N (U ) ⇐⇒ ∩k
j=0Uij ̸= ∅.

In other words, we can describe the nerve of an open cover as the abstract
simplicial complex obtained from the subsets of the proper cover. The vertices of
the abstract simplicial complex are the open subsets from the open cover, and the
edges between them are created if and only if the intersection of their respective
subsets is not empty.
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Figure 1.1: Nerve of an open cover made out of its subsets in the plane.

Now, we are going to state the necessary homotopical concepts to understand and
prove the homotopical version of the Nerve Theorem.

Definition 1.6. Let X and Y be topological spaces. Given two maps f0 : X → Z,
f1 : X → Z, then f0 and f1 are homotopic if there exists a continuous map H :
[0, 1]× X → Z satisfying for all x ∈ X:

(a) H(0, x) = f0(x);

(b) H(1, x) = f1(x).

If f0 and f1 are homotopic, we denote it by f0 ∼ f1.

Note that any two real functions f0, f1 : R → R are homotopic. Simply, we
just have to define a continuos map H : R × [0, 1] → R such that H(x, t) =

(1− t) ∗ f0(x) + t ∗ f1(x).

Definition 1.7. Two topological spaces X and Y are homotopy equivalent (or have
the same homotopy type) if there exist continuous maps f : X → Y and g : Y → X
such that g ◦ f is homotopic to IdX and f ◦ g is homotopic to IdY.

Definition 1.8. Given a topological space X, we say that X is contractible if it is
homotopy equivalent to a one-point space.

Now, we are able to state the main result of this section:

Theorem 1.9. (Nerve Theorem) If U is an open cover of a paracompact space X such
that every nonempty intersection of finitely many sets in U is contractible, then X is
homotopy equivalent to the nerve N (U ).

We need a proposition and some previous definitions to prove this theorem. We
start by giving some definitions:
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Definition 1.10. A space X is called a cell complex, or CW complex, when it is
constructed in the following way:

(a) Start with a discrete set X0 , whose points are called 0-cells.

(b) Inductively, form the n-skeleton Xn from Xn−1 by attaching n-cells en
α via

maps φα : Sn−1 → Xn−1. This means that Xn is the quotient space of the
disjoint union Xn−1 ⊔

α Dn
α of Xn−1 with a collection of n-disks Dα

n under the
identifications x ∼ φα(x) for x ∈ ∂Dn

α . Thus as a set, Xn = Xn−1 ⊔
α en

α where
each en

α is an open n-disk.

(c) One can either stop this inductive process at a finite stage, setting X = Xn

for some n < ∞, or one can continue indefinitely, setting X = ∪nXn open (or
closed) iff A ∩ Xn is open (or closed) in Xn for each n.

Remark 1.11. The n-skeleton of a topological space X presented as a CW complex
(or a simplicial complex) refers to the subspace Xn that is the union of the cells of
X (or simplices of X) of dimensions m ≤ n.

From now on, we will denote the diagram of space simply by X. Then, we have
the following definition:

Remark 1.12. A diagram of spaces consists of an oriented graph Γ with a space Xi

for each vertex i of Γ and a map f(i,j) : Xi → Xj for each edge e(i,j) of Γ from a
vertex i to a vertex j.

Definition 1.13. Given a diagram of spaces X, we define a space ⊔X to be the
quotient of the disjoint union of all the spaces Xv associated to vertices of the
graph Γ under the identifications x ∼ fe(x) for all maps fe associated to edges
of Γ. To give a name to this construction, let us call ⊔X the amalgamation of the
diagram X.

To get a notion with nicer homotopy-theoretic properties, we introduce the ho-
motopy version of ⊔X , which we shall denote ∆X and call the realization of X .
Here we again start with the disjoint union of all the vertex spaces Xv, but instead
of passing to a quotient space of this disjoint union, we enlarge it by filling in a
mapping cylinder M f for each map f of the diagram, identifying the two ends of
this cylinder with the appropriate Xv's.

Remark 1.14. The mapping cylinder of a continuous function f between topolog-
ical spaces X and Y is the quotient M f = (([0, 1]× X) ⊔ Y)/ ∼, where ∼ is the
equivalence relation generated by (0, x) ∼ f (x) for each x ∈ X.
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Example 1.15. Consider a diagram X of the form X0 ← X0 × X1 → X1 whose
maps are the projections onto the two factors. Since (a, b) ∼ a for all a ∈ X0 and
(a, b) ∼ b for all b ∈ X1, we have that ⊔X is simply a point.

On the other hand, the union of the two mapping cylinders is the same as the
quotient of X0 × X1 × I with X0 × X1 × {0} collapsed to X0 and X0 × X1 × {1}
collapsed to X1 (i.e., the join X0 ∗ X1).

Definition 1.16. There is a natural generalization of ∆X in which one starts with
a ∆-complex Γ and a diagram of spaces associated to the 1-skeleton of Γ such
that the maps corresponding to the edges of each n-simplex of Γ, n > 1, form a
commutative diagram. We call this data a complex of spaces.

If X is a complex of spaces, then for each n-simplex of Γ we have a sequence

of maps X0
f1−→ X1

f2−→ . . .
fn−→ Xn, and we define the iterated mapping cylinder

M( f1, . . . , fn) to be the usual mapping cylinder for n = 1, and inductively for

n > 1, the mapping cylinder of the fn composition M( f1, . . . , fn−1)→ Xn−1
fn−→ Xn

where the first map is the canonical projection of a mapping cylinder onto its
target end.

Proposition 1.17. When XU is the complex of spaces associated to an open cover U =

{Xi} of a paracompact space X, the map p : ∆XU → ⊔XU = X is a homotopy equivalence.

Proof. The realization ∆XU can also be described as the quotient space of the dis-
joint union of all the products Xi0 ∩ · · · ∩ Xin × ∆n , as the subscripts range over
sets of n+ 1 distinct indices and n ≥ 0, with the identifications over the faces of ∆n

using inclusions Xi0 ∩ · · · ∩ Xin ↪→ Xi0 ∩ · · · ∩ X̂ij ∩ · · · ∩ Xin . From this viewpoint,
points of ∆XU in a given ‘fiber’ p−1(x) can be written as finite linear combinations
∑i tixi where ∑i ti = 1 and xi is x regarded as a point of Xi, for those Xi's that
contain x.

Since X is paracompact there is a partition of unity subordinate to the cover U .
This is a family of maps φα : X → [0, 1] satisfying three conditions: The support
of each φα is contained in some Xi(α), only finitely many φα's are nonzero near
each point of X, and ∑α φα = 1. Define a section s : X → ∆XU of p by setting
s(x) = ∑α φα(x)xi(α).

The figure shows the case X = S1 with a cover by two arcs, the heavy line
indicating the image of s. In the general case the section s embeds X as a retract of
∆XU , and it is a deformation retract since points in fibers p−1(x) can move linearly
along line segments to s(x).

Therefore, a proof of the Nerve Theorem is as follows:
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Proof. The Proposition gives a homotopy equivalence X ≃ ∆XU . Since the non-
empty finite intersections of sets in U are contractible, the earlier proposition im-
plies that the map ∆XU → Γ induced by sending each intersection to a point is a
homotopy equivalence. Since Γ is the barycentric subdivision of N (U ), the result
follows.

1.2 Homological Nerve Theorem

A brief theoretical framework to understand the homological nerve theorem is
given. However, we motivate the reader to check [3] to get a fully detailed under-
standing about homology.

On the other hand, these theoretical concepts will also be useful in the discus-
sion about the Mapper stability in Chapter 3. In particular, we need them for an
understanding of extended persistence.

Definition 1.18. We define a chain complex as a sequence of homomorphisms of
abelian groups Ci

· · · → Cn+1
∂n+1−−→ Cn

∂n−→ Cn−1 → . . . C1
∂1−→ C0

∂0−→ 0

where ∂n∂n+1 = 0 for each n.

From ∂n∂n+1 = 0, since ∂n∂n+1(x) = ∂n(∂n+1(x)), it follows that Im(∂n+1) ⊂
Ker(∂n). Then we have the following:

Definition 1.19. We can define the nth homology group of the chain complex to be
the quotient group Hn = Ker(∂n)/Im(∂n+1). Elements of Ker(∂n) are called cycles
and elements of Im(∂n+1) are boundaries.

Moreover, there is an extension of homology groups by augmenting the chain
complex with Z, called the reduced homology groups. The definition is as follows:

Definition 1.20. Let us consider a space X and let Cn(X) be the free abelian group
with basis the set of singular n-simplices in X. Then, we define the reduced homol-
ogy groups H̃n(X) as the homology groups of the augmented chain complex

· · · → C2(X)
∂2−→ C1(X)

∂1−→ C0(X)
ϵ−→ Z→ 0

where ϵ(∑i niσi) = ∑i ni. Here we had better require X to be nonempty, to avoid
having a nontrivial homology group in dimension −1. Since ϵ∂1 = 0, ϵ vanishes
on Im ∂1 and hence induces a map H0(X) → Z with kernel H̃0(X), so H0(X) ≈
H̃0(X)⊕Z. Obviously, Hn(X) ≈ H̃n(X) for n > 0.
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Now, that we have seen all the necessary theoretical concepts, we can state the
homological nerve theorem.

For a finite simplicial complex X, let Hj(X) denote the j-th simplicial homology
of X with coefficients in some fixed field F. The j-dimensional skeleton of X is
denoted by X(j). Let U = {Ui}i∈I be a finite family of subcomplexes of X such that
∪i∈IUi = X. For σ ⊂ I let Uσ = ∩i∈IUi. The nerve of U is the simplicial complex
N = N (U ) on the vertex set I whose simplices are all σ ⊂ I such that Uσ ̸= ∅.
Then,

Theorem 1.21. If H̃j(Uσ) = 0 for all σ ∈ N(k) and 0 ≤ j ≤ k− dim(σ), then

(a) H̃j(X) ≊ H̃j(N) for 0 ≤ j ≤ k,

(b) If Hk+1(N) ̸= 0 then Hk+1(X) ̸= 0.

To conclude this first chapter, we recap and analyse the obtained results. Note that,
under some hypotheses, the Nerve Theorem states that the nerve of a cover of a
paracompact topological space X is homotopy equivalent to X. Roughly speaking,
we can say that the topological features of an abstract simplicial complex (the
nerve of a cover) are related to the topological features of the original topological
space.

The Nerve Theorem plays a fundamental role in TDA since it claims solid theo-
retical guarantees about the topological features of the nerve. Indeed, it provides
a way to encode the topology of spaces into abstract combinatorial structures that
are well-suited for designing effective data structures and algorithms.
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Chapter 2

Principal Components Analysis

To get a better comprehension about the dataset in our study we apply some
statistical methods. Some of those tools are really basic, but one of them needs
theoretical background to understand the results we obtain. This method is called
Principal Components Analysis, commonly abbreviated as PCA.

PCA is usually used to analyse high dimensional data since it is a great dimen-
sionality reduction method. Even though it reduces the dimensionality of our data
it keeps most of the variation of the data set —that is the reason for being one of
the most used methods to treat high dimensional data.

Before explaining the methodology of PCA, we have to explain some previous
theoretical concepts. Firstly, we see some theory for singular values and a method
that uses them to also reduce the dimension of a point cloud. The method in
particular is called Singular Value Decomposition. Then, we study the idea behind
principal components, and, finally, the Principal Components Analysis.

2.1 Singular Value Decomposition

Let A be an m × n matrix, so we have the symmetric matrix AT A. Denoting
B = AT A, we know that M has n eigenvalues and n linearly independent and
orthogonal eigenvectors v1, v2, . . . , vn. Assuming λi is an eigenvalue and vi its
respective eigenvector, we have that

||Bvi||2 = (Bvi)
TBvi = vT

i BTBvi = vT
i λvi = λvT

i vi = λ||vi||2.

Thus, since ||Bvi||2 ≥ 0, we obtain that λ||vi||2 ≥ 0, and, in particular, λ ≥ 0.
Hence, since we can do it for any eigenvalue from B, we have proved the following
result:

9



10 Principal Components Analysis

Proposition 2.1. Let B be a real n× n matrix, with rank t. Then, every eigenvalue λ of
B is positive, i.e., λ ≥ 0.

From this proposition we get the definition of a singular value:

Definition 2.2. Let A be an m × n matrix, and B the matrix B = AT A. Let
λ1, λ2, . . . , λn be the n eigenvalues from B ordered in decreasing order, i.e., λ1 ≥
λ2 ≥ · · · ≥ λn. We define the n singular values of A by

σi =
√

λi, for each i = 1, . . . , n such that σ1 ≥ σ2 ≥ · · · ≥ σn.

Now that we have stated the definition of singular values, we can introduce the
Singular Value Decomposition.

Definition 2.3. Given A ∈ Cm×n a Singular Value Decomposition (SVD) of A is a
factorization

A = UΣV∗,

where U ∈ Cm×m and V ∈ Cn×n are unitary, and Σ ∈ Rm×n is diagonal.

In addition, it is assumed that the diagonal entries σj of Σ satisfy σ1 ≥ σ2 ≥ · · · ≥
σp ≥ 0, where p = min(m, n). Note that the diagonal matrix Σ has the same shape
as A even when A is not square, but U and V are always square unitary matrices.

Note that if A ∈ Rm×n then U and V can also be guaranteed to be real orthogonal
matrices. Therefore, the SVD is commonly denoted by UΣVT. SVD is the most
commonly used method for data science since, in general, the values in the data
sets are real.

Hence, we can see that SVD projects our initial data, from a matrix A with r
columns to a subspace with r or fewer columns. However, the essence of the origi-
nal data is conserved. By the previous reason, SVD is sometimes a dimensionality
reduction method, even though it is also used for other purposes.

2.2 Principal Components Analysis

The Principal Components Analysis (PCA) method uses the theory behind principal
components (PC). Thus, we need to study these theoretical concepts previously.

2.2.1 Definition of Principal Components

Given a vector of p random variables x = (x1, x2, . . . , xp), PCA focus on the vari-
ance of the random variables1. Firstly, we have to find a linear function αT

1 x of

1Even though it does not completely ignore their covariances and correlations.
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the elements of x having maximum variance, where α1 is a vector of p constants
α11 , α12 , . . . , α1p , so that

αT
1 x = α11 x + α12 x2 + · · ·+ α1p xp =

p

∑
j=1

α1j xj.

Then, the following step is to find a linear function αT
2 x that is uncorrelated with

the previous one, αT
1 x, and that has maximum variance. Hence, we keep doing

this procedure such that at the kth step, we find a linear function αT
k x such that is

uncorrelated with αT
1 x, αT

2 x, . . . , αT
k−1x and has a maximum variance. We define the

kth variable derived from the procedure described above (αT
k x) as the kth Principal

Component (PC).

In general, most of the variation in x will be accounted for by the m first princi-
pal components, for m << p. Consequently, we do not usually compute all the
principal components until the pth one. Notice that this is a pretty relevant and
valuable fact to consider in practice.

When a set of n > 2 variables has substantial correlations among them, then we
will get most of the variation from the original variables in the first PCs. On the
other hand, the last few principal components identify directions in which there
is a minimal variation; they identify near-constant linear relationships among the
original variables.

Obtaining principal components

Now that we have already stated the theory for PCs, we have to define a method
to find them. Consider the case where x, the vector of p random variables, has
a known covariance matrix Σ. The covariance matrix is the matrix defined as
follows:

Σ =

{
var(xj) if i = j
cov(xi, xj) if i ̸= j

When Σ is unknown —the most realistic case— we replace Σ with a sample co-
variance matrix S.

To derive the form of the PCs, consider first αT
1 x; the vector α1 maximizes var[αT

1 x] =
αT

1 Σα1. It is clear that, as it stands, the maximum will not be achieved for finite
α1, so a normalization constraint must be imposed. The constraint used in the
derivation is αT

1 α1 = 1, that is, the sum of squares of elements of α1 equals 1.

To maximise αT
1 Σα1 subject to αT

1 α1 = 1, the standard approach is to use the tech-
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nique of Lagrange multipliers. Then, we have to maximise the equation

αT
1 Σα1 − λ(αT

1 α1 − 1),

where λ is a Lagrange multiplier. Differentiating the above equation with respect
to the variable α1, we obtain

Σα1 − λα1 = 0, that is equivalent to (Σ− λIp)α1 = 0,

where Ip denotes the identity matrix of dimension p. Thus, λ is an eigenvalue of
Σ and α1 is the corresponding eigenvector. To decide which of the p eigenvectors
gives αT

1 with maximum variance, note that the quantity to be maximized is

αT
1 Σα1 = αT

1 λα1 = λαT
1 α1 = λ,

so λ must be as large as possible. Thus, α1 is the eigenvector corresponding to
the largest eigenvalue of Σ, and var(αT

1 x) = αT
1 Σα1 = λ1, the largest eigenvalue.

In general, the kth PC of x is αT
k x and var(αT

k x) = λk, where λk is the kth largest
eigenvalue of Σ, and αk is the corresponding eigenvector2.

Principal Components for a given sample

Now, we will study the methodology of PC for a given sample. This is equivalent
to our case where a given sample has been given to us and we have to obtain the
principal components to be our filter functions.

Suppose that we have n independent observations on the p-element random vector
x; denote these n observations by x1, x2, . . . , xn. Let z̃i1 = aT

1 xi, i = 1, 2, . . . , n, and
choose the vector of coefficients aT

1 to maximize the sample variance

1
n− 1

n

∑
i=1

(z̃i1 − z̄1)
2

subject to the normalization constraint aT
1 a1 = 1. Next let z̃i2 = aT

2 xi, i = 1, 2, . . . , n,
and choose aT

2 to maximize the sample variance of the z̃i2 subject to the normal-
ization constraint aT

2 a2 = 1, and subject also to the z̃i2 being uncorrelated with the
z̃i1 in the sample. Proceeding with the same pattern we defined previously in the
general case, we get a sample version of the definition of principal components.
Then, we can assure that aT

k x is defined as the kth sample PC, k = 1, 2, . . . , p. More-
over, we introduce a new term, called score, such that z̃ik is the score for the ith
observation on the kth PC. Basically, the score is somehow the “new coordinate”
value.

2For a detailed proof of this result, check [6]
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Following the same derivation strategy seen in the general case, but now with
sample variances and covariances replacing population quantities, then it turns
out that the sample variance of the PC scores for the kth sample PC is lk, the kth
largest eigenvalue of the sample covariance matrix S for x1, x2, . . . , xn, and ak is the
corresponding eigenvector for k = 1, 2, . . . , p.

Define the n× p matrices X̃ and Z̃ so that the (i, k)th elements equal to the value
of the kth element x̃ik of xi, and to z̃ik , respectively. Then, Z̃ and X̃ are related by
Z̃ = X̃A, where A is the p× p orthogonal matrix whose kth column is ak.

If the mean of each element of x is known to be zero, then S =
1
n

X̃TX̃. However,
the most common case is when x̄ (mean of x) is unknown. Therefore, in this case,
we have that the (j, k)th element of S is

1
n− 1

n

∑
i=1

(x̃ij − x̄j)(x̃ik − x̄k),

where x̄j =
1
n ∑n

i=1 x̃ij, j = 1, 2, . . . , p.

Consequently, the matrix S can be written as follows:

S =
1

n− 1
XTX, (2.1)

where X is an n× p matrix with (i, j)th element (x̃ij − x̄j). The notation xij will be
used to denote the (i, j)th element of X, so that xij is the value of the jth variable
measured about its mean x̄j for the ith observation.

Moreover, it can also be more convenient to define the matrix of PC scores as

Z = XA. (2.2)

These PC scores will have the same variances and covariances as those given by
Z̃, although these ones will have zero means, rather than means z̄k, k = 1, 2, . . . , p.

Notice that given the XTX eigenvalues λ1, . . . , λp we have that the matrix C =
1

n− 1
XTX will have the same eigenvectors λ1, . . . , λp. Furthermore, for v1, . . . , vp,

i.e., eigenvectors of XTX, we know that the eigenvectors of C are defined by
1

n− 1
vi, for i = 1, . . . , p. Hence, this implies that sometimes it can be more con-

venient to work in terms of eigenvalues and eigenvectors of XTX, rather than
directly with those of S.
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2.2.2 Principal Components Analysis

Intuitively, Principal Components Analysis is a statistical procedure or method
that reduces the dimensionality of a dataset with many variables while preserving
most of the information given by the initial data. In particular, PCA retains most
of the variation from the original dataset. This dimensionality reduction is made
through the earlier defined principal components since they become a new set of
variables with most of the original information. Remember that the first few PCs
retain most of the variation present in initial variables and are uncorrelated be-
tween them. Then, we have to compute the principal components that reduce to
some eigenvalue-eigenvector problem for a positive-semidefinite symmetric ma-
trix. However, we can also obtain the scores of the initial data and the loadings,
i.e., the weight of the original variables into the principal components.

2.3 SVD & PCA

SVD provides a computationally efficient method of actually finding PCs. Since
we can find U, Σ, V satisfying the SVD factorisation, then V and Σ will give us the
eigenvectors and the square roots of the eigenvalues of XTX. Consequently, we
can obtain the coefficients and standard deviations of the principal components
for the sample covariance matrix.

We can also get the scaled versions of the principal components scores from the
matrix U. We can see it by multiplying the factorization obtained for SVD on the
right by V, such that: XV = UΣVTV = UΣ, as VTV = Ir. Therefore, since the
matrix XV has the PC scores for the kth PC as its kth column, we have that the PC
scores zik are given by

zik = uik σ1/2
k , i = 1, 2, . . . , n, k = 1, 2, . . . , r,

or, equivalently, U = ZΣ−1. The variance of the scores for the kth PC is
σk

(n− 1)
,

k = 1, 2, . . . , p. Then, U gives the scores of Z but scaled to have variance 1/(n− 1).

Moreover, another point concerning the SVD is that it provides simultaneously
not only the coefficients and variances for the PCs, but also the scores of each
observation on each PC. The PC scores would otherwise need to be derived as an
extra step after calculating the eigenvalues and eigenvectors of the covariance or

correlation matrix S =
1

n− 1
XTX.



Chapter 3

Mapper and its Stability

Mapper is a TDA technique that has been used to examine high-data sets. Mapper
is an algorithm introduced in 2007 by Singh, Memoli and Carlsson in their seminal
paper Topological Methods for the Analysis of High Dimensional Data Sets and 3D Object
Recognition.

Notice that the algorithm is relatively recent even though Mapper has been applied
to different areas (e.g., medicine and sports) for the last years. One of the issues
about its newness is that it is still being developed and studied, and some concepts
nowadays are not clear yet. An example might be the disinformation about its
stability and parameter selection that are left to the user’s choice.

Generally, Mapper does not satisfy the Nerve Theorem because many inputs in-
fluence the results. Further in this reading, we will see that it is pretty hard when
applying the algorithm to satisfy the hypothesis of the Nerve Theorem. Conse-
quently, this somehow justifies the fact that the Nerve Theorem is not generally
satisfied when applying Mapper.

However, the Nerve Theorem is an important link between topological spaces and
discrete geometric and topological algorithms. It is at the heart, either implicitly
or explicitly, of many foundational algorithms in topological data analysis. Hence,
we could say that the idea of the Nerve Theorem is behind to creation of the
Mapper algorithm.

In this chapter, we will see some results about the stability of one-dimensional
Mapper. The stated results are focused on the stability based on the perturbation
of the parameters the user has to select before applying the algorithm.

Nevertheless, in the practical part of our study, we have applied the 2-dimensional
algorithm. We chose 2-dimensional Mapper because it was more convenient for
us, and it gave much better results for the given data. We will give strong reasons

15
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justifying the decision further in this section.

We divide this section into two; the first one has a detailed explanation of how
Mapper works and the application of the previously seen theoretical concepts to
it. Then, we state the results obtained in the paper mentioned above about the
stability in 1D Mapper.

3.1 Mapper

The idea of the Mapper algorithm is, given a data set X and a well-chosen real
valued function f : X → Rd, to summarize X through the nerve of the refined
pull back of a cover U of f (X). For well-chosen covers U , this nerve is a graph
providing an easy and convenient way to visualize a summary of the data.

Definition 3.1. Let f : X → Rd, d ≥ 1, be a continuous real valued function and
let U = (Ui)i∈I be a cover of Rd. The pull back cover of X induced by ( f ,U ) is
the collection of open sets ( f−1(Ui))i∈I . The refined pull back is the collection of
connected components of the open sets f−1(Ui), i ∈ I.

The Mapper Algorithm

Given a data set X, we filter the values of X using a filter function, commonly
called lens, f : X → Rd. Then, once we have the filtered set f (X), we get a
cover U =

⋃
i∈I Ui of f (X) and its pull back cover, i.e., the collection of open

sets ( f−1(Ui))i∈I . Thereafter, we decompose f−1(Ui) into clusters CUi ,1, . . . , CUi ,kUi
for every i ∈ I using a clustering algorithm. Finally, we introduce the nerve
concept we have mentioned earlier, such that we compute the nerve of the cover
of CUi ,1, . . . , CUi ,kUi

, Ui ∈ U =
⋃

i∈I Ui of X.

Thus, by definition, we obtain an abstract simplicial complex, and ideally, it should
be homotopy equivalent to X. However, as we stated before, this is generally not
satisfied. The great range of choices for the lens, number of intervals, intervals
overlapping percentage, and the clustering algorithm implies that the Nerve The-
orem will not always apply for Mapper. In fact, Mapper is not even stable on a
big scale, even though it can be stable for minimal changes. Further in this paper,
we discuss these topics and give some formal results.

Moreover, it can be noted that the Mapper algorithm has a straightforward struc-
ture from the very definition. Nevertheless, it raises several questions about the
various choices left to the user. Hence, we also try to briefly discuss how to select
the most optimal parameters and get some valuable conclusions for the algorithm
implementation.
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Figure 3.1: Visual representation example of the Mapper algorithm’s application
for a given dataset.

The choice of f . The choice of the function f , sometimes called the filter function or
lens, strongly depends on the data features that one expects to highlight. Hence, it
is essential to analyse our data thoroughly before choosing the filter function. That
is the reason why, in our case, we carry out a PCA analysis. The two following
lenses are the most used ones:

(a) The eigenfunctions given by a Principal Component Analysis of the data.

(b) The centrality function f (x) = ∑y∈X d(x, y) and the eccentricity function
f (x) = supy∈X d(x, y) sometimes appear to be good choices that do not re-
quire any specific knowledge about the data.

The choice of the cover U . The output of the Mapper is very sensitive to the choice
of U , and small changes in the number of intervals and its overlapping percentage
parameters may result in substantial changes in the output, making the method
very unstable. Note that overlaps will determine the edge creation in the Map-
per's graph. A classical strategy consists of exploring a range of parameters and
selecting the ones that turn out to provide the most informative output from the
user perspective.

The choice of the clusters. The Mapper algorithm requires to cluster the preimage
of the open sets U ∈ U . There are two strategies to compute the clusters. A first
strategy consists of applying, for each U ∈ U , the clustering algorithm (chosen
by the user) to the preimage f−1(U). A second and more global strategy consists
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in building a neighbouring graph on top of the data set X, e.g., k-NN graph or
ϵ-graph, and, for each U ∈ U , taking the connected components of the subgraph
with vertex set f−1(U). Mapper does not place any conditions on the clustering
algorithm. Thus any domain-specific clustering algorithm can be used. Some of
the most implemented clustering algorithms are:

(a) K-means is the most commonly used clustering algorithm. It is a centroid-
based and unsupervised learning algorithm. The numbers of final clusters
are defined by K, so the user can choose the number of clusters the dataset
is divided with. First, we assign each point to a cluster randomly. Then,
determine the cluster centroid coordinates. Finally, we repeat the following
steps until we reach a situation where there is no improvement by switching
points from one cluster to another. The steps consist of determining each
data point’s distances to the centroids, re-assigning each point to the clos-
est cluster centroid based upon minimum distance, and calculating cluster
centroids again.

(b) DBSCAN is, unlike K-means, a density-based clustering algorithm.

In our study we apply the two principal components as our filter function and
the K-means algorithm. Henceforth, we argue the implementation of the Nerve
Theorem into our dataset and the chosen parameters.

3.2 Nerve Theorem into our Mapper

In order to briefly discuss the relation between the Nerve Theorem and the Map-
per algorithm in our case, we will examine each point of the Nerve Theorem in
our dataset. Henceforth, we study the paracompactness of our space and the
intersection of finitely many sets of the open cover C.

We will begin by analysing the paracompact property of our dataset. Note that our
point cloud is in R4. Then, we see a general result for Rn to check the mentioned
above property. However, we need to define some terms and concepts to reach
this final theorem.

Definition 3.2. Given a topological space X, we say that X is a Lindelöf space if
every open cover of X has a countable subcover.

Definition 3.3. A topological space X is regular if for any point x ∈ X and closed
set A, x ̸∈ A, there exists open sets Ux and VA such that x ∈ Ux, A ⊂ VA and
Ux ∩VA = ∅.
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Now that we have stated all the necessary definitions, we need to state the follow-
ing theorem:

Theorem 3.4. All regular Lindelöf spaces are paracompact.

Hence, since Rn is a Lindelöf space, we have that Rn is indeed a paracompact
space. Moreover, we now want to argue that our dataset is also a paracompact
space. In order to get there, we need the following proposition:

Proposition 3.5. Every closed subspace of a paracompact space X is paracompact.

Therefore, we have that points are closed sets in R4 and that the finite union of
closed sets is closed. Since we have a finite number of points, we can state that
our point cloud is a closed set. Thus, since it is a closed subspace of R4, we can
conclude that our dataset is a paracompact space.

As we wanted to prove, we have concluded that, in general, i.e., when our dataset
is in Rd, for d ≤ 1, the dataset we analyse is a paracompact space. This fact implies
that the paracompactness requirement of the Nerve Theorem is usually satisfied.
Then, the validity of the Nerve Theorem over the Mapper algorithm relies on
the second hypothesis, i.e., “every nonempty intersection of finitely many sets in U is
contractible.”

In order to discuss the second hypothesis of the Nerve Theorem, we define a
previous concept:

Definition 3.6. Given a topological space X, we say that an open cover U = {Ui}i∈I

of X is a good cover if all the Ui’s and all their inhabited finite intersections are
contractible topological spaces.

Therefore, it is hard to prove that the final open cover of X obtained by the Mapper
algorithm is a good cover. This fact relies, among others1, on the non-stability of
the clustering algorithms. In particular, the K-means algorithm does not always
give the same results since different slightly different clusters can result from the
initialisation of different centroids.

However, even though in our case, and in general, the paracompactness of the
initial space is satisfied, we have seen that it is hard to prove the good cover
property. Thus, it is hard to guarantee that the Nerve Theorem will always be
satisfied for the whole range of parameters are open to being chosen.

1There is a wide range of parameter options to choose from that can affect the good cover prop-
erty. However, we focus on the clustering algorithm since it is the clearest.
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The following section of this chapter tries to state some results about the stability
of the Mapper under parameters perturbations. We formally quantify the possible
variances on the Mapper graphs after changing some of the initial parameters.
The possible variances can be translated as the different topological features from
one plot to another. The discussion is focused on the 1-dimensional Mapper, even
though we apply the 2-dimensional one in our study.

3.3 Structure and Stability of the 1-Dimensional Mapper

As we mentioned earlier, we begin by stating some theoretical concepts that will
be needed to understand to examine the relation between the Mapper and the
Reeb graph. This relation will able us to examine and predict the appearance,
or disappearance, of new features given by different filter functions and covers.
Moreover, this proposed theoretical framework will facilitate the quantification
of the stability of the Mapper structure. We can modify the cover by choosing
different intervals, overlapping percentages, and even clustering algorithms. Then,
we guarantee some guarantees about the stability between Mapper graphs under
small changes in their initial conditions.

The connection between the Mapper and Reeb graph needs an intermediate ob-
ject called the Multinerve Mapper. Then, we begin by studying the Mapper and
Multinerve Mapper relation, using the theory behind the Nerve and Multinerve
connection. Afterwards, given a pair (X, f ), we determine the relationship be-
tween the Multinerve Mapper and Reeb graph.

3.3.1 Extended Persistence

This section introduces the definition of extended persistence and the necessary
concepts to get to it. The extended persistence provides a method to relate the
Mapper with Reeb graphs. Thus, we first introduce the definition of a Morse type
function:

Definition 3.7. Consider a function f : X → R on a topological space X. We say
that f is a Morse type function if:

(a) There exists a finite set Crit( f ) = {a1 < · · · < an}, called set of critical values,
such that over all open intervals (a0 = −∞, a1), . . . , (ai, ai+1), . . . , (an, an+1 =

+∞) there is a compact and locally connected space Yi and a homeomor-
phism µi = Yi × (ai, ai+1) → X(ai ,ai+1) such that for i = 0, . . . , n, f|X(ai ,ai+1) =

π2 ◦ µ−1
i (π2 is the projection onto the second factor).
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(b) For i = 1, . . . , n− 1, µi extends to a continuous function µ̂i : Yi × [ai, ai+1] →
X[ai ,ai+1]. Similarly, µ0 extends to µ̂0 : Y0 × (−∞, a1] → X(−∞,a1] and µn ex-
tends to µ̂n : Yn × (an,+∞)→ X(an,∞].

(c) Each element Xt has finitely-generated homology.

Definition 3.8. A filtration F is an indexed family (Si)i∈I of subobjects of a given
algebraic structure S, with the index i running over some totally ordered index set
I, subject to the condition that if i ≤ j in I then Si ⊆ Sj.

Proposition 3.9. Consider the function f : X → R, where X is a topological space. The
family {X(−∞,∞)}α∈R of sublevel sets of f defines a filtration, i.e., it is nested with respect
to inclusion X(−∞,α] ⊆ X(−∞,β] for all α ≤ β ∈ R.

The family {X[α,+∞)}α∈R of superlevel sets of f is also nested but in the opposite
direction: X[α,+∞) ⊇ X[β,+∞) for all α ≤ β ∈ R. Considering Rop = {x̃ : x ∈ R},
ordered by x̃ ≤ ỹ iff x ≥ y, we can index the family of superlevel sets byRop. Then,
we have a filtration: {X[α̃,+∞)}α̃∈Rop , with X[α̃,+∞) ⊆ X[β̃,+∞) for all α̃ ≤ β̃ ∈ Rop.

Now, we would like to connect the two filtrations at infinity, and that is what
extended persistence does. The procedure is the following:

Replace each superlevel set X[α̃,+∞) by the pair of spaces (X, X[α̃,+∞)). Notice that
this maintains the filtration property since we have (X, X[α̃,+∞)) ⊆ (X, X[β̃,+∞)) for
all α̃ ≤ β̃ ∈ Rop. Then, let RExt = R ∪ {+∞} ∪Rop, where the order is completed
by α < +∞ < β̃ for all α ∈ R and β̃ ∈ Rop. This poset (partially ordered set) is
isomorphic to (R,≤).

Definition 3.10. Finally, we define the extended filtration of f over RExt by
Fα = X(−∞,α], for α ∈ R,

F+∞ = X ≡ (X, ∅),

Fα̃ = (X, X[α̃,+∞)), for α̃ ∈ Rop.

Remark 3.11. This is a well-defined filtration since we have X(−∞,α] ⊆ X ≡
(X, ∅) ⊆ (X, X[β̃,+∞)) for all α ∈ R and β̃ ∈ Rop.

The subfamily {Fα}α∈R is called the ordinary part of the filtration, and the subfam-
ily {Fα̃}α̃∈Rop is called the relative part.
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Formally, singular homology can be regarded as a sequence of functions
Hn that assign to each space X an abelian group Hn(X) and to each map
f : X → Y a homomorphism Hn( f ) = f : Hn(X) → Hn(Y), and similarly
for relative homology groups. Since these situations are common, we in-
troduce some terminology calling ‘functions’ like Hn, ‘functors’, and the
domains and ranges of these functors, ‘categories’.

Definition 3.12. By applying the homology functor H∗ to this filtration, we obtain
the so-called extended persistence module EP( f ):

EP( f )α = H∗(Fα) = H∗(X(−∞,α]), for α ∈ R,

EP( f )+∞ = H∗(F+∞) = H∗(X) ∼= H∗(X, ∅),

EP( f )α̃ = H∗(Fα̃) = H∗(X, X[α̃,+∞)), for α̃ ∈ Rop,

where linear maps between the spaces are induced by the inclusions in the ex-
tended filtration.

For Morse-type functions, the extended persistence module can be decomposed as
a finite direct sum of closed-open interval modules

EP( f ) ≃ ⊕In
k=1[bk, dk],

where each summand I[bk, dk] is made of copies of the field of coefficients at each
index α ∈ [bk, dk), and copies of the zero space elsewhere, the maps between
copies of the field being identities. Each summand represents the lifespan of a
homological feature (connected component, hole, void, etc.) within the filtration.

Then, a convenient way to represent the module’s structure is to plot each interval
in the decomposition as a point in the extended plane, whose coordinates are
given by the endpoints. Such a plot is called the extended persistence diagram of
f , denoted by Dg( f ). The distinction between ordinary and relative parts of the
filtration allows to classify the points in Dg( f ) in the following way:

(a) points whose coordinates both belong to R are called ordinary points; they
correspond to homological features being born and then dying in the ordi-
nary part of the filtration;

(b) points whose coordinates both belong to Rop are called relative points; they
correspond to homological features being born and then dying in the relative
part of the filtration;

(c) points whose abscissa belongs to R and whose ordinate belongs to Rop are
called extended points; they correspond to homological features being born
in the ordinary part and then dying in the relative part of the filtration.



3.3 Structure and Stability of the 1-Dimensional Mapper 23

It is common to decomposose Dg( f ) according to this classification:

Dg( f ) = Ord( f ) ⊔ Rel( f ) ⊔ Ext+( f ) ⊔ Ext−( f ).

Moreover, we give a result, without proof, about the stability of the extended
persistence diagrams in d∞

b . The result is as follows:

Proposition 3.13. The extended persistence diagrams are stable with respect to the bot-
tleneck distance d∞

b .

3.3.2 Reeb Graphs

Let us continue introducing new concepts that we will need later:

Definition 3.2.X. Given a topological space X and a continuous function f : X →
R, we define an equivalence relation ∼ f between points of X by

x ∼ y ⇐⇒ [ f (x) = f (y), and x, y belong to the sa-

me connected component of f−1( f (x)) = f−1( f (y))].

The Reeb graph R f (x) is the space X/ ∼ f .

There is an interpretation of Dg( f ) in terms of the structure of R f (X). Orienting
the Reeb graph vertically so f̃ is the height function, we can see each connected
component of the graph as a trunk with multiple branches (oriented upwards, or
oriented downwards) and holes. If the vertical span of a feature is the span of its
image by f̃ , we have the following correspondences:

1. The vertical spans of the trunks are given by the points in Ext+0 ( f̃ );

2. The vertical spans of the branches that are oriented downwards are given by
the points in Ord0( f̃ );

3. The vertical spans of the branches that are oriented upwards are given by
the points in Rel1( f̃ );

4. The vertical spans of the holes are given by the points in Ext1( f̃ ).

These correspondences provide a dictionary to read off the structure of the Reeb
graph from the extended persistence diagram of the induced map f̃ . Note that it
is a bag-of-features type signature, taking an inventory of all the features (trunks,
branches, holes) together with their vertical spans, but leaving aside the actual
layout of the features. As a consequence, it is an incomplete signature: two Reeb
graphs with the same persistence diagram may not be isomorphic.
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3.3.3 MultiNerve Mapper

Definition 3.14. A simplicial poset is a partially ordered set (P,⪯), whose elements
are called simplices, and which satisfies the two following properties:

(a) P has a least element called 0 such that 0 ⪯ p for all p ∈ P.

(b) For all p ∈ P there exists d ∈ N such that the lower segment [0, p] = {q ∈ P :
q ⪯ p} is isomorphic to the set of simplices of the standard d-simplex with
the inclusion as a partial order, where an isomorphism between posets is a
bijective and order-preserving function.

From now on, all covers of Z ⊆ R will be generic, open, minimal, interval covers
(gomic for short).

Definition 3.15. Let U = {Uα}α∈A be a cover of topological space X. The multin-
erveM(U ) is the simplicial poset defined by

M(U ) := {({α0, . . . , αk}, C) := ∩k
i=0Uαi)} ̸= ∅

and C is a connected component of∩k
i=0 Uαi)}.

Given a connected pullback cover V , we extend the Mapper by using the multi-
nerve M(V) instead of N (V). This variant will be referred to as the MultiNerve
Mapper in the following.

Definition 3.16. Let X, Z be topological spaces, f : X → Z be a continuous func-
tion, U be a cover of im( f ) and V be the associated connected pullback cover. The
Multinerve Mapper of X is M̄ f (X,U ) =M(V).

The connection between the Mapper and the MultiNerve Mapper is induced by
the following connection between nerves and multinerves:

Lemma 3.17. Let X be a topological space and U a cover of X. Let π1 : (F, C) 7→ F be the
projection of the simplices ofM(U ) onto the first coordinate. Then, π1(M(U )) = N (U ).

Corollary 3.18. Let X, Z be topological spaces and f : X → Z continuous. Let U be a
cover of im( f ). Then, M f (X,U ) = π1(M̄ f (X,U )).

Lemma 3.19. When Z = R and U is a gomic, π1 induces a surjective homomorphism in
homology.
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The MultiNerve Mapper can be read off from the extended persistence diagram
of the Reeb graph. In particular, the MultiNerve Mapper M̄ f (X, I) is actually
isomorphic (as a combinatorial multigraph) to a specific Reeb graph, whose ex-
tended persistence diagram is realted to the extended persistence diagram Dg( f̃ )
of R f (X).2.

Theorem 3.20. Let X be a topological space and f : X → R be a Morse-type function.
Let R f (X) be the corresponding Reeb graph and f̃ : R f (X)→ R be the induced map. Let
I be a gomic of im( f ). There are bijections between:

(i) Ord0(m̄I ) and Ord0( f̃ ) \QIO, (iii) Ext−1 (m̄⟩) and Ext−1 ( f̃ ) \QIE− ,

(ii) Rel1(m̄1) and Rel1( f̃ ) \QIR (iv) Ext+0 (m̄I ) and Ext+0 ( f̃ ).

where QIO = ∪I∈IQ+
Ĩ∪I+∩

, QIR = ∪I∈IQ−Ĩ∪I+∩
, and QIE− = ∪I∈IQ−I , and where, for any

interval I with endpoints a ≤ b, we let Q+
I = {(x, y) ∈ R2 : a ≤ x ≤ y ≤ b} be the

half-square strictly below the diagonal.

Using the theorem above we have that the topological features of M̄ f (X, I) are in
bijection with the points of Dg( f̃ ) minus the ones that fall into the various stair-
cases (QIO,QIE− ,QIR) corresponding to their type. Where Dg( f̃ ) is the persistence
diagram of the induced function f̃ : R f (X)→ R, s.t. f = f̃ ◦ π

Moreover, Dg( f̃ ) itself is obtained from Dg0( f ) and Dg1( f ) by removing the
points of Ext+1 ( f ) and Ord1( f ). Hence, we use the off-staircase part of Dg( f̃ )
as a signature for the structure of the Multinerve Mapper.

Dg(M̄ f (X, I)) = (Ord0( f ) \ QI0 ) ∪ ((Ext+0 ( f ) ∪ Ext−1 ) \ Q
IE− ) ∪ (Rel1( f ) \ QI ).

(3.1)

We call this signature the extended persistence diagram of the MultiNerve Mapper.
The fact that Dg(M̄ f (X, I)) ⊆ Dg( f̃ ) formalizes the intuition that the MultiNerve
Mapper should be viewed as a pixelized version of the Reeb graph, in which some
of the features disappear due to the staircases (prescribed by the cover).

3.3.4 Stability in the bottleneck distance

Given a point in the signature Dg(M̄ f (X, I)), we will calculate the l∞-distance
to its staircase to quantify the needed perturbation of f , or I , to eliminate the
corresponding feature in the MultiNerve Mapper. On the other hand, to know

2For further details, check [8]
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the necessary perturbation to do over f , or I , in order to create a feature in the
MultiNerve Mapper is given by the l∞-distance to the boundary of the staircase
of a point that is in the Reeb graph's signature Dg( f̃ ), but not in the MultiNerve
Mapper's.

Now, we define some concepts to be able to define the bottleneck distance later.
Then, once we get the bottleneck distance definition, we will extend it to obtain a
distance between extended persistence diagrams. The concepts are the following:

Definition 3.21. Given two persistence diagrams D, D′, a partial matching between
D and D′ is a subset Γ of D× D′ such that:

∀p ∈ D, there is at most one p′ ∈ D′ s.t. (p, p′) ∈ Γ

∀p′ ∈ D′, there is at most one p ∈ D s.t. (p, p′) ∈ Γ

Furthermore, Γ must match points of the same type (ordinary, relative, extended)
and of the same homological dimension only.

Definition 3.22. Let Θ be a subset of R2. Given a partial matching Γ between two
extended persistence diagrams Dg, Dg′, the Θ-cost of Γ is:

costΘ(Γ) = max{max
p∈Dg

δDg(p), max
p′∈Dg′

δDg′ (p′)}

where:

δDg(p) = ||p− p′||∞ if ∃p′ ∈ Dg′ s.t. (p, p′) ∈ Γ and d∞(p, Θ) otherwise,

δDg′(p′) = ||p− p′||∞ if ∃p ∈ Dg s.t. (p, p′) ∈ Γ and d∞(p′, Θ) otherwise,

Definition 3.23. The bottleneck distance becomes:

db,Θ(Dg, Dg′) = inf
Γ

costΘ(Γ),

where Γ ranges over all partial matchings between Dg and Dg′.

Thus, we define the distance between signatures as follows:

Definition 3.24. Given a gomic I , we define the distance dI between extended
persistence diagrams Dg, Dg′ as:

dI (Dg, Dg′) = max{db,QI
E−
(Ext, Ext′), db,QIO

(Ord, Ord′), db,QIR
(Rel, Rel′)}
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Stability w.r.t Perturbations of the Function

The distance dI stabilizes the (MultiNerve) Mappers, as stated in the following
theorem:

Theorem 3.25. Given a topological space X, Morse-type functions f , g : X → R and a
gomic I of granularity at most ϵ > 0, the following stability inequality holds:

dI (Dg(M f (X, I)), Dg(Mg(X, I))) ≤ dI (Dg(M̄ f (X, I)), Dg(M̄g(X, I)))
≤ || f − g||∞.

Moreover, dI and db are related as follows:

db(Dg(M̄ f (X, I)), Dg(M̄g(X, I))) ≤ ϵ

2
+ dI (Dg(M̄ f (X, I)), Dg(M̄g(X, I)))

db(Dg(M f (X, I)), Dg(Mg(X, I))) ≤ ϵ + dI (Dg(M f (X, I)), Dg(Mg(X, I)))

Interpretation of the Stability. Denoting by QIp the staircase corresponding to the
type of a diagram point p, the quantity

dI (Dg, ∅) = max
p∈Dg

d∞(p, QIp )

measures the amount by which the diagram Dg must be perturbed in the metric
dI in order to bring all its points to the staircase. Hence, by Theorem 1.2.10., given
a pair (X, f ), the quantity

dI (Dg(M̄ f (X, I)), ∅) = max
p∈Dg(M̄ f (X,I))

d∞(p, QIp )

is a lower bound on the amount by which f must be perturbed in the supremum
norm in order to remove all the features (branches and holes) from the MultiNerve
Mapper. Conversely,

min
p∈Dg(M̄ f (X,I))

d∞(p, QIp )

is a lower bound on the maximum amount of perturbation allowed for f if one
wants to preserve all the features in the MultiNerve Mapper no matter what.
Note that this does not prevent other features from appearing. The quantity that
controls those is related to the points of Dg( f̃ ) (including diagonal points) that lie
in the staircases. More precisely, the quantity



28 Mapper and its Stability

min
p∈Dg( f̃ )∪∆

d∞(p, ∂QIp \ ∆)

is a lower bound on the maximum amount by which f can be perturbed if one
wants to preserve the structure (set of features) of the MultiNerve Mapper no
matter what. Note that this lower bound is in fact zero since ∂QIO \ ∆ and ∂QIR
come arbitrarily close to the diagonal ∆. This means that, as small as the pertur-
bation of f may be, it can always make new branches appear in the MultiNerve
Mapper. However, it will not impact the set of holes if its amplitude is less than

min
p∈Ext( f̃ )∪∆

d∞(p, ∂QIE−).

From this discussion, we obtain information about the selection of overlapping
between intervals. Having small overlaps between the intervals of the gomic helps
capture more features (branches and holes) of the Reeb graph in the (MultiNerve)
Mapper; conversely, having large overlaps helps prevent new holes from appear-
ing in the (MultiNerve) Mapper under small perturbations of the function.

Stability w.r.t Perturbations of the Cover

Now, we fix (X, f ) and study the case where the gomics are varied. Hence, for
each choice of gomic I , we get the following equations:

Dg(M̄ f (X, I)) = (Ord0( f ) \ QIO) ∪ ((Ext+0 ( f ) ∪ Ext−1 ( f )) \ QIE−) ∪ (Rel1( f ) \ QIR)
Dg(M f (X, I)) = (Ord0( f ) \ QIO) ∪ ((Ext+0 ( f ) ∪ Ext−1 ( f )) \ QIE) ∪ (Rel1( f ) \ QIR)

tell which points of the diagram Dg( f ) end up in the diagram of the (MultiNerve)
Mapper and thus participate in its structure. We aim for a quantification of the
extent to which this structure may change as the gomic is perturbed.

A distance between gomics. Given a persistence diagram Dg and two gomics I ,J ,
we consider the quantity:

dDg(I ,J ) = max
∗∈{O,E−,R}

{ sup
p∈Dg∗∩(QI∗∆QJ∗ )

max{d∞(p,QI∗ ), d∞(p,QJ∗ )}}, (3.2)

where ∆ denotes the symmetric difference, where Dg∗ stands for the subdiagram
of Dg of the right type (Ord, Ext or Rel), and where we adopt the convention that
supp∈∅ . . . is zero instead of infinite. Deriving an upper bound on dDg(I ,J ) in
terms of the Hausdorff distances between the staircases is straightforward, since
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the supremum in (4) is taken over points that lie in the symmetric difference be-
tween the staircases:

dDg(I ,J ) ≤ max
∗∈{O,E−,R}

dH(QI∗ ,QJ∗ ),

where dH stands for the Hausdorff distance in the l∞-norm. The connection to the
MultiNerve Mapper appears when we take Dg to be the persistence diagram of
the induced map f̃ defined on the Reeb graph R f (X). Indeed, we have

Ord( f̃ ) ∩ (QIO∆.QJO ) = (Ord( f̃ ) ∩QIO)∆(Ord( f̃ ) ∩QJO )

= Ord(M̄ f (X, I))∆Ord(M̄ f (X,J ))

where the second equality follows from the definition of the signature of the Multi-
Nerve Mapper previously given. Similar equalities can be derived with Ext and
Rel. Having dDg( f̃ )(I ,J ) = 0 means that there are no diagram points in the
symmetric difference, so the two gomics are equivalent from the viewpoint of
the structure of the MultiNerve Mapper. Differently, having dDg( f̃ )(I ,J ) > 0
means that the structures of the two MultiNerve Mappers differ, and the value of
dDg( f̃ )(I ,J ) quantifies by how much the covers should be perturbed to make the
two multigraphs isomorphic. Furthermore, we have the following upper bound
on this quantity:

Theorem 3.26. Given a Morse-type function f : X → R, for any gomics I , J ,

dDg( f̃ )(I ,J ) ≤ max
∗∈{O,E−,R}

dH(QI∗ ,QJ∗ )

From this section, we have seen some interesting facts that can be applied to 1-
dimensional Mapper. The most outstanding are the following:

(a) As small as a perturbation over a function f may be, we can not assure
that we will have the same branches in the MultiNerve Mapper. Indeed, for
any amount of perturbation over f , there is the possibility of new branches
appearing.

(b) Taking small overlaps between intervals of the gomic helps capture more
features of the Reeb graph in the (MultiNerve) Mapper. On the other hand,
having large overlaps helps prevent new holes from appearing in the (Multi-
Nerve) Mapper under small perturbations of the function.

(c) For two different gomics I ,J , we have obtained an upper bound to quantify
by how much the covers should be perturbed to make the two multigraphs
isomorphic
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Chapter 4

Results

4.1 Introduction

The principal aim of this study is to ascertain the conclusion from Comparison
between endocardial and epicardial cardiac resynchronization in an experimental model of
non-ischaemic cardiomyopathy paper using Topological Data Analysis, TDA, tools.
In particular, we use the Mapper algorithm to analyze the data set given by the
Hospital Sant Pau de Barcelona. Moreover, we are also open to new information
that traditional statistics methods could not reflect. Hence, our goal is to contrast
the region-dependent response to LV pacing and try to discover other features of
the cardiac resynchronization therapy.

We want to remark that this study has been carried out with only a number of
six pigs. This fact has its positive and negative aspects. Using statistical methods
over a small number of samples can not be really useful, since such a small sample
could not reflect the reality. Then, the results obtained applying TDA, in this case
the Mapper algorithm, can be much more determinant. On the other hand, with
a little amount of studied individuals, there is the possibility of analysing outliers
and then the results would also not reflect the reality.

4.2 Dataset

The Hospital Sant Pau team analysed the differential effect of endocardial and epi-
cardial pacing on the following variables at each pacing configuration: LV peak
pressure (LVP), LV dP/dtmax, LV dP/dtmin, mean ABF, as well as QRS complex
width and QT interval. The values obtained for each biventricular pacing config-
uration were compared with those obtained during previous dyssynchronous RV
DDD pacing at the same AV delay.

31
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In other words, they obtained data extracted from six female domestic swine re-
sponses, with bipolar pacing electrodes each, against several heart testings. Then,
to check the efficiency of the bipolar pacing electrodes, they compared the previ-
ous values with those obtained without the bipolar pacing electrodes (2-basal VD
75 pacing). These differences were expressed as a percentage of change using the
formula:

100× [(value of variable X/dyssynchronous value of variable X)− 1].

By applying the previous formula we obtain the variables: ∆LVP, ∆LVdP/dtmax,
∆LVdP/dtmin, ∆ABF, ∆QRS and ∆QT. Some of these formulas are the ones we use
in our study to check the existence of an improvement using the earlier mentioned
method. In particular, we use the variables ∆LVP, ∆LVdP/dtmax, ∆LVdP/dtmin,
∆ABF, and notate them as DPDT+, DPDT-, LV, and FA, respectively.

Now, we explain the variables we use in the study in detail to facilitate the com-
prehension throughout the paper for the readers. The four variables compare the
results obtained using bipolar pacing electrodes and without them. Hence, con-
sidering that the variables represent a comparison, we explain every feature that
has been compared.

(a) DPDT+. This variable reflects the maximal rate of rising left ventricular
pressure (LVP).

(b) DPDT-. Samely to DPDT+, this one indicates the minimal rate of rising left
ventricular pressure (LVP).

(c) LV. It represents the left ventricular pressure.

(d) FA. This variable stands for arterial blood flow.

Finally, we want to specify that we work with 576 points. There are three regions
(base, media, and apical), and each of them has subregions. In particular, base and
mid have the same three subzones; posterior, anterior and lateral. On the other
hand, the apical region has two other subzones (apical1 and apical2). Moreover,
endocardial and epicardial pacing is differentiated for these eight regions. Then,
we have an amount of 16 labels for every swine.

Additionally, the medical team used six different machine configurations to
analyse all the mentioned labels above. Hence, we have a total of 96 points for
every swine. So, all the points of all pigs sum 576 points, as we stated at the
beginning.
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4.2.1 Data visualization

Now, we try to understand and get information about the data by visualizing the
point cloud. Hence, we have developed a Python program1 to plot the mentioned
variables in R3. However, we also study the planes between variables since, in
general, it provides a more clear visualization of the distinguished little cluster
and variables regression.

In this study, three main labels are used during the process. For every plot, we
use colours to differentiate between three labels that can give us some notable
information. These labels compare the endocardial and epicardial pacing, different
heart regions, and the six individuals. The heart has been divided into basal, mid,
and apical zones, so the heart regions’ label is made out of them.

Thus, we divide this section into three subsections, one for each label, and we put
the most outstanding plots2. All three sections ahead follow the same represen-
tation pattern. There is just one figure in each section. In every figure, we find
12 planes where all the values are reflected. The axes of every plane are two out
of the four we use to analyse the data, so we can also understand the relation be-
tween them. This will also be reflected in the third section, where we implement a
PCA analysis. However, the represented colours may vary from section to section
depending on the reflected label.

Endocardial vs Epicardial

The following plots show the values differentiated by the endocardial and epicar-
dial comparison. We map the epicardial points to blue and the endocardial ones
to red colour for this label, and the obtained graphs are represented on the next
page:

1You can check the complete code in [POSAR EL NUMERO DEL ANNEX]
2For all the created plots check the annexe.
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Figure 4.1: Plot of the data in R2 differentiated by epicardial (blue) and endocardial (red)
pacing.

Regions (Basal, Mid, Apical)

Here, we reflect on the three different heart zones, i.e. the Basal, Mid, and Apical
regions. The colours for the next figure are mapped in the following way: blue to
basal, red to mid, and green to apical.

Figure 4.2: Plot of the data in R2 differentiated by the heart’s regions; basal (blue), mid
(red) and apical (green).
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Swines

Basically, we assign a color to each swine, and the most important plots are:

Figure 4.3: Plot of the data in R2 differentiated by swines.

4.2.2 Conclusions

As we can imagine, there is a noticeable linear correlation between the variables
DPDT+, DPDT- and LV for all three labels. However, there is nothing we can
distinguish from the variable FA in that sense.

Note that every plot follows a similar pattern, i.e. there is a big centred cluster
where the vast majority of the points lie, and then some other small clusters made
out of a few points.

In subsection the regions plots, the small clusters out of the centre only have
basal points or a mix of mid and apical. Hence, since one of our goals is to
distinguish between basal to mid and apical regions, this fact can be determinant
in the implementation of Mapper.

Furthermore, in the epicardial and endocardial figures, we can also find small
clusters of just endocardial or epicardial pacing points. Nevertheless, we can not
compare the size and frequency of these clusters to those in the regions planes.

In the other section, we can observe a differentiation of the FIS13 and FIS6 to the
other pigs, although we can also find some separated clusters of FIS18 and FIS14.

Notice that, for the variables DPDT+, DPDT- and LV, all the clusters mentioned
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above are aligned with the central one. Then, they don’t break the regression, only
have considerable higher values, so we are not dealing with outliers.

In conclusion, we have visualised some meaningful results even before filtering
the data. Thus, we can be optimistic about obtaining determinant information
after applying Mapper with a proper filter function and cluster algorithm, mainly
for the heart regions.

4.3 PCA analysis

As stated before, we analyse our dataset through PCA in this subsection. Firstly,
we show the different plots of our data in the planes where the principal compo-
nents are the axes. There are three different figures for every label we have, as
we did in previous section. Nevertheless, we have decided to show the plots for
the data filtered by heart regions since it is the only one we can mention relevant
information about3.

Furthermore, in this section, there are two other figures extracted from the princi-
pal components analysis that provide information about the relation of the original
variables and the new set of variables, the principal components.

Figure 4.4: Plot of the first three Principal Components in R2 differentiated by heart’s
zones; basal(blue), mid (red), and apical (green).

3Check the plots for an epicardial and endocardial comparison, and for the different swines in
the Annex.
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Figure 4.5: Explained Variance histogram. Each column shows the amount of explained
variance of the first kth principal component, and the line represents the cumulative ex-
plained variance of the first k principal components.

By studying the three obtained pictures, we can state that the first and second
principal components have an 88% weight over the data information. Hence, since
it is representative enough, we use PCA with two components as our filter function
for Mapper.

From now on, we focus on the planes with the first and second principal compo-
nents as axes. Thus, in the plot labelled by the heart zones, we can distinguish
two clusters, made out of basal points, from the centre, where most of the points
lie. Also, there is an apical cluster, even though it is closer to the centre, and some
mid-region points are around.

On the other hand, apparently, there are no noticeable distinctions in the epi-
cardial and endocardial plots. Thus, it seems pretty challenging to think about
getting new information from this label, although we are still open to finding new
information using Mapper. Nevertheless, this ascertains the hypothesis obtained
by Hospital Sant Pau de Barcelona related to this topic. Specifically, endocardial LV
pacing induces similar haemodynamic changes to pacing from the epicardium.

Finally, from the swine differentiated plot, we can state some slight differences
between the swines FIS13 and FIS6 from the rest. Also, some FIS15 points are out
of the centre, although quite close. Hence, we can not say that the FIS15 case is
not as straightforward as the two mentioned before.
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Furhtermore, we can mention that the variables DPDT+, DPDT- and LV have sim-
ilar directions, but this makes sense because of the earlier linear regressions. By
analogous reasoning, the variable FA has a different direction than the rest. Then,
as we mentioned before, the first and second principal have a significant weight
over the dataset information, particularly 88%.

Figure 4.6: Plot of the filtered values by PCA differentiated by heart’s zones, and variables
directions over the principal components.
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4.4 Applying Mapper algorithm

Now that we have already decided on the most suitable filter function for our
case, we apply the Mapper in this section. However, we still have to determine the
clustering algorithm, the intervals and their overlapping. We represent the results
for the best clusterer4 for our case. However, we will keep varying the other two
parameters to prove some consistency in our results.

The selected clustering algorithm is the K-Means algorithm from the sklearn li-
brary. After trying the most common and useful clusterers, and comparing the
results, we saw that K-Means was the most suitable option, even though there
were repeated patterns in some of them.

It might be fair to remark that K-Means is not entirely stable. The graphs obtained
are not exactly the same, but their differences are almost insignificant. Specifically,
the values obtained for the variables nodes, total samples, and unique samples
do not change from one graph to the other. However, the number of edges in
the graph tends to vary a little. Then, even though this change may be pretty
negligible, it can slightly affect the visualisation of the final result.

However, even though the clustering algorithm is not entirely stable, it is also fair
to remark that the differentiation of the basal region was visible in every graph.
Then, it is evident that we have chosen the figures with the most considerable
differentiations after running the Python program a few times for each set of pa-
rameters5.

We want to remark that we have identified the basal points with yellow, mid with
green, and apical with purple. Then, each node has associated the color of the
dominant region. However, if the representation of two colors is the same then it
defines a new color in between of the two regions.

Now, we see the plots given by the Mapper algorithm with PCA and K-Means
as their lens and clustering algorithm parameters. On the other hand, as we said
earlier, we show several figures where we have changed the number of intervals
and their overlapping to prove some consistency in the final results.

4For all the filter functions analysis check the annexe.
5You can check other graphs with the same parameters in the annexe of this paper.
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4.4.1 Mapper Results

Figure 4.7: Mapper graph obtained with seven intervals and 35% overlapping percentage
between intervals.
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Figure 4.8: Mapper graph obtained with four intervals and 42.5% overlapping percentage
between intervals.

4.5 Quantification in Graphs

In this section, we give arguments through basic graph theory to justify the results
obtained from Mapper quantitatively.

Firstly, we want to remark that the information one can extract from a Mapper
graph is purely from the connectivity between vertices. Hence, the distance be-
tween vertices or the distribution of the graph is relevant. However, getting visu-
ally attractive shapes helps to understand the information from the graph more
easily.

Let G = (V, E) be a graph, where V is the set of vertices and E is the set of edges.
The elements of V, the vertices, are denoted by vi, and the edges, elements of E,
by ei,j = (vi, vj) such that i ̸= j. We want to distinguish between the vertices de-
pending on their colours; hence, we need to define the following vertices subsets:
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VY = {vi ∈ V : vi is yellow}, VG = {vi ∈ V : vi is green},

and VP = {vi ∈ V : vi is purple}.

Furthermore, we also need to define some edges subsets:

EY = {ei,j = (vi, vj) : vi ∈ VY, vj ̸∈ Vy}, EG = {ei,j = (vi, vj) : vi ∈ VG, vj ̸∈ VG}

and EP = {ei,j = (vi, vj) : vi ∈ VP, vj ̸∈ VP}.

Notice that these sets are defined by the edges that connect different coloured
vertices. Then, the first characteristic of our graph that we have studied is given
by:

X̄DC,i =
|Ei|
|Vi|

, for i ∈ {Y, G, P}.

Intuitionally, for a given color i, we calculate the mean of the amount of edges e(i,j)
such that i ̸= j. Now, let us define the following subsets:

VYY = {vi ∈ VY : ̸ ∃ ei,j = (vi, vj) s.t. vj ∈ (V \VY)},

VGG = {vi ∈ VG : ̸ ∃ ei,j = (vi, vj) s.t. vj ∈ (V \VG)},

and VPP = {vi ∈ VP : ̸ ∃ ei,j = (vi, vj) s.t. vj ∈ (V \VP)}.

We have defined the set of vertices that either have edges connecting them to
only vertices of the same colour or are not connected. Thus, we have studied the
following characteristic:

fMC,i =
|Vii|
|Vi|

, for i ∈ {Y, G, P}.

We can say that fMC,i defines, for each color, the relative frequency of vertices in
Vii over the set Vi, for i ∈ {Y, G, P}. In other words, for each colour, fMC,i defines
the relative frequency of vertices that are not connected to other coloured vertices
over the total amount of vertices of the respective colour.

Now, calculating X̄DC,i and fMC,i over the two illustrated graphs, we obtained the
following results:
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Figure 4.9: Table with the X̄DC and fMC values for each obtained Mapper graph.

Observing the table above, we can affirm the following statements:

(a) For both graphs, note X̄DC,Y is the half, or almost half, of X̄DC,G and X̄DC,P.
Then, the connectivity with yellow vertex with different coloured vertices is
lower than the rest.

(b) Moreover, the values for fMC,Y are much higher compared to ones for fMC,G

and fMC,P. The previous fact implies that the yellow vertices’ tendency to
connect only to vertices of their same colour is greater than for the green
and purple vertices.

4.6 Mapper conclusions

From the above graphs, and their quantification results, we can appreciate a differ-
ence between the basal region and the two others (mid and apical). In all shown
figures, each with different interval numbers and overlapping percentages, there
are some clusters where most of their samples are from the heart basal region.
Notice that, in general, this does not happen with any zone in such a clear way.

Hence, we think one of the leading hypotheses we established at the beginning
of this study has been accomplished. The hypothesis we are talking about is the
following one:

The response of epicardial and endocardial LV pacing was regional dependent and the best
response was obtained at the basal regions.

Furthermore, we get more great graphs when filtering the dataset via endocardial
values than for epicardial pacing. Even though we can get differences for both
of them, the frequency of obtaining highlighting graphs for endocardial is higher.
Thus, we can state that it can be a slight improvement in the therapy through
endocardial pacing.6

6Check some Mapper graphs sorted by endocardial and epicardial values in the annex of this
paper.
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4.7 Contrast by Statistical Methods

We have applied statistical methods to our dataset to compare and contrast the
results obtained by the Mapper algorithm. We have computed the mean, standard
deviation, standard error, and maximum and minimum value of our data for the
entire data. Then, we have studied the mean, standard deviation and standard
error differentiating between epicardial and endocardial pacing. The results are
the following:

Figure 4.10: Table of statistical methods values sorted by heart regions.

Figure 4.11: Table of statistical methods values sorted by heart regions via epicardial
pacing.

Analysing the content given in the three tables, we can appreciate some relevant
information about the dataset. Observe a noticeable difference between the basal
mean and the others. However, notice that there are high standard deviations for
all regions and variables. This is consequence of the huge distances between the
maximum and minimum values. Then, we mostly base our comparison using the
mean and standard error (SEM) together.
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Figure 4.12: Table of statistical methods alues sorted by heart regions via endocardial
pacing.

First, we examine the values from the general table, the one without differentiation
between endocardial and epicardial pacing. For the variables DPDT+ and LV, we
get that the intersection of the basal interval and the mid interval in this table
is empty. Moreover, by comparing the basal and apical, we also obtain that the
variables DPDT+ and LV are the only ones with an empty intersection between
intervals. Contrarily, there is no empty intersection for any variable comparing
mid and apical.

Now, we examine the table with only endocardial pacing values. Comparing the
basal and mid intervals, we have empty intersections for the variables DPDT+,
DPDT- and LV. Then, we can appreciate empty intersections for DPDT+ and LV for
basal and apical. Again, we can not say anything about the comparison between
apical and mid regions.

Finally, we analyse the epicardial values table. We can not tell anything about any
differentiation (empty intersections) between basal and mid regions for epicardial
pacing. However, we get an empty intersection for the variables DPDT+ and LV
by comparing basal and apical. Same as the other two tables, there is nothing
relevant to highlight comparing mid and apical regions.

Thus, we can conclude that for some variables, there is a noticeable differentiation
between basal and mid, or basal and apical. However, there is nothing we can
say about comparing the mid and apical regions. These results contrast the con-
clusions previously obtained by the Mapper algorithm since we can observe some
differences from the basal region.

More profoundly, the endocardial pacing has more empty intersections than the
epicardial pacing. Then, this reflects the fact that, for endocardial values, the
Mapper gets graphs where the basal is differentiated more frequently.
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Chapter 5

Conclusions

This study was carried out to complement and enhance the results abstracted by
the Department of Cardiology from the Hospital de la Santa Creu i Sant Pau. We ex-
pected to find apparent differences in the different heart regions by studying the
improvement resulting from the heart responses after being submitted to bipolar
pacing electrodes. Furthermore, we were also confident about discovering signifi-
cant results related to other features.

We began the paper by building a theoretical framework that would help the
reader to get a fully detailed understanding of the methods and tools used later in
our study. Throughout this construction, we have stated results both from topol-
ogy and statistics. Firstly, an explanation of the Nerve Theorem, the core of the
Mapper algorithm, was given with all the topological concepts needed to compre-
hend it. On the other hand, we also dedicated a section to PCA and its differences
from SVD. Furthermore, we explained Mapper’s methodology and offered a proof
of the relation between the Nerve Theorem and our Mapper implementation. Fi-
nally, we stated some results about the stability of 1-dimensional Mapper via its
connection to Reeb graphs.

The practical part started by explaining exhaustively the dataset provided by the
Cardiology Department. We described the methods they followed to obtain the
data, the displayed variables and their meaning. Moreover, we detailed the three
labels we were willing to study and compare to abstract relevant results.
Afterwards, we reflected the data into planes taking two of the four variables we
had as their axes. This visualisation allowed us to study the correlation between
variables. Hence, a clear correlation was abstracted by comparing the DPDT+,
DPDT- and LV variables, although nothing relevant was obtained for FA.
Later on, a principal components analysis was implemented into our dataset.
From the analysis, we could obtain significant information, but mainly it was
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helpful to contrast that the two principal components were the most optimal filter
function in our case. We got to this decision after checking that the two princi-
pal components had an 88% weight over the data information and visualising the
plots of the data filtered by them.
Finally, we provided the most outstanding results of the Mapper application in the
initial data. In order to supplement the results obtained through the algorithm,
we carried out a study using statistical methods and a quantification of the graphs
using some basic graph theory concepts. In particular, we differentiated the basal
region from the mid and apical. Hence, we can assert that there is a better im-
provement of the bipolar pacing electrodes if they are placed in the basal region of
the heart. However, we could not get any relevant differentiation from the other
labels.

Mainly, we showed the best graphs that reflected the hypothesis and goals we
wanted to contrast in the introduction. However, more results can be checked in
the Annex of this paper.

Even though we could not provide new information, we still offered more reasons
to justify differences in the heart’ zones. Since both studies have concluded with
the same results, it indeed can be expected that there is a better response in the
heart’s basal. Hence, we are still motivated to keep studying this data by applying
other TDA methods, such as persistent homology, to complement these studies.

We hope that all this work has a meaningful impact on the treatment of arrhyth-
mias and is useful to future readers to clarify some aspects of the Mapper Algo-
rithm. Indeed, we encourage these readers to go further in this research and get
valuable results for the theory behind Mapper.
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Annex

A.1 Filter Functions

There are many possibilities when choosing our filter function for Mapper. In par-
ticular, we can use many projection functions from maths, statistics, econometrics,
or machine learning. Moreover, we can also make combinations between them, so
we do not have to stay with just 1-dimensional lenses. A list of all the tested filter
functions and some visual examples are given below:

(a) km.KeplerMapper().fit_transform(X, projection=’__’). Projection parameter
is either a string, a Scikit-learn class with f it_trans f orm, or a list of dimension
indices.

(b) sklearn.manifold.TSNE(n_components=3, init=’pca’, perplexity = 75, met-
ric = ’euclidean’, n_iter = 5000).fit_transform(X). The parameter metric is
the metric to use when calculating distance between instances in a fea-
ture array, some examples are: ‘braycurtis′, ‘canberra′, ‘chebyshev′, ‘cityblock′,
‘correlation′, ‘cosine′ and ‘euclidean′.

(c) sklearn.manifold.MDS(n_components=2, metric = ’__’).fit_transform(X)

(d) sklearn.manifold.SpectralEmbedding(n_components=2, affinity = ’__’). It
forms an affinity matrix given by the specified function and applies spectral
decomposition to the corresponding graph laplacian. The function to specify
can be one of the following ones: ‘nearest_neighbors′, ‘rb f ′, ‘precomputed′,
‘precomputed_nearest_neighbors′.

(e) sklearn.manifold.LocallyLinearEmbedding(n_components=2).fit_transform(X)

(f) sklearn.manifold.Isomap(n_components=2).fit_transform(X)

(g) mapper.filters.Gauss_density(X, sigma = 10, metricpar=, callback=None)

(h) mapper.filters.eccentricity(X, exponent=1.0, metricpar=, callback=None)
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Figure 1: Data filtered by sklearn.manifold.TSNE

Figure 2: Data filtered by sklearn.manifold.SpectralEmbedding
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A.2 Clustering Algorithms

Similarly to the filter functions section, we will also list the clustering algorihtms
we have tested when applying Mapper to our dataset. The list is as follows:

(a) sklearn.cluster.DBSCAN(eps=1.4, min samples=3).

(b) sklearn.cluster.AgglomerativeClustering(n clusters=3).

(c) sklearn.cluster.AffinityPropagation(damping = 0.8665)

(d) sklearn.cluster.Birch(threshold=0.000001, n clusters=3).

(e) sklearn.cluster.MiniBatchKMeans(n clusters = 3)

(f) sklearn.cluster.MeanShift()

(g) sklearn.cluster.OPTICS(eps=4.5, min samples=4)

(h) sklearn.cluster.SpectralClustering(n clusters=3)

After comparing the results obtained, with several parameter configurations, by
this clustering algorithms with the K-Means algorithm we concluded that using
the last was the optimal selection in our case.
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A.3 Extra PCA plots

Now, we show the plots where we illustrate our dataset in a plane that takes the
principal components as its axes. The first figure in this section corresponds to the
dataset filtered by epicardial and endocardial pacing. As stated previously in the
paper, the epicardial points are mapped to blue and the endocardial to red. Then,
in the other figure, we filter the data by the different swines, each with a different
colour.

Figure 3: Plot of the first three Principal Components in R2 differentiated by epicardial
(blue) and endocardial (red).
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Figure 4: Plot of the first three Principal Components in R2 differentiated by swines.
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A.4 Extra Mapper plots

In this section, we illustrate more plots where it can be possible to differentiate
between basal values from the rest. The first two figures are the obtained results
for the whole dataset, but with different values for the number of intervals and
overlapping percentages. Moreover, we will see an extra example for endocardial
pacing with different parameters. Finally, even though it is not as straightfor-
ward as in general or endocardial values, we show the most illustrative graph for
epicardial pacing.

Figure 5: Mapper graph obtained with six intervals and 42.5% overlapping percentage
between intervals.
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Figure 6: Mapper graph obtained with six intervals and 40% overlapping percentage
between intervals.

The following figures show outstanding Mapper results applied to our dataset but
previously filtered by endocardial and epicardial values. There are two plots for
endocardial and just one for epicardial since, as mentioned earlier, the frequency
is great graphs is higher for the first one.
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Figure 7: Mapper graph obtained with seven intervals and 40% overlapping percentage
between intervals applied to data filterd by endocardial values.
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Figure 8: Mapper graph obtained with six intervals and 45% overlapping percentage
between intervals applied to data filterd by endocardial values.
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Figure 9: Mapper graph obtained with five intervals and 40% overlapping percentage
between intervals applied to data filterd by epicardial values.


